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Abstract

Given a convex stochastic programming problem with a discrete initial proba-
bility distribution, the problem of optimal scenario reduction is stated as follows:
Determine a scenario subset of prescribed cardinality and a probability measure
based on this set that is closest to the initial distribution in terms of a natural (or
canonical) probability metric. Arguments from stability analysis indicate that
Fortet-Mourier type probability metrics may serve as such canonical metrics.
Efficient algorithms are developed that determine optimal reduced measures ap-
proximately. Numerical experience is reported for reductions of electrical load
scenario trees for power management under uncertainty. For instance, it turns
out that after a 50% reduction of the scenario tree the optimal reduced tree still
has about 90% of relative accuracy.
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1 Introduction

Various important real-life decision problems can be formulated as convex stochastic
programs, which can mostly be written in the form

min Ep fo(w, ) . (1)

Here, X C IR" is a given nonempty convex closed set, 2 a closed subset of IR® and B
the Borel o-field relative to Q, the function fy from  x IR" to the extended reals IR is
measurable with respect to w and lower semicontinuous convex with respect to z, and P
is a fixed probability measure on (2, B), i.e., P € P(Q2), with I[Ep denoting expectation
with respect to P. This formulation covers (convex) two- and multi-stage stochastic
programs with recourse. In these cases, X is the set of feasible first-stage decisions and
the function values fo(w, z) evaluate the best possible outcomes of decisions z in case
that w is observed.



Apparently, (1) is a mathematical program. However, several important problems
concerning its formulation and algorithmic approaches have to be resolved. The prob-
ability measure P does not need to be known precisely, the function f; — the random
objective — is given implicitly (e.g. as an (iterated) optimal value), and at the same
time, (1) is often large scale. To solve (1), various problem specific procedures that
approximate the model and exploit its special structure have been designed. Many ap-
proximation methods exploit a discrete probability measure which, in a certain sense,
approximates well not necessarily the underlying probability measure P but the opti-
mal value v(P) and the set of e-approximate solutions S.(P) of (1), where

v(P) = inf{Epfo(w,z): z € X}
S.(P) = {re€X:FEpfy(w,x) <v(P)+e} (¢>0).

Consequently, S(P) := Sy(P) denotes the solution set of (1).

In this context, stability properties of the model (1) with respect to perturbations
(approximations) of P become important (see e.g. the surveys [5], [19] and references
therein, and [9, 17, 20]). In Section 2 we present a quantitative stability result for
optimal values and e-approximate solution sets of (1) that is based on the general
perturbation analysis in [1, 16], and we show that probability (semi-) metrics with
C-structure (cf. [13, 22]), i.e.,

fer

17(P.Q) = sup | B (&) ~ Eof (&) = sup) / () P(dw) — / f@)Qw)]  (2)

with F being a suitable class of measurable functions from  to IR and with P,Q
belonging to P(£2), appear as natural and suitable distances of probability distributions
for stability analysis. Furthermore, it is explained there that classes of (continuous)
functions having the form

Fo=A{f: Q= R: f(w)— f(®) <c(w,@) forall w,weN} (3)

with a continuous symmetric function ¢ :  x Q@ — IR, having the property that
c(w,w) =0 iff w = @, are highly relevant in the context of convex stochastic programs
of the form (1). The choice of ¢ depends on the quantitative continuity properties of
the integrand f with respect to w and is discussed in Section 2. The following estimate
is valid for the corresponding probability metric

Cc(Pv Q) = dfc(Pv Q) < ,uc(Pv Q)v (4)

where p. denotes the Kantorovich-Rubinstein functional
pe(P,Q) := inf{ / c(w,w)n(d(w,@)) : nis a finite Borel measure on B(2 x ),
n(B x Q) —n(Q x B) = P(B) —Q(B) for all B,B € B}. (5)

In case that the function ¢ has the particular form

ch(w, ) = Jlw = @l max{1, h([lw — wol]), A(llw — woll)} (6)
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for all w, @ € €2, where wy is some fixed element in IR* and h : IR, — IR, is continuous
and nondecreasing, the corresponding metric with (-structure

Cch (P7 Q) = d]:ch (P7 Q)

is often called a Fortet-Mourier (type) metric (cf. [13]).

An important instance of problem (1) is that the initial probability measure P is itself
discrete with finitely many atoms (or scenarios) or that a good discrete approximation
of P is available. Its support may be very large so that due to computational com-
plexity and to time limitations, this probability measure is further approximated by
a probability measure @) carried by a (much) smaller number of atoms. In this case
the distance (.(P, Q) represents the optimal value of a (finite-dimensional linear) dual

N M
transportation problem. More precisely, for P = ) p;d,, and Q = > ¢;05;, we obtain
i=1 j=1

N M
C(PQ) = maX{Zpiui + Zq]'vj g+ vy < c(wi, @5) , Vi, g}

i=1 j=1

Here, §,, € P(Q) denotes the Dirac measure placing unit mass at w. In particular,
the metric (. can be used to evaluate distances of specific probability measures ob-
tained during a scenario-reduction process, i.e., in case that {@q,..., @y} is a subset
of {wq,...,wy}. Various reduction rules appear in the context of recent large-scale
real-life applications. There are purely heuristic and ad hoc rules, e.g. [2, 3], heuristic
rules inspired by the contamination technique, cf. [6], and various sampling schemes.
A rule based on a uniform approximation of the random objective function f over the
whole scenario space and, independently, on the decision vector is designed in [21]. A
deletion rule based on maintaining first and second order moments is used in [4]. For
more information on recent work for scenario generation and reduction we refer to [8].
In Section 3 we study a novel scenario reduction approach that is based on best ap-
proximations in terms of Fortet-Mourier metrics (.. We show that the Fortet-Mourier
distance of a discrete original probability distribution P and the optimal reduced mea-
sure () based on a given subset of scenarios of P as well as the optimal weights of () can
be computed explicitly, i.e., without solving a transportation problem. Furthermore,
we derive two heuristic algorithms for determining the optimal subset of scenarios of
P with given cardinality. Here, optimality always means closeness in terms of (..

In Section 4 we report on numerical experience for the reduction of a scenario tree
that represents an approximation of the electrical load process in a power management
model under uncertainty. It turns out that both algorithmic approaches for deter-
mining recursively the scenario subset to be deleted (backward reduction) and the set
of remaining scenarios (forward selection), respectively, work reasonably well and ef-
ficient. The reduced subtrees obtained by forward selection are slightly better, but
their computation requires higher CPU times. Somewhat surprisingly, a reduction of
the scenario tree by 50% of the scenarios only implies a loss of about 10% of relative
accuracy. Furthermore, it is possible to determine a subtree containing less than 2%
of the original number of scenarios that still carries about 50% relative accuracy.



2  On stability results and probability metrics

Given the original probability measure P of (1) and an approximation @ we derive
quantitative estimates of the closeness of v(Q) and S.(Q) to v(P) and S.(P) in terms
of a certain probability metric. This distance of probability measures is associated with
the model (1) in a natural way. Namely, with B denoting the closed unit ball in R"
we consider the following set of probability measures and distances

Py = {QePQ): —o0< / inf  fo(w, )Q(dw) <

zeXNpB

sup /fo w, z)Q(dw) < oo, for each p > 0}

zeXNpB

ds ,(P,Q) = sup |/f0 w, )P (dw) /fo w, 2)Q(dw)|

zeXNpB

for each p > 0 and P, Q € P;. Note that, for any @) € Py, the function x — FEq fo(w, z)
is lower semicontinuous (by appealing to Fatou’s lemma), proper (since |[Eq fo(w,x)| <
oo holds for each x € X) and convex on IR". Next we give a quantitative stability
result for optimal values and (s-approximate) solution sets.

Theorem 2.1 Let P € Py and S(P) be nonempty and bounded.
Then there exist constants p > 0 and & > 0 such that

[v(P) = v(@) £ ds,(P,Q) and 0#S(Q) CS(P)+¥(dy,(P,Q))B
whenever Q) € Py with dg ,(P,Q) < &, and that it holds for any e € (0,¢) that

2
do(S.(P), S-(Q)) < ?”df,p+5(P, Q) whenever Q € Py, dy o (P,Q) < ¢

Here ¥(n) := n+v¢~1(2n), n > 0, where () := min{ Ep fo(w, z) —v(P) : d(x, S(P)) >
T} T > 0, is the conditioning function of the model (1) and d. is the Pompeiu-
Hausdorff distance of nonempty closed subsets of IR".

Proof: Since the function FEp fy(w, -) is lower semicontinuous, proper and convex, we
may apply Theorem 7.64 in [16]. Let p > 0 be chosen such that S(P) C pB and

v(P) > —p. Let p > p and £ be chosen such that 0 < & < min{3(p—p), 3¢ (:(p—p))}-
Then Theorem 7.64 in [16] says that

0(P) = v(Q)| < d, (Bpfo(w,), Bqgfo(w,-)) and
0+ S(Q) C S(P)+¥(d, (Epfo(w,), Eofo(w,)) B

holds for any @) € Py with (?:(]Epfo(w, ), Eqfolw,-)) < €.
Here, aA’: denotes the auxiliary epi-distance (cf. Prop. 7.61 in [16])

(I:(Epfg(w, ), Egfolw,-)) = inf{n >0 : forall z € pIB it holds that

eu}rf FEqfo(w,y) < max{FEpfo(w,z),—p} +n and
yecx

yeg}rf Ep fo(w,y) < max{Eqfo(w,z), —p} +n}.



Hence, the first part of the result is a consequence of the estimate

4, (Bpfo(w, ), Bofolw,-) < ds,,(P,Q)

(cf. Example 7.62 in [16]). Noting that the function U is increasing completes the first
part of the proof.
For the second part let € € (0,8) and @ € Py be such that dy, ,4.(P,Q) < e. Then

0#5@Q) C(p+¥(€)B and v(Q)=—(p+e).

With p > p=min{p+ V(é),p+ &} and & < p— p it follows from Theorem 7.69 in [16]
that

- At

dﬂ(SE(P)a SE(Q)) S dp+s(EPf0(w7 ')7 EQfO(wa ))7

where aA(p is the set distance aA(p(C’, D):=inf{n>0: CnNpB CD+nB,DNpB C
C + nIB} for nonempty subsets C' and D of IR". Using the same argument as above,
we may estimate the auxiliary epi-distance (i;a(]Epfg(w, ), Egfo(w,-)) from above
by dy,,+-(P,@Q). Moreover, since the functions Fp fy(w, ) and Fqfo(w,-) are lower
semicontinuous and convex, their level sets Sz(P) and S:((Q)) are also bounded. Hence,
we may choose the constant p such that

d,(S:(P), S-(Q)) = d(S-(P), 5-(Q)).

This completes the proof. [

Theorem 2.1 is taken from the paper [18], which also contains more general results (e.g.
allowing for unbounded solution sets S(P)). Its proof is included for convenience of
the reader. The theorem illuminates the role of the distances dy ,(P, Q) with properly
chosen p > 0 as minimal probability metrics implying stability of optimal values and
(approximate) solutions to (1). Here, minimal means that the distance dy ,(P, Q)
processes the minimal information of problem (1) implying stability.

Clearly, the result remains valid when bounding dy ,(P, @) from above by another
distance d(P, Q) and reducing Py to a subset of P({2) on which d is well defined. Such
a distance d will be called a canonical probability metric associated with (1) if it has the
form (2) with a class F of functions from  to IR that contains the functions C'- fy (-, z)
for each x € X N pIB and some constants C' > 0 and p > 0, as well as further functions
having important analytical properties of fy(+, z) without becoming too large. Typical
analytical properties defining relevant classes F in the theory of probability metrics are:
Holder or Lipschitz continuity and m-th order differentiability together with Holder or
Lipschitz continuity of the m-th derivative (see [13]). Hence, the problem arises to
explore analytical properties of integrands f; in stochastic programming.

Typical integrands fo(-,z), z € X, in convex stochastic programming models (1) are
nondifferentiable but locally Lipschitz continuous on 2. More precisely, they often
satisfy the following property: There exists a continuous symmetric function ¢ : 2 x
2 — IR, having the property that ¢(w,@) = 0 holds iff w = @, and a nondecreasing
function g : Ry — IR, \ {0} such that for each z € X and w,w € Q,

[folw, z) = folw, )] < g(llz[))e(w, @) (7)
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From now on we require that the function ¢ is measurable and satisfies the properties
(C1) c(w,w) =0 iff w =w;

(C2) c(w,w) = c¢(w,w) Yw,w € Q;

(C3) sup{c(w,w) : w,w € B,||lw—&| < d} — 0 as § — 0 for each bounded B C ;
(C4) there exists a measurable function A : @ — IR, that maps bounded sets to
bounded sets and has the property c(w, @) < A(w) + A(@) Yw, @ € Q.

If ©Q is compact, continuity of ¢ implies (C3) and (C4). An important example of
a function ¢ satisfying the conditions (C1)-(C4) is a function of the form (6). It
clearly satisfies (C1)—(C3) and also (C4) by considering the function A\p(w) := |lw —
wol| max{1l, h(|jw — wo||)}. A typical choice for wy is wy = Epw. In the special case
of h(r) = rP~! for r € IR, and wy = 0 in (6) we use the notations ¢, and ¢, for the
corresponding Fortet-Mourier metric. It is worth noting that the following estimates

Cl(Pv Q) S Cch(Pv Q) a‘nd CP(Pv Q) S Cq(Pv Q)
| / [P (P — Q)(dw)] < p- 1o, (P,Q) = p- (P, Q)

are valid for each continuous nondecreasing function h : IR, — IR,y and 1 <p < ¢q < o0
(cf. [13] and, in particular, Theorem 6.2.5). (; is also called Kantorovich or L;-
Wasserstein metric. Since convergence with respect to the Kantorovich metric implies
weak convergence of probability measures, the estimates show that the closeness of two
measures P and () in terms of ¢, implies the closeness of their p-th order moments and
with respect to the topology of weak convergence. For further information on Fortet-
Mourier type metrics the reader is referred to the monographs [13, 15].

Condition (7 motlvates to consider the class (3) and the metric ¢, on the set P, :=
{Q e P(Q f)\ Q(dw) < oo} with A from (C4),

Cc(Pv Q) = d}'c(Pv Q)

as a canonical probability metric for convex stochastic programs of the form (1).
Then we have for all x € X N pB,

ds.p(P.Q) < g(p)C(P.Q) if (g(p)) " fo(',2) € Fe.

Remark 2.2 (Choice of ¢ for multi-stage stochastic programs)

In [14, 18] it is shown that linear two-stage stochastic programs with fized recourse enjoy
quantitative stability properties with respect to the Fortet-Mourier metric (y (i.e., the
corresponding integrand fy satisfies condition (7) when setting ¢ = ¢y, where co(w, @) 1=
lw — @] max{1, ||w]|, [|@||}, Yw,@ € Q). In [18] this result is extended to the case of
linear multi-stage stochastic programming models with fixed recourse in all stages under
additional assumptions for the dependence structure of the underlying discrete-time
stochastic process. The corresponding result asserts quantitative stability with respect
to the metric (i, where K denotes the number of stages of the model. The result also
says that such models are even quantitatively stable with respect to (y if either costs
or technology matrices and right-hand sides in all stages are random. In all these
cases Fortet-Mourier metrics serve as canonical distances. In case ) is compact and
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condition (7) is satisfied for some function cp, but h is not known explicitly, an estimate
of the form c;(w,®) < cp(w,w) < C - ¢1(w, @) with some constant C > 0 is valid and,
hence, ¢1 can be used. However, any available knowledge on h should be incorporated !

There is a well developed theory for dual representations of the metric (., in terms
of Kantorovich-Rubinstein functionals p. (5) (cf. [15]). As an example we quote the
following result (see Sect. 5.3 in [13]), which will be used in Section 3.

Theorem 2.3 Let Q) be a closed subset of IR® and ¢ : Q2 xQ — IR, satisfy the assump-
tions (C1)-(C4). Then it holds that

Cc(Pa Q) = ,uc(Pv Q)
for all probability measures P,Q € P.(2) = {Q € P(Q) : [ ANw)Q(dw) < oo}
Q

Note that the theorem applies to discrete probability measures with finite support in
2 since they always belong to P.(2).

Let us now consider a stochastic program (1), and assume that the integrand f, sat-
isfies the condition (7) for some function ¢ having the properties (C1)—(C4) and that
the original probability measure belongs to P.(€2). If the solution set S(P) of (1) is
nonempty and bounded, Theorem 2.1 applies and we may conclude Lipschitz stability
properties of the optimal value v and the e-approximate solution set S. at P with
respect to the Fortet-Mourier metric (..

This motivates to take the probability distance (. as a basis for approximating the
original measure P. For instance, the principle of optimal scenario generation or selec-
tion for (1) may be formulated in the following way: Determine a discrete probability
measure (Q* having M scenarios in €2 such that:

M M
C(P,Q7) =min{C(P)Y qjdu;) © Y ¢j=1.¢;>0,w; €Q,j=1,....M}. (8)

Further constraints can be incorporated into (8), e.g., implying that the scenarios
exhibit a certain prescribed tree structure.

Similarly, the principle of optimal scenario reduction of a given discrete approximation
to P may be written as: Determine an index set J, C {1,..., M} of given cardinality

M
#J. = k and a probability measure Q). = }_ ¢jd,, such that:
=1

JE T«

M

C(P,Q.) = min{(e (P qi6.,) 1 J C{l,.... M}y, #J =k, > ¢ =1,¢; >0} (9)
7 Z

We note that problem (8) represents a nonconvex optimization problem that is nondif-

ferentiable and large scale in most practical situations. Its algorithmic solution appears

to be hopeless for general measures P, supports {2, functions ¢, and “large” numbers

M of scenarios. An attempt for solving (8) is made in [12] in case of ¢ = ¢1, Q = IR?,

and of tree-structured scenarios {w; : 7 = 1,..., M}. The authors of [12] develop a
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deterministic iteration scheme in case P is completely known and a stochastic approx-
imation method based on empirical approximations of P. So far numerical experience
is available for low dimensional test problems.

When assuming that P is discrete with finite support or replaced by a good discrete ap-
proximation, the situation becomes quite different. Then the Fortet-Mourier distance

M
Ce(P, Y~ q;0.,) is the optimal value of a (large scale) linear program (cf. (10) below),
j=1
jer
and the weights ¢; and scenarios w; enter the right-hand sides of linear constraints and
the cost function, respectively. With regard to problem (9) the situation becomes quite
comfortable as will be shown in the next section.

3 Scenario reduction

Assume that the initial probability distribution P is discrete and carried by finitely

N
many scenarios w; € € with weights p; > 0,7 = 1,...,N, and Y p; = 1, i.e,
=1

R =
P = > pid,,. Let J C {1,...,N} and consider the probability measure ) having
i=1

scenarios w; with probabilities ¢;, j € {1,..., N} \ J, i.e., compared to P the measure

Q = Y qjds, is reduced by deleting all scenarios w;, j € J, and by assigning new
JgJ

probabilistic weights ¢; to each scenario wj;, j € J. The optimal reduction concept

described in Section 2 (see (9)) recommends to consider the probability distance

N N
D(J;q) := Cc(Zpiéwi,quéwj) = max{Zpiui—i—Z q;jv;  ui+v; < c(w;,wj)} (10)
i=1

j¢J i=1 j¢J

where the constraints of the linear program are satisfied forall¢ € {1,..., N} and j & J,
and the function c is chosen such that the underlying stochastic program behaves stable
with respect to the Fortet-Mourier metric (.. We assume throughout this Section that ¢
satisfies (C1)—(C4). The reduction concept (9) says that the index set J is selected such
that the distance D(J; q) of the original and the reduced measure is optimal subject to
all index sets with given cardinality. We distinguish two cases: optimal or prescribed
weights ¢;, 7 ¢ J. Our first result provides an explicit representation of D(.J;¢) in case
of optimal weights q.

Theorem 3.1 (optimal weights)
Given J C {1,..., N} we have

Dy =min{D(J;q) : ¢; >0, qu =1} = Zpi rﬁzi}lc(wi,wj). (11)

jeJ ieJ

Moreover, the minimum is attained at §; = p; + > pi, for each j & J, where j(i) €
i€J
iG)=i
arg Ir;l}l c(wi,wj) fori € J (optimal redistribution rule).
j



Proof: We set ¢;; := c(w;,w;) fori,5 € I :={1,..., N} and make use of the primal as
well as the dual representation of D(.J;q) for given J (cf. Theorem 2.3), i.e.,

N
D(Jiq) =min{) cimy imi; =0, > my =1, nmy—Y my=pi—q;,i €1, j ¢ J}
irj irj 1

igT i=

N
= maX{Zpiui +quvj : ui+vj S Cij, 1 € [, j Q J}
i=1 jgJ
First, we show that the expression Y p; H;l}l c;; provides a lower bound of D(J;q) for
ieJ
any feasible q. We set u; := Il?gl}l ci, for each 4 € I and v; := 0 for each 5 € J. We show
that this choice of u; and v; is feasible for the dual representation of D(.J;¢). Noting
that u; = 0 for any ¢ € J we obtain u; +v; = u; < ¢;; for all< € J and j € J, and
w; +v; =0 <gjforall i,5 ¢ J. Hence, it holds

N
Zpiui + quvj = Zpi min ¢ < D(J;q) for any feasible q.
i=1 T ieJ
Next we show that this lower bound for D(J;q) valid for all feasible ¢ is attained for
some ¢. To this end, we select j(i) € arg ng}l ¢;; for each i € J and define

j

Di 7j:j(l)7Z€J7
Nij =1 Pi i=J &,
0 ,otherwise.

N

Setting ¢; = Y ;; for each j € J we obtain that 7;; is feasible for the primal represen-
i=1

tation of D(J;q). Hence, it also holds that

D(J;q) < Zcijmj = Zpi IJI;I}]CW
] ieJ

We conclude that ¢ is optimal, so that D(J;q) = > p; H;l}l cij, where g; =p; + Y. p;
ieJ J i€J
i()=j

foreach j ¢ J. O

The theorem provides an explicit formula for the optimal weights when the index set
J of deleted scenarios is given. Its interpretation is that the new probability of a kept
scenario is equal to the sum of its former probability and of all probabilities of deleted
scenarios that are closest to it with respect to c.

When fixing the redistribution of the deleted weight p; = Y p; of P by a rule of the
ied
form
q; =pj +Ajps, foreach j ¢ J (12)

where the redistribution weights A; > 0, 5 & J, with > A; = 1, are given, the following
JgJ
upper bound for D(J; q) is valid.



Theorem 3.2 (prescribed redistribution)

If q is redistributed by formula (12), we have D(J;q) < > p;i > Ajc(wi, wj).
ieJ gt
Moreover, equality holds if #J = 1 and c satisfies the triangular inequality.

Proof:

pi)‘j 7i€J7j¢J7
We use the primal representation of D(J;q) and set n;; = Di =7 & J,

0 , otherwise.

N

Then we have Y n;; = p;, fori =1,...,N, and > n;; = p; + Ajp; = ¢; for j & J.
igT i=1

Hence, we obtain with ¢;; := ¢(w;, w;)

D(J;q) < Zcijnij = sz' Z)‘jcij-
i,j

icJ  jeJ

Finally, let J = {l} and assume that c satisfies the triangular inequality. We set
w; = —c¢j; = —v;, 4 =1,..., N, and note that u; +v; = ¢; — ¢z < ¢;; holds for all
i,j€{l,...,N}, j# 1. Hence, we obtain from the dual representation of D(.J;q) that

N N
D(J;q) =Y (g —p)ea=mp > dicq. O

= o
Simple examples show that equality gets lost in Theorem 3.2 in general if #.J > 2 and
also if #J = 1 and ¢ does not satisfy the triangle inequality. We stress here that the
latter property of ¢ is not needed for the optimal redistribution in Theorem 3.1.
Next we discuss the optimal choice of an index set J for scenario reduction with optimal
weights and fixed cardinality #.J of J, i.e., the solution of the problem

min{D; = Zpi rjngi}lc(wi,wj) cJCA{l,...N}, #J =k} (13)
icJ

for given k € IN, 1 < k < N. First we consider the extremal cases of problem (13):
deleting a single scenario and all but one scenario.

Example 3.3 (single scenario deletion)
In case #J =1, the optimal deletion problem (13) is of the form

I I i) 14
i PR el ) .

If the minimum is attained at I, € {1,....N}, i.e., the scenario wy, is deleted, the

optimal redistribution rule is q = p; for each | & {l.,5(l.)} and G;u.) = pju.) + pu..

where j(l,) € arg rr;élln c(wi,,w;). Of course, the optimal deletion of a single scenario
JFlx

may be repeated recursively until a prescribed number k of scenarios is deleted (as in
Algorithm 3.6).
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Example 3.4 (keeping only one scenario)
In case #J = N — 1, the problem (13) is of the form

min iC(Wi, Wy ) - 15
N};p (wiy W) (15)

ue{l,...,

If the minimum is attained at u* € {1, ..., N}, the scenario w,~ is kept and the optimal

redistribution rule provides Gy = py + >, pi = 1.
i£u*

Since (13) represents a special combinatorial optimization problem, efficient solution
algorithms like those for the cases k =1 and k = N —1 are hardly available in general.
However, the next result provides lower and upper bounds for the optimal value of
(13) that correspond to recursive extensions of the strategies (14) for #.J = 1 and (15)
for #J = N — 1. It also turns out that the lower bound is attained under additional
assumptions.

Theorem 3.5 (bounds)

k
Zpli ~minc(wy,,wj) <min{Dy:J C{l,.., N}, #J =k} < sz mlnc(w,,w])

= Il i€y
where J, ={1,...,N}\{u1,...,un_r} and the indices l; and u; are chosen recursively

such that

l; € ar min 1n clwij,w),t1=1,....k, and 16
! gle{l,...,N}\{ll,...,li_l}p J€{l1, 71 1,[} ( J l) ( )

N
u; € arg  min Z Di min c(wy,w;), 7=1,...,N—Fk. (17)

lQ{ul,...,u]-,l} o1 uG{ul,...,’U,jfl,l}

ig{ul,...,u‘jil,l}

Moreover, the index set {ly,...,l,} is a solution of (13) if for each i =1,... k—1 the
set argminggg, 1 c(wj,wi,) \ {lis1, ... Iy} is nonempty.

Proof: For any index set J = {ji,..., 5k} C {1,..., N} with #J = k we have, by
Theorem 3.1, that

k

D; = min  clw; ,w;) > . min  clw;., w;
7 Zp] ]g{Jla 7.7k} ( I J) - ;pjzjg{]lvvjl} ( 7 ])

> mm w
> sz G w;)
Where the latter estimate is a consequence of the definition of the numbers [;, 7 =

ko If argmingeg, gy c(wy, wi) \ {lis1, ..., Ik} # 0 holds for each i =1, .. k 1,
we obtain

min  c¢(w;.,w;) = min c(w.,w;
J¢{lusli} (1,7) Gl sl } (@i, w5)
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for each 1 = 1,..., k. Hence, the above estimate may be continued to

D; > - min clw,w;) =D _
7= Zpll ]g{ll,,lk} ( ll’ ‘]) {lla'-'alk}

Thus, the index set {ly,...,[} is a solution of (13). Finally, the estimate

min{D;: J C{l,...N}, #J =k} <D, = Zpi %lli]l,}c(wi’wj)

1€Jy

is valid, which completes the proof. [

Theorem 3.5 suggests two different heuristic algorithms for the optimal reduction of
the N original scenarios to N — k scenarios. The first one determines the £ scenarios
that have to be deleted by exploiting the lower bound technique (16). It will be called
backward reduction, while the second one is called forward selection, because it selects
the remaining N — k scenarios by using the upper bound technique (17).

Algorithm 3.6 (backward reduction)

In the first step, an index ky with 1 < ki < k is determined such that J, = {l%l), - l,(cll)}
is a solution of (13) for k = kyi by using the strategy described in Theorem 3.5. Neut,
the optimal redistribution rule of Theorem 3.1 is used and the probability measure Py is
considered, where the scenarios indexed by Jy are deleted. If ki < k, then the measure
Py is reduced in a second step by deleting all scenarios in some index set Jo with
1 < ks = #Jo < k — k1 which is obtained in the same way using Theorem 3.5. This
procedure is continued until, in step r, we have > ;_ k; =k and J = Ui_, J;. Finally,
the optimal redistribution rule is used again for the index set J.

A particular variant of Algorithm 3.6 consists in the case that k; = 1fori=1,...,k
(backward reduction of single scenarios). This variant (without the final optimal redis-
tribution) was already announced in [7, 10].

Algorithm 3.7 (forward selection)

The indices uj, j = 1,...,N — k, are determined recursively as in (17). Finally,
set J:={1,...,N}\ {w1,...,uy_r} and redistribute for the index set J according to
Theorem 3.1.

Both algorithms provide an approximate solution of problem (13) and, hence, an upper
bound for its optimal value. Note that these bounds, which represent Fortet-Mourier
distances of the original P and the optimal reduced distribution, can be computed
by using the explicit formula in Theorem 3.1. The performance of both algorithms is
evaluated for a real-life test example in Section 4.

According to Theorem 3.2 the optimal choice of an index set J for scenario deletion
with prescribed redistribution and fixed cardinality #.J may be formulated as follows:

min{ZpiZ)\jc(wi,wj) cJC{l,...N}, #J =k} (18)
el jgJ
for given k € IN, 1 < k < N and weights );, j & J. Let us consider the special case
of k =1.

12



Example 3.8 (deleting a single scenario with prescribed redistribution)
In case #J =1, problem (18) takes the form
min Di Z )\jc(wi, Cdj).
J#i

ie{l,...,N}

If P is a uniform discrete distribution, i.e., p; = % for each i, it might be desirable
that the reduced measure @Q has uniform weights too, i.e., q; = ﬁ for g & J. This
corresponds to the choice of \; = ﬁ forj & J.

Although a prescription of the weights for the reduced distribution might sometimes be
useful, our theoretical results tend to preferring the optimal redistribution rule. For the
latter rule no additional assumptions on ¢ are needed, setwise reduction algorithms are
available and Fortet-Mourier distances can be computed without solving transportation
problems.

4 Numerical results for electrical load scenario trees

The optimization of electric power production in hydro-thermal generation systems
for time horizons of one week or longer is inherently a stochastic decision problem.
Indeed, forecasts on electrical load, flows to hydro reservoirs, and on fuel and electricity
prices cannot be exact. For this reason, the weekly cost-optimal production of electric
power in a hydro-thermal generation system is modelled in [10, 11] as a multistage
(mixed-integer) stochastic program. The optimal scheduling decisions for all power
units minimize the expected production costs subject to the operational requirements
of the generation system. The scheduling decisions for thermal units are: which units
to commit in each period, and at what generating capacity. The decision variables for
pumped storage hydro units are the generation and pumping levels for each period.
Power contracts for delivery and purchase are regarded as special thermal units. The
basic system requirement is to meet the electrical load and the spinning reserve capacity.
Further operating constraints are capacity limits for thermal and hydro units, minimum
up/down-time requirements for thermal units and operating ranges and dynamics of
hydro storage units. The scheduling horizon of one week is discretized into hourly
intervals. Accordingly, the stochastic data process is approximated by a discrete-time
stochastic process (with hourly time steps). The numerical tests of the stochastic model
are performed in [10, 11] for a real-life hydro-thermal generation system consisting of 25
(coal-fired or gas-burning) thermal units and 7 pumped hydro units, and for stochastic
electrical load (i.e., the remaining data were deterministic). The stochastic load process
is approximated by a scenario tree. The resulting problem to be solved is a large-scale
mixed-integer linear program with a special sparsity structure. The mixed-integer
model is large even for a relatively small number of nodes in the tree. The single
scenario model (i.e., 168 nodes) already contains 4200 binary and 6652 continuous
variables, 13441 constraints and 19657 nonzeros in the constraint matrix.

In [10], an initial load scenario tree was constructed according to the following steps:

1. Calibration of a time series model for the load, generation of a large number of
load scenarios.

13
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Figure 1: Time plot of the load profile for one year

2. Construction of a (dense) initial load scenario tree using the sample means and
standard deviations of the simulated load scenarios.

The time series model for the load d; in period t was calibrated from a historical load
profile of one year (cf. Figure 1). The time series model for the load process {d;}cz is
the SARIMA(7,0,9) x (0,1,0)16s model (cf. [10])

di = Grdi g+ ...+ brds7— di_168 — drds_160 — ... — prds_175  (19)
+Zi+ 0Ty 1+ ...+ 057, teZ

The estimated model coefficients are

(d1,....¢d7) = (2.79,—4.35,5.16, —4.88,3.67, —1.92,0.50),
(6y,...,0)) = (—1.27,1.53,—1.35,0.88,—0.31, —0.06,0.18,0.11,0.07)

and Z;, t € Z, are independent, normally distributed random variables with mean 0
and standard deviation 108.3.

For the generation system under consideration, the load forecast is reliable for the time
span t = 1,...,24. A large number M of simulated load scenarios (sample paths)
d = (Jf)}f%, ¢ =1,...,M, is generated from the SARIMA equation (19) using M
i.i.d. realizations of Z;, t = 16,...,168, and starting values d;, t = —150,...,24. The
empirical means d; and standard deviations &, of the simulated load scenarios form the
basis of the scenario tree building scheme. Since there exists a normally fixed daily time
when already observable meteorological and load data provide the opportunity to re-
adjust forecasts, t, =24k, k =1,...,6, is a reasonable choice for the branching points.
A balanced ternary tree with branching points ¢; allows to distinguish the events with
the verbal description “low load”, “medium load” and “high load” in the time period
t=tr+1,...,tgs1, K = 1,...,6. (For convenience of notation set t; := 168.) Thus,
the stages of the stochastic program correspond to one day (or 24 hours) and the tree
consists of N := 3% = 729 scenarios d' = (di);%%,i=1,...,N.

The scenarios of the initial load scenario tree and their probabilities can be assigned
in various ways. The predicted load for the (first stage) planning period ¢t = 1,...,24
yields the first 24 components for all scenarios. To each scenario 7, ¢ = 1,..., N, we
assign a vector w' = (wi)7_, with w € {-1,0,1} for k = 2,...,7. Tt provides a
unique description of the path in the ternary tree that corresponds to scenario 7. In
particular, set wi := —1 if the values of the scenario i for t = t;, + 1,... ¢z are
realizations of the event with the verbal description “low load” for this time span.
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Figure 2: Ternary load scenario tree for one week

Accordingly, we set w! := 0 (wi := 1) to describe the event “medium load” (“high
load”) for t = t;, + 1,...,t;41. Modifying the binary tree building formula from [10]
we define the value of the scenario 7 at ¢ as

V30 t—1t
di —dt+Z (Y3 VI, £ (20)

Wj 2(8-4)/2 + Wy 2(8—k)/2 test — th

fort =ty +1,...,tp1, kK =1,...,6. We let all scenarios have equal probabilities
N1t =375 (Alternative scenario probabilities might be computed from histograms of
the simulated scenarios.)
The ternary scenario tree (20) has the following properties. First, for ¢ = 25,...,168,
the mean of the random vector represented by the ternary tree coincides with the
empirical mean d;. Secondly, the symmetry of the load tree is consistent with the
normality assumptions imposed on the time series model for the load process. Third,
for k = 1,...,6, the events “low load” (“medium load”, “high load”) for ¢ = ¢ +
I,...,try1 are expressed in terms of scaled empirical standard deviations &4, ,. To
model increasing load uncertainty, the variances var(d;) of scenario values are strictly
increasing with ¢. The variances at the branching points are

var(dy, ) = 27567 + -+ 2 8 Rg2

k?

k=2...,7

Hence, in case o;, ~ 6 k =2,...,7, the variance in the final time period is var(d;,) ~
62(2% +-- 4+ %) ~ 02 Furthermore it holds for the extremal scenario s with wj =1

for all £ that i
d§7:dt7+\/g-2 6/26.t2 ...+\/§_2 1/26_t7‘

Thus, unrealistic (“too large”) load values are avoided. Finally, we note that the
scenarios are linearly interpolated between the ¢;’s in order to save time required for
computing &7 for all t = 25, ..., 168.

The Figures 2 and 3 show the ternary load scenario tree {d: and the corresponding
mean shifted tree {d¢ — d; }1%, respectively, where di is generated by the scheme (20),
with N = 3% =729 scenarios and branching points t; = 24k, k = 1,...,6. This tree is

}168
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Figure 3: Mean shifted ternary load scenario tree for one week

Scenarios Backward reduction of Forward selection of
in the scenario sets single scenarios scenarios
reduced || time (1-distance time (1-distance time (1-distance
tree [s] abs. | rel.[%] | 8] abs. | rel.[%] | [s] abs. | rel.[%]
600 8 66.63 3.37 8 66.63 3.37 || 8149 66.64 3.36
500 8 118.34 5.99 8 118.34 5.99 || 7637 | 118.32 5.99
400 8 176.24 8.92 8 176.25 8.92 || 6146 | 170.48 8.63
300 8 260.66 | 13.19 8 262.17 13.3 || 4280 | 235.76 | 11.93
200 8 348.77 | 17.65 8 357.19 | 18.08 || 2319 | 331.34 | 16.76
100 8 502.90 | 25.45 8 505.70 | 25.59 || 721 | 483.94 | 24.49
81 8 546.74 | 27.67 8 559.89 | 28.33 | 498 | 530.04 | 26.84
50 8 645.07 | 32.64 8 664.34 | 33.62 || 212 | 628.31 | 31.80
27 8 759.88 | 38.45 8 782.79 | 39.61 | 73 749.09 | 37.91
10 8 989.12 | 50.05 8 |1019.73 | 51.60 | 19 951.02 | 48.13
9 8 |1019.90 | 51.61 8 |1049.02 | 53.09 | 17 970.23 | 49.10
8 8 | 1045.78 | 52.92 8 |1071.23 | 54.21 | 15 |1010.92 | 51.16
7 8 | 1073.14 | 54.31 8 | 1122.04 | 56.78 | 13 | 1051.64 | 53.22
6 8 | 1107.82 | 56.06 8 | 1147.86 | 58.09 || 12 | 1097.48 | 55.54
5 8 | 1153.44 | 58.37 8 | 1189.47 | 60.19 | 11 | 1143.42| 57.86
4 8 | 1218.29 | 61.65 8 | 1290.15| 65.29 | 10 | 1201.11 | 60.78
3 8 |1303.74 | 65.98 8 | 1360.97 | 68.87 9 1259.25 | 63.73
2 8 | 1506.35 | 76.23 8 |1666.22 | 84.20 9 1618.16 | 81.89
1 8 |1976.07 | 100.0 8 | 2027.32 | 102.59 8 1976.07 | 100.0

Table 1: Results of load scenario tree reduction
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used as a (dense) initial scenario tree in order to test the performance of the reduction
algorithms of Section 3. The test runs were performed on an HP 9000 (780/J280)
Compute-Server with 180 MHz frequency and 768 MByte main memory under HP-
UX 10.20. We compared the three algorithms backward reduction of scenario sets
(Algorithm 3.6), backward reduction of single scenarios (variant of Algorithm 3.6) and
forward selection of scenarios (Algorithm 3.7), where all of them were implemented
36
in C. For computing the distances of the initial probability measure P = 3753 s
i=1
(i.e., given by the initial tree with identical scenario probabilities) and the reduced
probability measure ) (reduced tree with optimal redistribution) we used the (;- or
Kantorovich metric and the explicit formula of Theorem 3.1. This choice of the metric
is justified by Remark 2.2 when considering the stochastic power management model
with fixed binary decisions and with electrical load appearing as stochastic right-hand
side.
Table 1 displays computing times (in seconds) and (absolute and relative) (;-distances
of initial and reduced scenario trees for different numbers of scenarios. Here, the relative
(1-distance of P and () is defined as the quotient

Cl (P7 Q)
C1(P, 64iv)

where i, € {1,..., N} denotes the first index obtained by forward selection (see also Ex-
ample 3.4) and 4. is the corresponding Dirac measure. Hence, the distance (;(P, d 4. )
corresponds to the best possible (;-distance of P to one of its scenarios endowed with
unit mass. The test runs have shown that the “distances” ci(d’,d?) = ||d* — d&’|| (|| - ||
denoting the Euclidean norm) for each pair (d’, d’) of scenarios of the initial load tree
are computed within 6s CPU time. These “distances” are needed in all algorithms.
Table 1 shows that all algorithms work reasonably good, and that backward reduction
algorithms are (much) faster than forward selection ones. Furthermore, besides the
favorable simple algorithmic structure, backward reduction of single scenarios is also
competitive to backward reduction of scenario sets with respect to computing times
and accuracy (at least for reduced trees with scenario numbers > 100). For reduced
trees with small scenario numbers < 50 forward selection performs fast and produces
better trees than backward reduction. Table 1 also reflects the surprising effect that
a reduction of the scenario tree by 50% of the original scenarios only implies a loss
of about 10% of relative accuracy. Furthermore, it is possible to determine a subtree
containing less than 2% of the original number of scenarios that still carries about 50%
of relative accuracy. The Figures 4, 5 and 6 show (mean) shifted reduced load trees
with 10 and 50 scenarios that are obtained by all three algorithms. The figures display
the scenarios within the extremal paths of the initial scenario tree indicated by dashed
lines and with grey levels proportional to scenario probabilities.

The different performances of backward reduction and forward selection with respect
to running times are due to the following algorithmic detail. The inner minima and
optimal indices in (14) and (16) are efficiently evaluated by the preprocessing step that
sorts the “distances” ¢(-, -) from each scenario to the remaining scenarios and stores the
corresponding permutation vectors of scenario indices (requiring 1s CPU-time). After
selecting the next scenario that enters the index set J the optimal indices of the inner
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minimization are updated by shifting pointers along the permutation vectors. Then
the outer minimization for selecting the next scenario for .J according to (14) and (16)
can be easily performed. This explains the identical running times for both backward
reduction algorithms for different reduced trees. The algorithm for fast evaluating the
inner minima was adapted for forward selection methods. However, the computing
times indicate that the adaptation has not been successful since updating the pointers
to the permutation vectors is more costly.
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