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Abstract

In this paper, general solvability statements on linear continuous coefficient differential algebraic
equations with properly stated leading terms are derived by means of decoupling projector func-
tions decomposing the differential algebraic equation into its characteristic components.
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1 Introduction

This paper is a continuation of the approach by [1] to characterize a class of linear differential
algebraic equations (DAEs) of the form

A(Dz) + Bz =q (1.1)

with continuous coefficients A, D, B analytically exactly.

While an index characterization and the proof of invariance under transformation and refactor-
ization were in the center of interest in [1], the present paper aims at revealing the exact inner
mathematical structure and the solvability of DAEs with tractability index x4 by means of parti-
tioning and decoupling projectors.

In distinction to the various DAE concepts available (cf. [2] for a comprehensive overview) great
store is set by low resp. exact smoothness conditions here. We do not assume the coefficients to
have first and higher derivatives. However, as described in detail in [1], in this context constant
dimensions play an important role for a series of subspaces.

The paper is divided into three further sections. Section 2 provides the necessary tools (matrix
function sequence, index definition) from [1]. They are completed by the new and important re-
alization on the invariance of special subspaces (Theorem 2.3). In Section 3, we reveal by means
of projectors that and in what way each regular DAE can be partitioned into an inherent regular
ODE for the dynamical component and a system of explicit equations defining the other compo-
nents, in which necessary differentiations of already available components have to be carried out, as
expected. Finally, initial value problems (IVPs) can be formulated in such a way that statements
on the uniqueness and solvability will be possible.

Section 4 is devoted to the problem in how far the system of non-dynamical components can be
completely decoupled from the inherent regular ODE. Should this be possible, we will obtain clear
and simple solvability statements (Theorem 4.4) as well as an exact description of the function
spaces for the admissible right-hand sides ¢ in (1.1). This allows for a description of the canonical
subspaces, for instance of the exact geometrical locus of solution for the homogeneous DAE. On



this background, it will become apparent that, for standard solvability assertions, some necessary
smoothness conditions may also concern the DAE coefficients.

Furthermore, the exact knowledge of the function spaces of the admissible right-hand sides provides
causality conditions for control problems (Theorem 4.8).

Technically expensive proofs have been placed in the appendices A and B.

2 Fundamentals

We consider equations
A (D#)z(t)) + Bt)z(t) = q(t), t€T (2.1)

with continuous matrix coefficients A(t) € L(R",IR™), D(t) € L(R™, R"™), B(t) € L(IR™),
t € Z, T C IR an interval, and with properly stated leading term. The right-hand side ¢(¢) € IR™
depends, at least continuously, on t. We are looking for continuous functions z : 7 — IR™ that
have a continuously differentiable product Dz : Z — IR™, and which satisfy equation (2.1) for all
tel.

The leading term is said to be stated properly if the matrix functions A and D are well matched
in the sense that the decomposition

kerA(t) ® imD(t) = R", t €I, (2.2)

is valid and both subspaces are spanned by basis functions that are continuously differentiable
on Z (cf. [3], [4]). In the consequence, there is a uniquely determined projector function
R € CYZ, L(IR")) that realizes the decomposition (2.2), that is, we have R(t)? = R(t), imR(t) =
imD(t), kerR(t) = kerA(t), for t € Z. Observe that A(¢) and D(¢) have common constant rank
on Z. Additionally, we use functions D~ € C(Z, L(IR", IR™)) satisfying the conditions

D(t)D(t)"D(t) = D(t), D(t)"D(t)D(t)” = D(t)~, D(t)D(t)” = R(¢t), t €L, (2.3)

i.e., pointwise generalized inverses of D. We stress that (2.3) does not define D~ uniquely (e.g.
[5]). However, if we fix an additional projector function Qg € C(Z, L(IR™)) that projects pointwise
onto kerD(t), then the fourth condition

D(t) D(t)=1—Qot), t €T, (2.4)

added to (2.3) makes the generalized inverse uniquely determined. We shall take advantage of this
fact. Since the decomposition (2.2) implies that kerA(t)D(t) = kerD(t), we may operate with
Qo(t) being nullspace projectors for the product A(¢)D(t).

Next we construct a special sequence of matrix functions and subspaces to be used later on for
index characterization and system decoupling. The argument ¢ is mostly dropped. Then the given
relations are meant pointwise on Z. Starting from the coefficients A, D, B of equation (2.1) we form

G() = AD, N() = ]{IGTG(), BO = B, (25)
QF = Qo, imQo =Ny, Py=1-Q, (2.6)
and, for ¢ > 0,
Giy1 = Gi+ BiQi, Nip1 =kerGip (2.7)
Q71 = Qit1, imQit1=Nip1, P =1—Qin
Bis1 = BiP,—GiWD (DPy---P,nD7)DPy--- P,



The expressions (2.6) and (2.8) mean that corresponding projectors Q;(¢) € L(IR™) onto N;(t),
t € Z,1 > 0, are introduced. When using (2.9) we have to take care of the existence of the involved
derivative.

Definition 2.1 ([1]): Equation (2.1) is called a reqular DAE or a reqular DAE with tractability
index p if there is a sequence (2.5) - (2.9) such that, fori >0,

(a) Gi(t) has constant rank r; on I,

(b) No®---@® N; C kerQi1,

(¢) Qi € C(Z,L(R™)), DPy---P,D~ € CYZ,L(IR")),
and ry—1 <1y =m.

Clearly, the flexible part of the sequence (2.5) - (2.9) are the projectors. Instead of saying that there
is a sequence (2.5) - (2.9) suitable in the sense of Definition 2.1, we can agree to say that there are
appropriate projectors Qo, @1, ... ,Q, 1 for that. Note that r, = m implies Q,; =0, G = G,
for ¢ > 0, i.e., the sequence becomes stationary.

Condition (b) in Definition 2.1 is discussed in [1] as a necessary one for regularity. The benefit of
this relation are special properties of the projectors and projector products. In particular, it holds
that

QZQ]ZOa jZO,...,i—l, Qi:QiPO"'IDi—la (210)

(PO"'Pi)ZZPO"'Pi, ker(Py---P;)) = Ng® ---® N; (2.11)
(DPO“‘PiD_)QZDPO“'Pz‘D_, :

kerQ; = kerPy--- P; 1Q; (2.12)

ker(DPy---P;D")=DPy---Pi 1N;®---® DPyN; & kerA.

The matrix functions G; resulting from (a),(b),(c) are continuous.
The differentiability condition in (c) ensures that all terms in the decomposition of the C! function
R belong to C', too, these are

R=DD™ =DPD~ =DPFy---P,D~ +DPFy--- P, 1Q;D™ +---+ DPyQ1D". (2.13)
In other words, the subspace imD that has a continuously differentiable base is consecutively
decomposed into further such subspaces. As we shall realize below, this corresponds to characteristic
parts of the solution.
Although the matrix functions G; clearly depend on the special choice of the projectors within the

scope of Definition 2.1, regularity with index p does not so. This is proved in [1], where regularity
with index p is also shown to remain invariant under regular transformations and refactorizations.

Definition 2.2 The sequence (2.5)-(2.9) is said to be admissible up to k € IN (or the projector
functions Qo, ... ,Qk are admissible) if, for i =0,1,... ,k,

(a) rankG;(t) =r;, t € T,
(b) ifi > 1, then No @ ---® N;_1 C kerQ;,
(c) Q; € C(T,L(IR™)), DPy---P,D~ € C(Z, L(IR")).



Theorem 2.3 The subspaces imG; and No® ---® N;, 1 =0,1,...k, do not at all depend on the
special choice of admissible projector functions Qy, ... Q.

Proof:

Take two admissible sequences G; with @Q;,7 = 0,...k, and G’j with Qj,j =0,...k, and look for
relations. We have Gy = Gy, Ny = Ny, By = By, further D~ = D"DD~ =D R=D DD~ =
PUD_. Derive C_;’l = G0+BUQ0 = G0+BUQ0 = G() +BoQ0Q0 = G1 (I+Q0Q0P0). Since I+Q0Q0P0
is a nonsingular factor, it follows that imGy = imGy, N1 = (I + QoQoPy) N1, No + N1 = Ny + Ny,
hence, N() @ N1 = NU ® Nl.

In case of kK = 1 we are done. By careful technical calculations given in Appendix A, we verify
factorizations G; = G;Z; with nonsingular factors

i—2
Zi=(I+Qi-1Qi1 Py + Z Q;ZijPy- - Pi_2)Z;i_1.
j=0

Again, it follows that imG; = imG;, N; = Z;N;, No®---®N; =No@®---®N;, i =2,... , k. ©
Corollary 2.4 For a reqular DAE (2.1) with tractability index p, the subspace
Ncanu =No®--- GBN;L*l

has dimension pm —ro — ... —r,_1, and it is invariant of the choice of the admissible projectors

QU?' .. 7Qu71-
The subscript of N¢gy,, indicates that this is a canonical subspace for the index 1 DAE.

Corollary 2.5 For constant matrices A, D, B that form a regular matriz pencil A\Gy + By with
Kronecker index p, the subspace Neap,, coincides with the infinite eigenspace of the pencil.

Proof:

In [6], special so-called canonical projectors (), =0, ... — 1, are chosen for constant matrices to
obtain, with Py --- P,_1, the spectral projection onto the finite eigenspace along the infinite one.
These canonical projectors are admissible ones too, hence the assertion follows from Theorem 2.3. <&

3 Decoupling a regular DAE into its characteristic parts
Now we deal with regular DAEs (2.1) that have tractability index p. We try to realize the inherent
structure by means of projections. We do not transform the unknown function, but we decompose

it into characteristic parts. First of all, we multiply (2.1) by G;l (cf. [1]). The resulting equivalent
version of (2.1) is

p—1
Py_i-+PD™(Dz) +G,'BPy---Py_iz+ Y Qjz
j=0

n—1 3
+ Y > P, y---P,D"(DPy---P;D")DPy--- P, 1Qiz = G;lq,
i=1j=1



and it shows some structure even now. By means of the decomposition
I'=F-Py1+QoPr- P+ +Qu-2Pu—1+Qu (3.2)

we split equation (3.1) into an equivalent system of y + 1 equations corresponding to the terms
involved in (3.2), all of which are projectors. Thereby we make use of the properties

Py Py qQj=0,7=0,... -1,
Qu-1Q; =0, 7=0,... ,p—2,
QiPiy1- - Pu1Qi = Q4 QiPiy1-+- Py 1Qj =0,5 # 1.
Since the first factor on the right-hand side of
Qi=I—-I—-Py---P1)Q;) Po--- P 10Q;

is nonsingular, we obtain the components PyQx, ... , Py --- P,_2Q,—17 from the components Q;z,
1=1,...,u— 1 and vice versa.

Let z € C}(Z, IR™) be a solution of (2.1) resp. (3.1). Recall the function space naturally containing
the solutions to be

CH(Z, R™) = {x € C(Z,IR™) : Dz € C'(Z,IR")}.
Define the components
u=DPy---P, 1z, vo=Qoz, v; = FPy---P_1Qiz, i=1,... ,p—1, (3.3)
such that
z=D u+vy+...+v,_1. (3.4)

The components v = DFy---P,_ 1D Dz, Dv; = DPy---P,_1Q;D Dz, ©« = 1,... ,u — 1 are
continuously differentiable since Dz as well as the projectors in front of Dz are so.

Now, premultiplication of (3.1) by Py--- P, (cf. (3.2)) and then by D = DP, leads to an explicit
regular ODE for the component u only (cf. Theorem 3.1 in [1]), namely

W —(DPy-+-Py1D™)u+ DPy---P,_1G;;'BD " u=DPy--- P,_1G;'q. (3.5)

No further components v; are involved in this so-called inherent regular ODE.
Further, multiplying (3.1) by Q,—1 yields immediately

QuflI + QuflG’;lBPU cee Pu,1$ =S Q,ufnglq-

If 4 > 2, we multiply once again by P --- P,_o, so that the resulting expressions are

vy—1 =Ly 19— Ky_1D u, (3.6)
with coefficients
Ly = Py P aQuaG,t for p>2,
Ky—1 = Py--- PM_QQM_IGIIIBPO <Py for p > 2,
Ly = Qu1G,', Ky 1=Qu 1G,'BPy--- P,y for p=1.

We avoid to write an extra subscript to indicate the coefficients to depend on p. Obviously, relation
(3.6) determines the component v,_; explicitly in terms of ¢ and w.



Remark 3.1 For p = 1, the decomposition (3.4) and the equations (3.5), (3.6) represent the well
known decoupling of an index-1 DAE into its dynamic and algebraic parts (cf. [3]):

z=D"u+ vy,
u' — R'u+ DGT'BD~u = DG 'q,
vy = —QoGT'BPyD u+ QoGy'q.
This yields the solution representation
= (I -Ko)D u+ QoG 'q, Ko=QoG,'BP.

Recall I — Ky to be nonsingular, and (I — )Py to be the projector function along Ny onto
So={z€ R™: Bz € imGy}.

For y1 > 2 we have to consider also the equations that arise by multiplying (3.1) by QoPi -+ P,—1
and by Py Py_1 - QiPyy1---Pu—1, k=1,...,u—2 (cf. (3.2)). A careful rearrangement of the
involved terms (cf. Appendix B) leads to the system

p—1 p—1
v = Lrpqg— KD u + Z Nkj(va), + Z Mkjvj, k=0,... ,0—2 (37)
j=k+1 j=k+2

with continuous coefficients Ly, Kr, N, given below, but for the My; we refer to Appendix B.

By the system (3.6)-(3.7), for given u, the components v,_1,... ,vy are successively determined
in an explicit manner. While v,_; is given (cf. (3.6) by a simple assessment, the components
vi, © < p — 2, depend on certain derivatives of components that are already determined. In
particular, we have

Vy—2 = [,u,2q - ’Cuf2D7U + Nuf2ufl(D’qul),- (38)
The coefficients in (3.7) are

Lo = QP Pu1GY, Ly =Py Po1QpPrgr - PG k=1, u—2,
Not = QoQ1D™, Noj =QoPr---P; 1Q;D™, j=2,... ,p—1,
Niktr = Por PoaQpQrD™ k=1,...,pu—2,
Nij = Py P QkPyy1---PjaQiD™, j=k+2,--,u—1,k=1,... ,u—2,
and
Ko = QoPy--- Pu,1G;13P0 Py +Qobr - PM,1P0D7(DP0 e Pulef)lDPU Py
= Qoo Py, (3.9)

Kr = Py Peo1QpPry- --Pqu;lBPo Py
4Py PecyQuPiy1 - Py 1PeD (DPy--- Py 1D )'DPy--- Py
= PO"'Pk—le*Pk"'Pufl, k=1,...,u0—2, (3.10)

with
Qo = QoPr---P, 1G'Bo(I+ QoPy--- P, 1P D™ (DFy--- P, 1D7)'D),
Qes = QrPryrPuo1G'Br(I + QpPryy - Py PD (DPy---Py_yD")'DFy--- Py),
k=1,...,u0—2.



Let us mention that Q.Qr = Qk, Qi* = Qks, k =0,...,u — 2. It turns out that Q. is a certain
extra projector function onto Ny.

Theorem 3.2 Let (2.1) be a reqular DAE with tractability index .

(i) If v € CL(Z,IR™) solves the DAE (2.1), then

u = DP()---P#,IIL‘GCI(I,]Rn), UOZQ()IEC(I,.ZRm),
vy = PO"'RZ—IQZ'(L‘EC%)(I’RWZ)’ t=1...,p—1,

form a solution of the system (3.5),(3.6),(3.7), and v = DPy--- P, 1D~ u.

(ii) Conversely, if u € C1(Z,IR"), vy € C(Z,IR™), v; € CH(Z,IR™), i =1,... ,u — 1, satisfy the
system (3.5),(3.6),(3.7), and u(ty) € im(DPy--- P,_1)(to) for a to € Z, then

t=D"u+uvg+...+v,_1 € CH(Z,R™)
is a solution of the DAE (2.1).

Proof:
It remains to verify the second part. Take u, vy, ... ,v,—1 satisfying (3.5),(3.6),(3.7). From (3.6),(3.7)
we derive immediately

vo = Qovo, v;i =Py~ P1Qui, i =1,... ,u— 1.
Due to [1], Theorem 3.1 we know u to satisfy
u=DPy---P, 1D u, u= D" Du.

Next we put £ = D”"u+wvo+---+v,_1 € C(Z,IR™). It follows that Dz = v+ Dvi+... 4+ Dv,_1 €
CYZ,R"™), thus = € CL(Z,IR™). Derive further that DPy--- P,z = u, Qoz = vy, Qiz =
Qivi, Po---Pi1Qix = v;, i = 1,... ,u — 1. Since the decoupling procedure for (3.1) via (3.2)
leading to (3.5),(3.6),(3.7) is reversible, 2 can be checked to satisfy (3.1) in fact. &

The equivalence of the DAE (2.1) to the system (3.5),(3.6),(3.7) sheds some more light on the
structure of the DAE.

When investigating the solvability of the DAE one can take advantage of the decoupled system.
Looking at (3.6), we realize the condition

DL, 1q— DK,—1D v e CYZ,R") (3.11)

as necessary for solvability. Namely, for a given solution z € Cll) (Z,IR™) the component
DPy--- P, 9Q, 17 necessarily belongs to C', i.e., (3.11) is necessarily valid. On the other hand, if
q € C(Z,IR™) is given and we try to solve the DAE via the system (3.5),(3.6),(3.7), we first obtain
u € C'(Z, R") from (3.5). Assuming additionally DX,_; D~ to be continuously differentiable, we
know Dv,,_1 to belong to C* for ¢ with DL,,_1q € C*(Z, R"). Then, v,_» in (3.8) is well-defined
and so on.

At this place we do not go into further technical details. We say that the right-hand side ¢ and the
coefficients of the DAE (2.1) are sufficiently smooth if all terms in (3.7) are well-defined.



Theorem 3.3 Let the DAE (2.1) be reqular with tractability index p, and let the coefficients and
q be sufficiently smooth. Then, for each z° € R™, the IVP

A(Dz) + Bz =q, =z(ty) — 20 e Neanp(to) (3.12)
is uniquely solvable on CL(Z, IR™).

Proof:

Take the solution u of the inherent regular ODE (3.5) which satisfies the initial condition u(tg) =
(DPy---P,_1)(ty)z°. Then we determine v, 1,...,v1,v9 via (3.6),(3.7). The combined func-
tion £ = D7u + vy + ... +v,_1 is a solution of the DAE due to Theorem 3.2. It holds that
(DPy -+~ Py_1)(to)z(to) = ulty), hence (DPy--- P,_1)(to)(z(to) — 2°) = 0, i.e., (cf. Corollary 2.4)
:E(tg) = Ncanu(tO)-

Moreover, the homogeneous IVP A(Dz)" + Bz = 0, z(tg) € Neanu(to) has the trivial solution only,
and so the solution of (3.12) is unique. &

Corollary 3.4 The dynamical degree of freedom of a reqular DAE with tractability index p is
d=m —dim(Neanu(to)) =10+ ... + 141 — (1 — L)m.

Remark 3.5 The initial condition in (3.12) can be rewritten as
Cx(tg) = €a°
with any matrix € whose nullspace coincides with Negnu(to). A possible choice for that is
€= (DPy---Py_1)(to).
4 Refined matrix function sequences

To the matrix function sequences given in Section 2 we introduce additional accompanying sub-
spaces

Si(t) = {z € R™ : Bi(t)z € imGy(t)}, t € Z,i > 0. (4.1)

Because of imG;_1 C imG; we can also use the descriptions

Sl(t) = {Z e R™: Bo(t)z € szZ(t)}
= {Z € R™: Bo(t)Pg(t) Pz € szZ(t)}

The subspaces im@G; are independent of the special choice of admissible projector functions (cf.
Theorem 2.3), hence so are the subspaces S;. Due to the construction it holds that Sy C Sy C
-+ C 851 €5 and

The first subspace Sy(¢) has a special meaning for the DAE (2.1). Namely, it is the geometric locus
containing the solution values z(t) of all solutions of the homogeneous equation A(Dz)" + Bz = 0.
However, Sy(t) is completely filled by those values only in the case of p = 1 (cf. Remark 3.1). In
the higher index cases, the subspace S;qn,(t), which by definition contains all solution values and
is filled by them, represents a d-dimensional proper subspace of Sy(t) (cf. Corollary 3.4). However,



at this stage we are not aware of a good description of that subspace. This would be easier if the
coupling coefficients KCq,... ,ICy—1 (cf. (3.9), (3.10)) disappeared.
Applying [[7], Theorem A.13] we learn the matrix G, to be nonsingular only if the decomposition

SM—I D Nu—l = R™ (4.3)

is valid. Therefore, for DAEs being regular with tractability index p, we may always choose (),—1
to realize decomposition (4.3), ie., imQu—1 = N,_1, kerQu—1 = S,—1. Because of (cf. (4.2))
No@®---® Ny_» C S,_1, this choice satisfies condition (b) in Definition (2.1) at the same time.
If the resulting DFy--- P, 1D~ is continuously differentiable, then Qo,...,Q, 1 are admissible

(supposed Qo, ... ,Q,—2 are so).

Lemma 4.1 For a reqular DAE (2.1) with tractability index p, let the last projector function Q,—1
in an admissible sequence realize the decomposition (4.3). Then the coupling coefficient KC,,—1 in
(3.7) disappears.

Proof:

Let Qﬂ,l be an arbitrary projector onto IV, 1. Then, the expression Qu,l (G- +Bu,1QM,1)_1Bu,1
is well-defined (cf. [7]), and it is a representation of the projector onto N,_; along S,_i. Conse-
quently, for ¢, 1 it holds that

Qufl = QuflallBufl (4.4)
and further, QﬂflG’;lBufl = QuflGEIBPO s PM,Z, thus QuflGEIBPO s Pﬂ*1 = Quflpﬂfl =0,
i.e., ]CM—I = 0. &
Example 4.2 The DAE

10 10 0 ! 0 0 O
0 1 ((0 1 0) x(t)) + 0 0 —1])z(t)=qt), tel,
0 0 “2a(t) -1 0

with a € C(Z, R), has tractability index p = 2 by Definition 2.1. Namely, a suitable matrix
function sequence is given by

1 00 000 10 0 000
Go=[0 1 0], Q=100 0}, Gi=|0 1 —-1], Q=01 0},
000 00 1 00 0 010
1 0 0 1 0 0 L 0
Go=(0 1 —-1], Gy*=[0 0 —1,DP1D_:<0 0).
0 -1 0 0 -1 -1

Here we have m =3, n =2, rg =r1 =2, ro = 3.
Since DPnglBD_ = 0, the inherent regular ODE is simply v = DPlG’;lq. Compute the
coefficients

0 00 00 0
K1 =PQ1G,'BPyPy = |2a 0 0], L1 =P@Q:G, =10 0 -1
0 00 00 0



and DK D~ = < 0 0), as well as the component u = DPyPix = (:m)

20 0 0

The necessary solvability condition (3.11) reads now in detail

DLyq— DK\D u= (_%3) — (2004 8) u € CY(Z, R?).
It becomes clear that we cannot do with continuous «, but we have to assume that o € C'(Z, IR)
for obtaining standard solvability assertions. Letting ¢ = 0, w« becomes a constant function, i.e.,
DK1D u € CY(T, IR?) needs necessarily a € C*(Z, IR).
Supposing a € C'(Z, IR) we are able to describe the set of right-hand sides that are appropriate
for solvability as

{qe C(Z,R?) :DLiqge CHZT,IR*)} ={qc C(Z,IR) :q3 € CHZ,R)}.

Now we refine the decoupling by choosing instead of the above (); the projector ()1, onto N; along
Si ={z € R?: 20z + 2z =0}, i.e.,

0 00
Qlc =[2a 1 0
20 1 0
Compute further £y, = 0 (cf. Lemma 4.1), DLy, = DLy and DP,.D~ = (—;a 8) Now the

condition for & to belong to C'! is put into the smoothness demands for the projector DP;.D~ or
for the related subspaces DN; and DS\, respectively.

Example 4.2 demonstrates the possibility of clearer solvability statements by means of a smart
choice of the projectors. For general index-2 DAEs, this is confirmed in [3].
Definition 4.3 For a reqular DAE (2.1) with tractability index p, the admissible projector func-
tions Qo,... ,Qu 1 provide

(i) a fine decoupling if K; =0, i=1,... ,u—11in (3.6), (3.7), and

(11) a complete decoupling if Ko = 0 additionally.

A fine decoupling allows the precise description of the set of right-hand sides appropriate for
solvability as

Cind(Z,R™) = {q€C(Z,R™): L, 1q="v, 1, Dv,_1 € CY(Z,R"),
[,u72q + Nﬂfgﬂfl(Dvﬂfl)l = Uy-2, D’Uu72 S CI(I, Bn), cee

p—1
Lig+ Y Nij(Dvj) + 423 Mujuj = v1, Do € CHZ, R")}
7j=2

in particular,
Cmd2(1—, ]Rm) _ {q € C(I, ]Rm) . DPUQIGEIQ e CI(I, ]Rn)}

For given z € C}(Z, IR™) the resulting ¢ = A(Dx)' + Bz belongs to C(Z, IR™) and, conversely,
the DAE (2.1) is solvable for each ¢ € C™%(T, R™).

As we will realize by the next theorem, a fine decoupling allows for a constructive description of
the canonical subspace Scqn,(t), which is defined to be the geometric locus of the homogeneous

DAE, i.e., Seanyu(t) = {z(t) : z € CH(Z, R™), A(Dz)' + Bz = 0}.
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Theorem 4.4 Let the DAE (2.1) be regular with tractability index pu, and let Qo, ... ,Qu—1 provide
a fine decoupling. Define Mcqn, = (I — Ko)Po -+ Pu_1.

(i) Then, for each z° € IR™ and q € C™H(T,IR™) the IVP (8.12) is uniquely solvable on
CHL(Z,R™).

(ii) The solutions of the DAE A(Dz)" + Bz = 0 satisfy the condition z(t) € im I en,(t), t € Z.
Forty € I, xg € imIlcanyu(to), there is exactly one such solution that passes through xo at to.
The subspaces Scany and imlleqn, coincide.

(iii) The decomposition
Scanp(t) ® Neanu(t) = R™, t€ 1 (4.5)
is valid, and l.qn,(t) is the projector that realizes (4.5).

Proof:

The first assertion is now evident as a consequence and more precise version of Theorem 3.3. We
turn to the second assertion. The solutions of the homogeneous components have trivial components
V1y... ,Uy—1 SO that x = (I — IC())D_U = (I — ICO)D_DPO ce Pu_lD_u = (I — ]C())PO ce Pu_lD_u
is a general solution representation. This implies z(t) € imIl.unu(t), t € Z. Now write zg €
im I egnp(to) as zo = (I —Ko)Po - Py—1)(to)wo. Taking into account that o = Qoo (cf. (3.9)),
we have (P() ---Pufl)(tU)Io = (P() ---Pufl)(tg)’wg. The IVP A(DJ?), + Bx = 0, I(to) — Ty €
Neanp(to) has exactly one solution, namely z = (I — Ko)Pp--- P,—1D"u with u satisfying the
initial condition u(ty) = (DFPp - -+ P,_1)(to)zo. It follows that

I(to) = ((I — ’Co)P() "'Pule_DPO"'Pufl)(t0)$0
= ((I — ’Co)P() . 'Pufl)(t[))ﬂio = ((I — ’CU)P() . -Pﬂfl)(to)’wo =XIy.

To verify the third assertion, we observe that II
I — Ky is nonsingular, which implies

egny due to Py--- Py,_1Ko = 0. The factor

2 —
canpu ~

kerllean, = kerPy--- Py 1 = Neanp-
O

Remark 4.5 The projector function Il.4,, and subspaces N¢gp, and Scqn, are characteristics of
the DAE (2.1) itself and do not depend on the special choice of the fine decoupling. This is why we
call them canonical. However, Theorem 4.4 describes them by means of the decoupling projectors.

There is a further benefit of fine decouplings. If there are two of them, Qo,... ,Q, 1 and Qo, .-, Qﬂ,l,
we derive from

(I_ICO)PO"'PM—I:Hcanu:(I_ICO)PO"'p/L—I

that DPy--- P,_1 D~ = DPy--- PM_ID’ must be true, i.e., the projector function DFPy--- P,_1 D~
corresponding to the inherent regular ODE (3.5) is invariant of the special choice of the fine de-
coupling. In the consequence, the inherent ODE (3.5) and its invariant subspace imDPFy--- P,
are unique.
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Corollary 4.6 Let the DAE (2.1) be regular with tractability index p and let a fine decoupling
exist. Then there is a unique inherent reqular ODE (3.5) being invariant of the special choice of
the fine decoupling.

Finally, the question is left whether fine and complete decouplings do exist. For index 1 DAEs,
each Qg provides a fine decoupling for trivial reasons, and QnglB provides a complete decoupling
(cf. Remark 3.1). For DAEs having tractability index 2, fine as well as complete decouplings
are constructed in [3]. For the case of u = 3 projector functions Qo, @1, Q2 that provide a fine
decoupling are presented in [8]. Unfortunately, the technical expense for the proofs in the index-3
case is rather great. Furthermore, for constant coefficient DAEs of index p, projectors Qo, ... ,Qu—1
providing fine and complete decouplings are given in [6].

Recall once more the special form of the coupling coefficients

’Ck:P()---Pk_le*Pk,---Pﬂfl, kzl, ,ﬂ,—2,

given by (3.10). This is a product of projectors and if we achieved Qg+ = Q, k=1,... ,u — 2, to
hold, we would have a fine decoupling. This makes us hope that the following supposition is true.

Conjecture 4.7 For a reqular DAE (2.1) with tractability index p there are projector functions
Qo, ... ,Qu-1 which, if the corresponding DPy--- P,D™, i =0,... ,u — 1, are continuously differ-
entiable, provide a fine resp. a complete decoupling.

But this will probably be hard to prove, taking into account the immensely expensive proof of
the p = 3 case in [8]. The smoothness conditions for the DFP,--- P;D~ may concern parts of the
original coefficients as we have seen in Example 4.2.

In control problems (e.g. [9], [10]), a system to be controlled is said to be causal if the solutions do
not depend on derivatives of the control. Consider the regular DAE with tractability index p

A(D(I;)I + Bx = Fucontrol (46)

to be the controlled system, and wconror to be the control. If the projector functions Qo,... ,Qu 1
provide a fine decoupling and if F' satisfies the condition (I — Py --- PM—I)GEIF =0, ie., F =
GuPi--- Pu,lGlle (observe G, Py - - - Pﬂ,lG’ljl to be a projector function, too), then one obtains
from (3.6) with ¢ = Fucontror that v,—1 = 0, and further, from (3.7) that v,—o = 0,... ,v1 =
0, vo = LoFucontror — KoD™u = QoPy--- PuflGlleucontrol — KoD™w.

The inherent regular ODE reads now

W — (DPyPy---Py_1D™)u+ DPy-+- P, 1G;'BD u= DPy - Py_1Gy " Fuconirol (4.7)

Theorem 4.8 Let the DAE (4.6) be reqular with tractability index p and let Qo, ... ,Qu—1 provide
a fine decoupling. If

F=GuP - P, 1G,'F (4.8)
is valid, then the DAE (}.6) is causal, and its solutions are given by
T = (I - ’CU)Diu + QOPI e PquGlleucontrola

where u satisfies the regular ODE (4.7) and w= DPy--- P,_1 D™ u.
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As expected, the causality condition means that the control applies to the inherent regular ODE
and to the purely algebraic component.

Appendix A: Proof of Theorem 2.3

Consider two admissible sequences Go, Ny, Qo ... , and _G‘O, Ny, Qo, - - ., for the DAE (2.1).
It holds that Ny = Ny, Gy = Gy, By = By, kerPy = kerPy. Compute D~ = PyD~

G1 = Go + ByQo = Go + ByQo + BoQoQoPo = G171
with the nonsingular factor
Zy =1 + QoQoPo.
It results that N; = Zl_lNl and thus Ny @ N; = Ny @ N; must be true. It follows that

kerP0P1 = k‘e’)"P()Pl, k‘e’)"DP()PlDi = k‘e’)"DP()PlDi,

G1Q1=G(Z1+1 - 2)Q1 = G1(I — Z1)Q1 = —G1QoQo P Q1,
and further
By, = ByPy—G1Z,D~(DPyP,D~)'D
= ByPy+ ByQoPy — G1Z, D~ (DPyP,D~)DPyP, — G1Z,D~-DPyP,D~(DPyP,D~)'D
= B +GD (DPyP.D")D + ByQoPy — G1Z1D (DPyP,D")DP, P,
~G1Z,PyPL.D~(DPyP,D~)'D
= By —G1Z1D (DPyP,D )'DPyP + G1QoPy + G1(I — ZPyP,)D~ (DPyP,D~)'D.

Because of Gl(I — legpl) = Gl(I — P()Pl + (I — Zl)popl), Gl(I — P()pl) = GI(QI + Qgpl) and
G1Q1 = —G1QoQoPyQ:1 we obtain the expression

Bl =By — GlZlD_(DP()PlD_)’DPOPI + G1QoR40,

where Qllo = P() + (—QOPOQI + QOP1 - Q()P()Pl)Df(DP()PlD*)ID.

Next we assume the relations

Gi =G;7Z; (A.l)

_ =2 _
Zi = (I+Qi1Qi1Pa)(I+ ) QiAi1;Qi—1)Zi1
=0

_ 1—2 _ (AQ)
= (I+Qi1Qi1 P+ > QiAi1;Qi—1)Zi1,
j=0
No@ - ®N;=Ng®---® N;, (A.3)
i—1
B; = B; — GZ'ZiD_(DPO s PZ'D_),DPU - P+ G Z QjU;j, (A.4)
j=0
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to be valid for 2 = 1,... , k. Then we know that

Py---Py=Py---PiPy--- P, Py---Pi=Py---PPy--- P,
im(Z; =1) CNo® -~ @ Ni-1, Qi = QiPo -+ Py = QiPy -+~ Pty QiZ7' = Qs
Bi(Q; — Qi) = B;iQi Qi F;.
The special form of the coefficients ;; does not matter.
We show that (A.1) - (A.4) also hold true for i = k + 1. Derive

Grt1 = GrZy+ ByQr, = (Gi + ByQk) Zg
_ k=1 _
= (Gp+ BrQk + G Y QUi Qr) Zy
=0
_ k—1 _
= (G + BrQk + Bi(Qr — Qi) + G Y- Q%4 Qr) Zy,
=0
_ k—1 _
= (Gr41 + BrQrQirPr + Gi Y QUi Qr) Zy,
=0

- k=1 -
= Gyl + QrQibr + Zo QUi Qr) Z, = Gri1Zg+1
]:

thus (A.1), (A.2) is given for i = k + 1, and hence (A.3) is also true for i = k + 1. It remains to
check (A.4). Compute

Bk—l—l = kak — C_;]H_lD_(DPU s P]H_lD_),DPO s Pk
_ _ o k—1 _
= (Bk - GkaDi(DPO s PkDi),DPO - P+ Gy Z Q]Qlk])Pk
Jj=0
—Gy41Zk41D (DPy -+ Poy1D")'DPy -+ Ppyy

—Gr11Zk41 D" DPy - Py D™ (DPy--- Poyy D7)’ DBy - - - B,

_ _ _ _ o k=1 _
By = BpPy+ BrQpPr — Gy ZyD (DPy--- P D" )DPy--- P, + Gy Y QU Py
j=0

—Gy41Zp41D"(DPy - Pyy1 D7) DPy -+ Pyyy
~Gr1Zk1 Py Poyr D™ (DPy--- Py D7)DPy - - P,

Brs1 = Bry1 — Bry1 + Gry1 231D (DPy--- Py D7 )DPy - Pryy

= Gy D~ (DPy-- Py 1D7)DPy--- Py + BpQp Py
_ _ _ k-1 _ (A.5)
—GkaDi(DPO s PkDi)IDPO - P+ Gy Z Qleijk
J=0

—Gr1Zk41 Py Poyr D (DPy - Py D7) DPy -+ P,

We have to show the representation

k
By = Grr1QiUAer1; (A.6)
=0
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with certain coefficients 2y 1;. The second and fourth terms on the right-hand side of (A.5) fit
already into this form. Moreover, terms beginning with the expressions Gy (Z,—1I) and G4 1(Zgs1—
I) are also in the right form.

Consider the remaining terms

By = G D (DPy--- Py D7)DPy--- Py — GyD~(DPy---P,D™)DPy--- P,
~Gr1Py-+- Pey1D (DPy -+ Poyy D7) DPy - - Py
= GppD (DPy---PyD)DPy--- Py —GyD (DPBy--- P,D )DPy--- P,
~Gpy1Py-- Py yD=(DPy -+ Pyy1D™)DPy--- Py
—Gr1Py-+- Poy1D " DPy--- Poyy D™ (DPy -+ Poyy D7) DPy - - - Py,

Brs1 = Gpp(I— Py Pyy)D (DPy-+ Py D7) DPy--- P
—GkDi(DPO ce Pkbi)lDPO R e Gk+1p0 s p]H,lD*(DPO ce PkDi)IDPO s pk-

Because of I — Py--- Ppy1 = QoPi -+ Pey1 + ... 4+ QpPry1 + Qry1 and Gr1Qpy1 = Gyt (Zpy1 +
I — Zk11)Qk+1 = Gr41(I — Zi41)Qk+1, the first term of By, is already in the right form.
With

Gis1Po- - Peyr D™ (DPy--- PoD ") DPy--- Py

= G].H_lpg s P]H_lD_DPU s PkD_(DPO ce PkD_),DPU cee Pk

= G].H_lpg s P]H_lD_{(DPU s PkD_),DPU s Pk — (DPO ce PkD_),DPU ce Pk}

= —Gr1Po-- Py D (DPy--- PyD7)'DPFy--- P,

we find the remaining part to be considered as

%kJrl .= —GyD (DPy---P,D")DPy---P,+ Gy41Py--- Py 1D (DPy---P,D")DP,--- P,
= {Gp1Py---Poyy — Gx}D " DPy--- P,D™)DP,--- P,

Since

Gi1 Py Poy1— Gy = Gry1— G+ Ge1(Po- -+ Pyya — )
= BpQk + Grs1(QoPr - Popi + ... + QrPrg1 + Qrp1)
= Gp1Qr+Gr1(QoPr -+ Por+ ...+ QrPry1 + (I — Zy1)Qrs1)

~ ” - k -
we obtain the representation By 1= Z?:o Gi+1Qj Wey1j, thus, By = > Gry1QAp1j, and,
=0
finally (A.6). Consequently, (A.1) - (A.4) hold true for i = k + 1 and we are done.
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Appendix B: Deriving relation (3.7)

We start with the version of the DAE (2.1) that is premultiplied by G;l

p—1
PM—I s PgDi(D(I,‘)I + G;lBPO s Pu_liﬁ + Z Qix
) 1=0 (B 1)
p—1 i :
+ > Y Pu1--PD (DPy---P;D")DPy--- P,_1Qix = G 'q
1=0 j=0

and multiply by QxPyy1---Py—1 with 0 <k < p — 2.
Derive

QrPry1- Py 1Py 1--- PyD~(Dz) = QxPyy1--- Pﬂflka_(DI)'
= Qr(I — Qry1 — Pot1Qry2 — - — Py -+ Pu—2Qu_1) Py D~ (Dx)’
= —Qr{Qk11D"DPy - - PyQi11D™ (D) + Ppi1Qpy2D™ Dy -+ - Pry1Qp2D ™ (D)’
+- 4+ Prpr1-- Py 2Qu 1 D”DFy - P’u72QM71D_(DLL')I}
= —QkQr1D (DPy - PiQr117) + QrQr1 D~ (DPy -+ PrQ41 D7) Dx
~QkPry1Qr12D ™ (DPy - -+ Pry1Qpi27) + Qi Pry1 Q2D (DPy - -+ Pry1Qpy2D ™) D
—QkPry1- - Pu—2Qu—1D7(DP0 T Pu—2Qu—1x),
+Qkpk+1 Tt Pu—2Qu—1D7(DP0 e Pu—2Qu—1D7)IDx
= —QkQr+1 D~ (DPy -+ PtQr+17) — Qi Pr1Qr+2D~(DPy -+ Ppi1Qp127)
— .= QiPiy1---Py—9Qu1D (DPy--- Py_2Qu-1z)
+Qi{Qk1 D~ (DPy - PyQr11D7) + Pry1Qp 2D~ (DPy - -+ Pry1Qpy2 D7)
+.oit Pey1- Py 2Qu 1D~ (DPFy--- Py 2Q,u 1D7)'} D,
and decompose Dx = D(FPy---Py_1 + Py---P,_1Qu—1 + ... + PyQ1)z. Recall once more that
Qr L1 Pu1Qr = Qk, QrPry1--Pu—1Qj =0 for j # k.
The equation resulting from (B.1) is
—QrQr1 D™ (DPy -+ PyQpy1z) — ... = QuPry1 - Pu—2Qu 1D (DPy- - Py _2Qu 1)
+Qi{ Qi1 D~ (DPy -+ PoQr1 D7) + ... + Poy1 -+ Pu2Qu 1D~ (DPy--- P, 2Q,1D7)'}
x{DPy-Py 15+ DPy--PysQu 15+ ..+ DPyQi2} + Qi Posr- - Py1G BPy- Py 13+ Qo

p=l i
+ 3 Y QuPry1---PucaPyoy--- PiD (DPy--- P;D™)'DPy--- Pi1Qix = QpPry1--- Pu1G g
i=1 j=1

Next, if £ > 0, we multiply once more by Py--- Py_1.
Using the denotation v; = Py---P; 1Qjz, j = 1,...,u—1, v9g = Qoz, u = DPy---P, 1z, we
rearrange things to

p—1 n—1
vk =Lrg + KeD7u+ Y Nig(Dvj) + ) My, (B.2)
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with coefficients (cf. Section 3)

Ly, = Py Pe1QpPryr - Pua G,
Nigt1 = Py Poo1QrQr1 D™ Ngj =Py  Poo1QipPiyr - Pj1Q;D™,j =k +2,... ,up—1,
Kk = —Py--Pe1QpPiy1-- By 1G'BPy -~ Py

—Py- P 1Qe{Qr1 D (DPy - PeQpy1 D7) + Pry1Qpy 2D (DPy -+ - Ppy1Qpr2D™)
+.o o+ Py Pﬂ,gQu,lD_(DPO . PM—ZQu—lD_),}DPO Py

= —PO"'Pk—lePk+1"'Pqu;lBPO“'PuA
+Po Pr1Qk{Qky1 + Pry1Qrr2 + -

+Pgyr--- PH,ZQu,l}D_(DPU e Pu,lD_)'DPO Py

= —PO"'Pk—lePk+1"'Pqu;lBPO“'PuA

—Py-+ Py 1QpPyyr - Pyu1 PoD (DPy---P,_1D"))DPFy--- P,_q,
Mpj = =Py P 1Qi{Qrp1 D (DPy- - PQit1 D7) + Poy1Qpy2D (DPy -+ Pry1 Qpi2D ™)
+. o+ Py Pﬂ,gQu,lD_(DPO . PM—ZQu—lD_),}DPO - Pj1Qy
_ XZ: Py PoyQuPiy1 -+ Py 1Py 1~ PD~(DPy---P,D")DPy--- P;_1Q;,
o (B.3)

if £ > 0, and corresponding expressions (starting with QoP; - - P,—1) for k= 0.
Taking a closer look at the coefficient My; we show that My; =0 for j = 1,... ,k + 1. Namely,
for 1 < 7 <k it holds that

Mpj = =Py Py 1QipPiy1-- Py PpD (DPy---Pj_1Q;D )'DPy--- Pj_;Q;
i
—> Py Py 1QrPyyy - Pu—i PeD™(DPy--- PBLD7)DPy--- Pj_1Q;
=1
= Py P QpPyyr - Py 1 Py D™(DPy--- Pj 1QjD™)DPFy--- Pj_1Q;
—Py+-Pe1QpPysr - Py 1PeD~(DPy---P;D™)DPy--- P;_1Q;
= —Py- Py 1QpPysr Py1 PD~(DPy---P,D")'DPy- - Pj_1Q; = 0.
Furthermore, compute
Mipgy1 = =Py Po1Qu{Qir+1 D (DPy - - PyQp1 D7) + Piy1Qpi2D ™ (DPy - - Poy1Qpy2D ™)
+..+ Pyr- Pu2Qu 1D (DPy - Py_2Qu-1D")}DPy- - - PrQp11
k41

~ > PoPy1QiPis1 - PyuerPuy - BD(DPy---PD Y DPy--- PyQpia
=1

=—Py- P 1QiQr1 D (DPy -+ Poy1Qp1 D) DPy - - PyQp1
+Py P 1Qi{Qr+1 D™+ -4+ Pyyr-- Py 2Qu 1D }(DPy - - PyQr41 D7) DPy- - - Pp Qi1

k
- > Py Py 1QiPyyy - Pua PyD™(DPy--- PBD7)DPy - - - PyQp41
=1

—Py- Py 1QpPyy1--- Py 1D~ (DPy--- Ppy1 D7)DPy - - - PQpq1,
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that is,

Mpks1 = =Py Po1QpPigr - Py 1 PD™(DPy - - PyQp1 D7) DPy -+ PQpq1
—Py- P 1QiPry1--- Pyt PkD ™ (DPy - - PyPyy1 D) DPy - - - PrQpqr
= —Py- Py 1QpPry1---Pu1D (DPy--- PLD7)'DPy--- PeQp 41
+Py- - Po_1QrD™(DPy - - PyQpy1D™) DFy - - - PQpq1
= —Py PpaQp{Pry1--- Py 1 —I)D™(DPy - PrD™)'DPy - - PyQp41
—Py--- Py 1QpD™(DPy -+ PPy 1 D7) DPy - -+ PyQpy1,
Mpgs1 = =Py Poo1QpPiyr - Py 1 PD™(DPy--- PyD™)'DPy - - - PyQp41
+Py- Po_1QrPy -+ PpPry1 D™ (DPy - -+ PLQg1D7)'D.

In the last formula, both expressions on the right-hand side vanish, i.e., Mgg11 = 0.
Hence, formula (B.2) simplifies to formula (3.7), since My, ... M1 disappear.
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