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1. Introduction. The subject of this paper is the anharmonic oscillator model
from nonlinear optics consisting of Maxwell’s equations

(1.1) OBE= calH-9,P—j, 9,H=— curl E,
on IRt x Q coupled with the equation
(1.2) adiP + ;P + VpV(z,P) =vE

on IRt x G. The initial boundary conditions

(1.3) AAE=0on (0,00) x 'y and AH =0 on (0,00) x 'y
(1.4) E(0,2) = Eo(x), H(0,z) = Ho(2).

and

(1.5) P(0,z) = Po(z), OP(0,2) =Py1(z) on G

are imposed. This system describes the propagation of electromagnetic waves in a

dielectric medium occupying the set G, see [3], [12]. Here Q@ C IR? is an exterior

domain, G C Q a certain subset and I'y C 92, I's df 50 \Ty. The unknown functions

are the electric and magnetic field E, H, which depend on the time ¢ > 0 and the
space-variable € (, and the dielectric polarization P defined on IR™ x G. In 1.1 the
function P is the extension of P on IR x Q defined by zero on the set R x (Q\ G).
The physical meaning of the boundary condition 1.3 is that 'y is perfectly conducting,
such that the tangential component of the electric field must vanish.

The coefficients «, v € L*°(G) depending on the space variables take into account
the possibly variable mass , electrical charge and density of the oscillating charged
particles. An external current j € L'((0,00), L*(Q)) is included also. The potential
energy function V : G x IR® — [0, 00) causes a spring force VpV (z,P), which may
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depend nonlinearily on P. It is assumed that the potential V satisfies the attraction
condition

(1.6) 0<V(x,y) < Ky(VpV)(z,y) for all z € G,y € R?

with some constant K > 0.
In particular it is allowed that |(VpV)(z,y)| tends to zero for |y| — oo as in [12]. The
linear case (VpV)(x,y) = ay with some a > 0 is included also.

In [12], where G = Q = IR? and the coefficients and the potential do not depend on
x, it is shown that 1.1, 1.2 admits a unique strong strong solution in C'([0, 00), H® (IR?))
for s > 2. Note that in our case system 1.1 does not admit classical solutions on all of
(0,00) x Q due to the discontinuity of P on def (0G) N Q, the interface between the
polarizable medium and the vacuum-region © \ G. But if the solution is smooth on
(0,00) x G and on (0,00) x (2 \ G) then 1.1 involves a transmission condition, which
requires the continuity of the tangential components of E and H, as well as a linking
condition for the normal components of D = E+P and H on ¥. Therefore a suitable
weak formulation of 1.1, 1.2 will be given in section 2, which admits discontinuous
solutions. In [4] the Landau-Lifschitz equation for the magnetic moment coupled with
Maxwell’s equations is handled analogously. The magnetic moment is located in a
bounded domain, whereas Maxwell’s equations are posed on the whole space. It is
shown in [4] that all points of the weak w-limit set are solutions of the corresponding
stationary equations.

The main topic of this paper is the investigation of the long time asymptotic
behaviour of the solutions. For this purpose it is assumed that

y € L¥*(G) and (1 + |2])y € L™(G) with some 7 € (3/2,00).

Since v € L°(G), this assumption is fulfilled for example if [ (1 + |z|)"°dz < oo, in
particular if the set G is bounded.

Let X, denote the set of all (f,g) € X def L?(Q, IR®) , which satisfy
curl f = curlg=00nQ, AAf=0onTy,7Ag=0o0n 5.

The basic goal is to prove the decay property

(1.7) / |E]2 + |H[?dz =5 0 for all a < 1,
{zeQ:|z|<at}

in particular local energy decay, provided that the initial data satisfy

(1.8) /(le + Hpg)dz =0 for all (f,g) € Xp.
Q

Here D; ¥ E, + Py — 57 i(s)ds, where P, denotes the extension of Py by zero
on 2\ G. (Note that the propagation speed of electromagnetic waves in vacuum is
normalized to 1 in 1.1.) Furthermore it is shown that

t—oo

(1.9) / |E(t,2) + |2| "tz AH(t,2))? + [H(t,2) — |2| 'z AE(t,2)[2dz =3 0.
Q

The physical meaning of 1.7 is that the wave-packet (E(t), H(t)) is concentrated near
the sphere |z| = t for large times. In section 4 it is also shown that the solution
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(E(t), H(t)) behaves asymptotically like a solution of the linear homogeneous Maxwell
equations in IR? as t — oco.
Condition 1.8 includes

div D; =0 and div Hy =0 on Q
and the boundary conditions
nD1 =0on 'y and WHg =0 on I'y.

By 1.1 the function D ©“E+Pand H obey div H(¢t) = div Hp =0 and
t
div D(¢) = div |:E0 + Py —/ j(s)ds] ¥ divD; =01in D'(Q)
0

if condition 1.8 is fulfilled. Physically this means that the space charge p < divD
determined by the initial-state (Eq,Hg) and the prescribed current j vanishes as
t — o0.

The proof of the decay property 1.7 uses a result in [11]. In particular it is shown
in section 3 that for arbitrary initial states (Eq,Hp), Po and P; not necessarily
satisfying 1.8 the weak w-limit set of (E,H) is contained in Xj.

2. Basic definitions, assumptions and preliminaries. For an arbitrary open
set K C IR® the space of all infinitely differentiable functions with compact support
contained in K is denoted by C§°(K). For p € [1,00) the dual exponent p* is given
by p~t + (p*)7' = L.

Let @ C IR® be a (connected) domain with bounded complement, such that
IR3\ Q is a Lipschitz domain and G C Q a measurable set with nonempty interior.
Throughout this paper the following assumptions are imposed on V : G x IR® — [0, o).
First V(-,y) € L=(G) for all y € IR?,

(2.1) V(z,) € C*(R*, R), V(x,0)=0and (VpV)(z,0)=0

for all z € G. It is assumed that (VpV') Lipschitz-continuous with respect to y, i.e.
there exits some Lgy € (0, 00), such that

(2.2) (VpV)(z,y) — (VPpV)(2,2)| < Loly — 2| for all x € Gy, 2 € IR3.

This condition is also required in [12], since the second- and third order derivatives of
V' are assumed to be globally bounded there.

Next, let @ € L°(G) be a uniformly positive and v € L*°(G) be a positive, but not
necessarily uniformly positive function on G. Now G C L?(G) is the weighted L?(G)-
space consisting of all measurable functions f : G — R® with [~ *(z)|f(2)|*dx < oo
endowed with the norm

ef _
TR /G o (@) [f () P

In the sequel we denote by w, € @ the first three and by w, € @® the last three

components of a vector w € €% and Sw def (—x AWy, x AWy).
Next, some function-spaces related to Maxwell’s equations with mixed boundary
conditions are introduced.
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First Wy denotes the closure of C§°(IR3 \ T, @%) in Heypr (Q), where Heypi (), is
the space of all E € L?(Q2,€®%) with curl E € L?(2) in the sense of distributions.
Next, W denotes the set of all E € H,,,4(), such that

/ E curl F — F curl Edx =0 for all F € Wy,
Q

which includes a weak formulation of the boundary condition 7 A E = 0 on I'y, see

[7].
Now, the following operators are defined.

Let D(B) < Wg x Wy and

BE,H)Y (cul H,— curl E) for (E,H) € D(B).

Then B is a densely defined skew self-adjoint operator in the Hilbert-space X def
L?(2, @%) endowed with the usual scalar product. The space Xp in 1.8 is defined as
the kernel of B, i.e.

Xo ¥ {(E,H) € D(B) : B(E,H) = 0}

={(E,H) e Wg x Wy : curl E = curl H = 0}.

Let @ be the orthogonal projector on Xy = (ker B)* = ran B.
For f € L} .([0,00), X) a function u € C([0,0), X) is called a weak solution to

loc
the initial boundary value problem

(2.3) Owuy = curlu, +f;, Ouy, = — curl u; +f£,,

supplemented by the initial-boundary conditions

(2.4) nAw; =0on (0,00) xT';, and T Au, =0 on (0,00) x 'y
if
(2.5) d (u(t),a)x = —(u(t), Ba)x + (f(t),a)x for all a € D(B).

dt

This means that 2.3 is fulfilled in the sense of distributions, whereas the boundary
conditions 2.4 are satisfied in the sense that fot u(s)ds € D(B) = Wg x Wy for all
t > 0. It is well known that 2.5 is equivalent to the variation of constant formula

(2.6) u(t) = exp (tB)u(0) + /0 exp ((t — s)B)f(s)ds

where (exp (¢B))tcr is the unitary group generated by B, see [13]. 2.6 yields the
energy estimate

L,
(2.7) 3 g m@lx = (£(t), u(t))
Next R : L*(G) — X is defined by

(Rp)(z) ¥ (p(2),0) if 2 € G and (Rp)(z) L 0if 2 € 2\ G.
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Let
(2.8)  je L'Y((0,),L*(Q,R*), (E¢,Ho)e X, PyeGandP;€g.

By 2.1 and 2.2 the nonlinear composition operator p € G — (V, V) (-, p(-)) is globally
Lipschitz continuous as a map from G to G. Therefore the initial value problem

(2.9) adiP + P + (V,V)(2,P) =9E on (0,00) x G

supplemented by the initial-conditions

(2.10) P(0) =Py, OP(0) =P,

admits for all E € C([0,00), L(, IR?)) a unique weak solution P € C?([0,),G) C

C?([0,0), L3(@)). If E € C([0,00), L?(Q2, R?)) and F € C([0,00), L*(Q, IR?)) then
the Lipschitz continuity of V,V yields the estimate

| =

lo*2(@P(0) - 2QW)IE + IP() - QIE] = [ 7 @P-2Q)

N | =
U

t
WE - &P — VpV(2,P) —7F + 9,Q + VpV(2,Q) + P — Q] dx

< Cilla'2 (0P (t) = 0,Q1)llg (IE() = F(t)ll2(0) + IP(t) — Q(1)llg)

< O, [l02(@P(t) - QW3 + (1) = QU)IE + [IE() — F(1)|3: (o)

with constants C7,Cy independent of E,F and t. Here Q € C?([0,00),G) is the
solution of 2.9 and 2.10 with E replaced by F. By Gronwall’s lemma one obtains

(2.11) 10:(P () = Q)26 < IVl 19:(P () = Q(1))llg

<Cy / exp (L(t — $)|/(E(#) — F(5))l| 20 ds

with some L,C5 > 0 independent of E, F and t.
Let A: C(]0,00),X) — C([0,00), X) be defined by

(AE,H)) (t) < exp (¢B)(Eo, Ho) — / exp ((t — s)B) [RAP(s) + (j(s), 0)] ds,

where P solves 2.9 and 2.10.
Now (E,H) € C([0,20), X) and P € C?([0,00),G) solve 1.1-1.5 (in the sense of
2.5), if

(2.12) (E(t),H(t)) = exp (tB)(Eo, Hop)

- / exp ((t — $)B) [ROP(s) + (§(s), 0)] ds,
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i.e.
(2.13) AE H) = (E,H).

and P solves 2.9 and 2.10. It follows from the estimates 2.7 and 2.11 and the con-
traction mapping principle in the space C'([0,T], X) with arbitrary large T' > 0 that
the fixed point problem 2.13 has a unique solution on each finite time interval (0,7")
and hence a unique global solution on (0, 00).

THEOREM 2.1. Problem 1.1-1.5 has a unique weak solution (E, H,P) with the
properties (E,H) € C([0,00), X) and P € C*([0,00),G).

Further regularity of the solution can be obtained under the additional regularity
assumption

(2.14) (Eo,Hp) € D(B) and j € W"*((0,00), L*(2)).

Then ROP(:) + (§,0) € W21 ([0,00), X). By the result in [13, Corollary 2.5, sect.
4.2] it follows that

(2.15) (E,H) € C*([0,00),X) N C([0, 00), D(B))
is a strong solution of
0:(E(t), H(t)) = B(E(t), H(t)) — RO:P(t) — (j(t), 0).

REMARK 1. It follows from 2.15 that all partial derivatives occurring in 1.1 and
1.2 belong to the space L;2.([0,00), L*()). In this sense the solution is strong. As
described in the introduction (E(t), H(t)) is not in H'(Q) in general due to the mized
boundary conditions and the possible discontinuity of the polarization. However the di-
vergence free part of the electromagnetic field satisfies by 2.15 curl [Q(E(:), H())]k €

Li5.([0,00), L*()) and div [Q(E(), H(-))], = 0 fork € {1,2}. Hence Q(E(-),H(")) €

loc

L2 ([0, 00), HY(U)) for all subdomains U C Q, which have positive distance to O .
It follows from 2.12 and the energy estimate 2.7 that

1d

(2.16) 5 77 I(B@), HE)I% = —(ROP(#) + ((¢), 0)), (B(1), H(t))) x

= —/ E@thx—/ Ejdzx,
G Q

whereas 2.9 yields

(2.17) % <1/2||a1/28tP(t)||§ +/Gy—1V(x,P)dm)

= —/ 7*1|8tP|2dx + / E@thx
G G
By 2.16 and 2.17 one obtains the energy estimate

(2.18)

331 (15O HOIB + [0 20P0] +2 [ V(e P )
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- _/ 7P dr — / Ejdr < [|(E(t), H(6))lIx/li(t)]lz2() — 10:P(0)13
G Q

In the next lemma elementary properties of the solution are shown.
LEMMA 2.2. i)

(E,H) € L*((0,0),X), &P € L*((0,00),9) N L*((0,0),9)
and
7V (2, P() € L¥((0,00), L'(G)).
ii) If 2.14 holds one has
(E,H) € W">((0,00), X) N L*((0,00), D(B))

Proof. Let

def 2 al/? ) 2 1Y (s )
(2.19) (m<> HO) + 2P0l +2 [ 4 w,md)
By 2.18 one has

5%& < EW)! i) r2@) — [10:P()12

Since [[j()|lz2(0) € L'(0, 00), this inequality yields i).
If 2.14 holds it follows from 2.15 that

(2.20) 0; (E(t), H(t)) = Bo:(E(t), H(t)) - ROP(t) — 2:(i(t),0)

is satisfied weakly in the sense of 2.5. With a similar estimate as before one obtains
using the global boundedness of (D%V) by 2.2

1d

(221) 5o (1B, HO)E + 0 2P 0)13)

—/ O E0 jdx —/ v o7 P|2dx —/ v LoP - (DEV)(x, P) - 0, Pdx
Q €] €]

< 10:(E(t), B(1) | x 110 (D)l 2(0) + C1llO:PIg — bo/2/107 Pl
With part i) and [|9j(-)||12(e) € L'(0,00) it follows that
(2.22) 0(E,H) € L*>((0,00),X)
By part i) one has §;P € L*®((0,00),G) C L*>((0,0), L*(G)), in particular RO;P €
L>((0,00), X). Since also (j,0) € L>=((0,00), X) by 2.14 and (E, H) € C'([0, ), X)N
C(]0,00), D(B)) solves
0,(E(t), H(t)) = B(E(t), H(t)) — ROP(t) — (5(t),0),

one obtains (E,H) € L*°([0,00), D(B)). This completes the proof of part ii). O
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By 2.18, 2.19, the previous lemma and ||j(-)||z2(q) € L'(0,00) one has £&(t) €
L'(0,00), which implies the existence of the limit

def ..
(2.23) £ lim £(2)

= tim (1B, HO)I + 020205 +2 [ 17V, Phc).

The physical meaning of £(t) is the total energy of the system, i.e. the sum of the
potential and kinetic energy of the oscillating particles and the energy of the electro-
magnetic field. The dissipation term —||9,P(t)||3 = — [, 7'|0:P|*dz in the energy
estimate 2.18 describes the dielectric losses of the medium. This energy dissipation
does not result from an electrical conductivity. It also occurs in insulating materials
if they are exposed to a rapidly oscillating electric field.

3. A weak convergence property of the solutions. In what follows the
additional regularity assumption 2.14 will be imposed on the data for convenience.
The following 'unique continuation’ principle is proved in [11], which holds even for
arbitrary, not necessarily bounded spatial domains. As in [11] it will be used in the
investigation of the weak w-limit set of the solution of 1.1- 1.5.

THEOREM 3.1. Suppose that g € X obeys

(3.1) (exp (tB)g)1 =0onG forallt € R.

Then g € ker B.

This is a generalization of the unique continuation principle for the scalar wave
equation in bounded domains, which is used in [5], [6] and [15].
Theorem 3.1 says that each solution (e,f) € C(IR, L*(Q, RM*N)) of the evolution
equation O¢(e,f) = B(e,f) with the property that e(t,z) = 0 for all ¢ € IR and
x € G satisfies (e(0),f(0)) € ker B. In contrast to the unique continuation principle
for bounded domains it is necessary to require the condition e(t,z) = 0 on G for all
t € IR and not only for positive times. The basic idea of the proof of Theorem 3.1 is to
show that for each f € C§°(IR\ {0}) the function f(iB)g is real-analytic and vanishes
on G. This implies f(iB)g =0 for all f € C§°(IR\ {0}) and hence g € ker B. Here
the operator f(iB) can be defined by the spectral theorem, since iB is self-adjoint in
L?(Q,@5). If f € C3°(IR), then bounded operator f(iB) has the representation

(3.2) f(iB)u = (2m)~1/? /R f(t) exp (—tB)udt for all u € X.

Here f denotes the Fourier-transform of f.

In the sequel let wp denote the w-limit-set of the trajectory (E,H) with respect
to the weak topology of X, i.e. the set of all g € X, such that there exists a sequence
tn =3 oo with (E(t,), H(t,)) =3 g in X weakly.

t—o0

THEOREM 3.2. Q(E(t),H(t)) — 0 in X weakly.

Proof. Suppose g € wp and t, "—3 0o with
(3.3) (E(t,), H(tn) = g
in X weakly. Let u,(t) < (E(t, +t), H(t, +t)) € X and £, (t) ¥ (VpV)(z, P(t, +
t)) € G for n € IN. First, we have by 2.6

tn+t
un (1) = exp (tB)u, (0) - / exp ((tn + £ — 5)B) (3RP(s) + (i(s),0)) ds,

n
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which implies by Lemma 2.2 i) that

tn+t
[an () — exp (tB)un (0)||x < / RSP ()l x + li()ll2(@yds =5 0

tn

for all ¢ € IR and hence by 3.3 with u,,(0) = (E(t,), H(ty))

(3.4) w, (1) =3 us(t) def exp (tB)g in X weakly for all ¢ € R.

Lemma 2.2yields

(3.5) £, (t) — £,(0)||g < Cy / 10, P(s)||gds == 0 for all t € R.
[tn tn+t]

Suppose T' > 0. Then 3.5 implies for all ¢ € C§°((-T,T),G)

T T
(3.6) lim (£ (), Orp(t))gdt = lim (£.(0), Orp(t))gdt = 0

n—oo | o n—oo [ o

Using 0;P € L*((0,00),G) again one obtains from 2.9, 3.4 and 3.6 that

T T
(3.7 / /(uoo)latcpdxdt: lim/ /(un) Oppdxdt
—rJe— n—oo J_pJg—1!

T
= lim [ (YE(t, +1),00p(t))gdt

n—oo | o

T
= lim (QOZP(ty +t) + O P(ty +t) + £u(t), Opp(t))gdt = 0

n—oo |_p
for all p € C§°((-T,T),G), in particular

(3.8) 8t(uoo)1(t,x) =0forallz e G,t e (-T,T)

Since T' > 0 is chosen arbitrarily, 3.8 holds for all ¢t € IR.
With (E,H) € L*((0,0), D(B)) by Lemma 2.2 ii), it follows g € D(B) and

(exp (tB)Bg). (¢) = Ot(us) (t,x) =0forallt € Rand z € G

1 -~ 71

by 3.8. Invoking Theorem 3.1 one obtains Bg € ker B, and hence
||Bg||§( = —(g, B’g)x =0, whence g € ker B. Hence

(3.9) wo C ker B.

Since (E(t),H(t)) is bounded in X as ¢ — oo by Lemma 2.2 i) and zero is the only
possible accumulation point of Q(E(-), H(-)) by 3.9, the assertion follows. O
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4. Decay of the electromagnetic field. For all a € ker B one has by 2.12

((E(t), H(t),a)x

_ <exp (1) (B0, o) ~ [ exi (0 )5 (ROLP(s) + (3(0),0) ds,a>

X

= <(E0,H0) + RP(0) — RP(t) — /0 (J(S),O)ds,a>X
and hence
1) (1-Q) <(E(t),H(t)) +RP(1) +/0 (i(5),0)ds — (Eq, Hy) — RP(O)) _o.

Recall that 1 — @ is the orthogonal projector on Xg = ker B.
Throughout this section it is assumed that the initial-state (Eq, Hg) € X satisfies

o0
(D1, Ho) = (o, Ho) + RP(0) = [ (3(s),0)ds € X
0
ie.
o0
(42) (1= Q) (B0, Ho) + RPO) = [~ (9,005 ) =0,
0
This is condition 1.8 on the initial states. It follows from 4.1 and 4.2 that
(4.3) (1-Q)(E(®),H(t) =(1-Q)J(t) —RP(t)).
with J(t) € [ (j(s),0)ds.
The main goal of this section is the proof of the decay property 1.7. The basic
steps are summarized now. By a standard energy estimate it follows that roughly

speaking that the asymptotic propagation speed of the wave-packet (E(t), H(t)) does
not exceed 1 as t — oo, i.e.

(4.4) / I(E(t), H(t))|?dz =% 0 for all b > 1.
{J=|>bt}

Next it is shown that the potential energy and the energy of the curl free part of the
electromagnetic field decay in time mean, i.e.

as o[ (/G v-1v<x,P<s>>dx+||<1—@><E(s>,H<s>>||%() ds 2% 0,

Here assumption 1.6, condition 1.8 and a L? — LS-estimate for a vector potential are
used. Theorem 3.2 and 4.5 yield the local decay of the electromagnetic field at least
in time mean, i.e.

t
(4.6) t ! / 1(E(s), H(s)) |72 (05 5 2% 0 for all R > 0.
0
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The main step of the proof of 1.7 is a description of the asymptotic energy £ in
2.23. Due to the fact that €2 is an exterior domain one has £ > 0 in general, even if
condition 1.8 is satisfied. It is shown that for all b > 1

@n / [SQoxo(E(t), H(t))] - Qoxo(E(t), H(t))dz =% £u,
{lal<bt}

where Su %' (—x Auy,r Auy), Yo € C®(IR?) is a cut off function with supp xo C
and yo(z) = 1 outside some bounded set. Furthermore ()y denotes the orthogonal
projector on the space of all u € L2(IR?) with div u; = 0. The proof of 4.7 relies on
4.4,4.5, 4.6 and some LP-estimates for Q.

For this purpose the following additional assumptions are imposed on V', the set
G and 7 in the sequel.

(4.8) V(z,y) < Koy (V,V)(z,y) for all z € G,y € R*.
with some K» € (0,00) independent of x,y, and
(4.9) v e L¥*(G) and (1 + |z|)y € L™(G) with some ro € (3/2,00).

Finally it is assumed that the external current j is located in a fixed finite ball, i.
e. there is some R; > 0 with

(4.10) j(t,z) =0for all t € (0,00),2 € IR®\ Bp,.

First it is shown that the convergence in Theorem 3.2 is strong on bounded subsets
of Q.
LEMMA 4.1. For all R > 0 one has

IQE®), H(t))l|z2(@nps) = 0.
Proof. Each u € (ker B)' satisfies

(4.11) div (u,) =0, div (u,) =0

with 7u; =0 on I's and 7u, =0 on Iy

in the sense that

/ (0, Vo +u, Vi) de = 0 for all ¢ € C(IR? \Ty) and ¢ € C° (IR \ T).
Q

This follows from the fact that (Ve, Vi) € ker B for all p € C$°(IR? \ Ty) and
¥ € Cg°(IR% \ T).

Suppose u € (ker B)* N D(B). Then u, € Wg, whereas u, € Wy. Therefore
4.11 and the compactness theorem in [7], a generalization of the result in [16], see also
[10], implies that

(4.12) ( ker B)* N D(B) is compactly embedded in L?(Q N Bg) for all R > 0.

Now,the result follows from Lemma 2.2ii), Theorem 3.2 and 4.12. O
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THEOREM 4.2. Suppose b > 1. Then
/ (E(t), H(1))Pda =5 0.
{lz|>bt}

Proof. The proof is based on an energy estimate. Let g € C*°(IR) with g(u) =1
for u > (1+0)/2 and g(u) =0 for u < 1. For R > R; define

£00) (1) <! / g((t + B)~[a]) [[BO + [H ()] de

+/ v tg((t+ R) " Hz|) (oz|8tP|2 + 2V (=, P)) dx.
G

Then one obtains from the basic equations using 2.15 and assumption 4.10 for all
t>0

%S(R) () =2 (g((t + B) "« |)(E(t), H(1)), B(E(t), H(t)) — ROP(t) — (§(1),0))
—(t+R)~? /Q |zlg' (¢ + R)~*]) [JE@)* + [H(t)]*] do

+ [ 29l + B al) (BOP — 77 oPP) da
G

—(t+R)? /G yUelg' (¢ + R)~Mz]) (alOPP + 2V (z, P)) dir
< 2 (g((t + B)~ ) (B(), H(t)), B(E(t), H(1))) .

(t+R) / jalg’ (¢ + B)~[z]) [[B(O)P + [H(5)] de
<2t+R)! / 2]/ (¢ + B) e B() - (x A EL())de

—(t+R)*2/Qvalg’((t+R)’1lfv|) [[E®F + [H(t)]*] do

Since g(u) =0 for u < 1 and g'(u) > 0 it follows £&F)(¢) < 0 and hence
(4.13) EWR (1) < £ (0) for all R > Ry.
Since b > 1 one has by 4.13 for all R > R;

lim sup/ |(E(t), H(t))|*dz < lim sup |(E(t), H(t))[*dx
{|z|=bt}

t—00 t—00 /{zz(b+1)(t+R)/2}
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< limsup £ (¢) < £ (0).

t—o00

Since g(0) = 0 it follows £ (0) RZ%° (). Hence the assertion follows from the previous

estimate letting R — oo. O
def

In the sequel let Ry > 0, such that IR*\ Q C Bg, = {r € IR®: |2| < Ro}
and choose xo € C°°(IR3) with

(4.14) supp Yo C Q  and xo(z) = 1 on IR* \ Bg,.

For w € X or w € L?(IR?) define

(4.15) Cow 2 ((Vxo) A Wa, —(Vxo) Awy).

For convenience yow and Cow will be regarded as elements of L?>(IR3) by extending
them by zero outside supp yo if w € X.

In what follows Wg o denotes the space of all F € Wg with curl F = 0. Since
Vi € Wiy for all ¢ € C§°(2) one has

(4.16) div A =0 for all A € Wi

By the boundedness of supp Vo it follows from 4.16 that curl (xoA) = (Vxo) NA+
Xo curl A € L?(IR?) and div (xoA) = (Vxo) - A € L*(IR?) for all A € W, N Wg.
Here yoA is extended by zero on IR\ supp Yo and Yo as in 4.14. From Sobolev’s
inequality one obtains yoA € L°(IR?) and hence A € L5(IR?\ Bg,).

The aim of the following considerations is to prove the estimate

LEMMA 4.3. There ezists a constant K3 € (0,00), such that for all
AeWgn Wéjo the estimate

lAllL2(@nBr,) + [[AllLes(Rr\Bry) < Ksl| curl AllLzo)

holds.

LEMMA 4.4. i) The set of all F € Wg o with bounded support is dense in Wg
(with respect to the L*()) -norm).

i) Let A € L*(QN Bg,) N LS(IR? \ Bg,) with

(4.17) /QA curl hdr = 0 for all h € C§°(IR* \ Ty, @®)
and

(4.18) /QAFdx =0 for all F € Wg o with bounded support.
Then A =0 .

Proof. i) Suppose F € Wk . Since curl F = 0 there exists some ¢ € L6(IR3\ Bg,)
with

(4.19) F = Vy on IR?\ Bpg,

Let 1 € C§°(B2) with ¢ =1 on By and ¢, def Y1(x/n). Now define F,,(x) def F(x)
def

ifx € QNB,, and Fy,(2) = ¢ (2)F(2)+¢(x) Vi, (2) if |2] > n. Then F,, has bounded



14 F. JOCHMANN

support and curl F,, = (Vi) AF + (V) A Vib, = 0 by 4.19. Since also F, = F
near 0 it follows easily that F,, € Wg . Next it follows from Hdlder’s inequality

IF7n — Fllrzo) < 1(1 = ¥n)Fllz20) + [loVnllzz()
<A = Pn)Fll2) + lellLs(ei>np IVnllLs(rs)
<1 = ) Fllz2) + 1@llLe(gle/>np I Venll Lo (ms) | Bon| /*

<L = ¥0)Flz2() + Cllellzolz)sny) — 0

with some C; independent of n. This completes the proof of i).
Next let A € L2(2N Br,) N LS(IR3\ Bg,) satisfy 4.17 and 4.18. Then one has in
analogy to 4.16

(4.20) curl A =0 and div A =0on Q.

Since supp Vo is bounded, it follows from 4.20 that curl (yoA) = (Vxo) A A €
L8/5(IR3) and div (yoA) = (Vxo) A € L/5(IR3), where yoA is extended by zero on
IR3\ supp xo. From Lemma 1 in [8] one obtains yoA € L?>(IR3) and hence A € L?(Q).
By the definition of Wg and 4.17 we have A € Wgy. Since A € L?(f2), equation
4.18 holds for all F € Wg o by assertion i). But this means A € Wé‘,o and therefore
A=0.0

LEMMA 4.5. Let {A,}new be a sequence in Wg N Wém which is bounded in
L*(Q2N Bgr,) N LS(IR? \ Bg,), such that { curl A, }nen is precompact in L*(€2).
Then {A, }new is precompact in L?(Q N Bgr,) N LS(IR? \ Bg,).

Proof. Let Q def Bsr, NQ and choose x1 € C§°(Bz2gr,) with x1(x) =1 on Bg,, in
particular

(4.21) x1(z) =1 on supp (Vo)

Let S; ' Ty UOBag, and S» ' Ty = 90\ S;. Recall that IR3\ Q C Bg, C Bag,. In

analogy to the definition of Wg let Wg be the space of all € € Hy () with iAe =0
on S in the sense that

/~e curl f — f curl edr = 0 for all f € C5°(IR* \ So, @°).
Q

Now, it follows from the assumptions that

(4.22) {x1A}nen is bounded in Wg.

Since A, € Wi, one has also

(4.23) { div [\1 A} nenw = {An VX1 bnen is bounded in L2(Q)

and y17A = 0 on Sy, in the sense that

—/~ X1A,Vpdz :/~( div [x1A,])pdx = /~(AnVX1)<pdx
a 9] a
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for all p € C§°(IR3\ Sy).

Since the Lipschitz domain Q = Bsr, N 2 and the decomposition of its boundary
9 = S; U S, satisfy the assumptions in [7], it follows from 4.22, 4.23 and the result
in [7] that the sequence

(4.24) {x1A.}new is precompact in LZ(Q) = L*(Bag, NN).

Let £,(2) © xoA,(z) if 2 € Q and £,(z) ¥ 0 if 2 € R?\ Q.
Next, 4.21, 4.24 and the compactness assumption on { curl A, }p,en imply that the
sequences

(4.25) {curl £, }new = {(Vxo) ANA, + xo curl A, }ew
and
(4.26) { div £, }new = {A, VX0 }nev are precompact in L*(IR?).

Recall that supp xo C . By 4.25 and 4.26 it follows from Sobolev’s inequality or
directly Lemma 1 in [8] that the sequence (f,,) e v is precompact in L(IR?) and hence

(4.27) (A)nen is precompact in L8(Q \ Bg,),

since xo(z) =1 for |2| > Ry. O

PrOOF OF LEMMA 4.3
Suppose that the estimate was not correct, i.e. would exist a sequence A,, € Wg N
Wﬁo,n € IN with

(4.28) 1= ||An||L2(QmBRO) + ||An||L6(R3\BRO) > n|| curl A,||p2 for all n € IN

By Lemma 4.5 the sequence {A,, }nev is precompact in L?(QN Bg,) N LS (IR?\ Bg, ),
i.e. there exist A € L?>(Q N Bg,) N L5(IR? \ Bg,) and a subsequence
An, k€ IV with

k—o0

(4.29) ||Ank - A||L2(Q|"‘|BR0) + HAnk - A||L6(R3\BRO) — 0,
in particular
(4.30) |AllL2(@nBRry) + [ AllLe(RE\BR,) =1
From 4.28 and 4.29 it follows that
(4.31) A curl hdz = lim Ank curl hdx
Q k— o0

= lim [ hecurl A, dz =0 for all h € C°(IR* \ Ty, €®).

k—o00 0

Furthermore

(4.32) / AFdz = hm Ank Fdz =0

for all F € Wg, with bounded support. Now 4.31, 4.32 and Lemma 4.4 ii) would
implie A = 0. This contradicts 4.30.
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The aim of the following considerations is to show decay of the potential energy
and the local electromagnetic energy at least in time mean, i.e. for all R > 0

t t—o0
t—l/o (/G 1V (2, P(s))dx + ||(E(8)7H(s))||%z(QﬂBR)) ds 2% 0.
LEMMA 4.6. There holds
! [ Q0. ()RR () s = 0.
0

Proof. Let u(t) def Q(E(t),H(t)) and A(t) def fot u, (s)ds.

Since u(t) € ( ker B)* one has A(t) € W}ia With

curl u,(s) = —(Bu(s))2 = —[B(E(t),H(t))]2 = curl E(s) = —0;H(s)
one gets by using Lemma 4.3

IA®L2(nBr,) + [AG | Ls(mo\Br,) < K3l curl A(t)||L2(0)

t
— K| [ curl w ($)dsl2(o) = Ks[H0) — H(O) 200
0
Now, it follows from Lemma 2.2 and the previous estimate that

(4.33) 1Al L2@nBry) + 1A L6(R2\BR,) < C1 for all ¢ € (0, 00).

with some constant C independent of ¢. Next,

(4.34) t’l/o (Q(E(s)7H(s)),RP(s)>de:t’l/o /Ggl(s)P(s)dxds
— ¢ /0 /G OrA(s)P(s)dwds =t! /G A)P(t)de —t ! /0 /G A(s)0,P(s)dwds
< Cit7" (IP(O)l2(a) + P (Bl ors ()

t
+01t*1/0 (10:P () l|2(c) + 9P (5)ll o5 () ds

t
<t (I lem@ + 12l (IPollo +2 [ 0P (9)ods
0

by assumption 4.9 and Holder’s inequality. With 4.34 and Lemma 2.2 one obtains

! / (Q(B(s), H(s)), RP(s)) x ds
0

<G (1020 + 17236y (£ 1Pollg + 2677210 Pllz(0,000,0) ) =5 0.
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a
LEMMA 4.7. There holds

t—o0

ds — 0,

! / t ( /G IV (2, P(s))da +[|(1 - Q)(E(t%H(t))II%() s

i particular

Jim - / 1 (B(s). H(s)) s = lim - / |QUE(s), H(s)) 3 ds = £x.
—00

where Es as in 2.23.
Proof. Tt follows from Lemma 2.2 and 4.3 that

11— Q) (B(t), H(t)) II% = ((E(t), H(1)), (1 — Q) [(J(£),0) — RP()])x

(QUE(?), H(1)), RP()) x + ((E(t), H(1)), (1 = Q)(J(?),0)) x — /GE(t)P(t)dfv

<(Q(E(t), H(t)), RP(t))x + C1l|I()llz2(0)
_/ v [ P(t) + 0:P(t) + (V, V) (2, P(t))] Pdx
G

(Q(E(1), H(1)), RP(t))x + C1llT (@)l

IN

—/ v (aafP(t)+8tP(t))P(t)dx—K;1/ YV (2, P(t))dx
G G

by assumption 4.8. Now,

ass) o [ (||<1—@> (B(s) 1) I + 55 | le(r,P(S))dw) s
<t / (Q(B(s), H(s)). RP(s))x + Ca[13(3)]|12(0y) ds

+C’2/t—1/2t_1/ 7_1|P(t)|2dx—t_1/ ay=10,P(1)P () dx
G G

¢
+t*1/ /a7*1|3tP(s)|2dxds
0o Ja

< t*I/O ((Q(E(s),H(s)), RP(s))x + C1[lI(s)llz2(e)) ds
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+Cs/t + Cst™ 1O POIg + ¢l 0P 17 2 ((0.50).0)

St—l/o ((Q(E(s), H(s)), RP(s)) x + C1[|T(5)|l12(c)) ds + Ca/t

by Lemma 2.2 i) again.
In the previous estimates C; are constants independent of ¢. Now, it follows from
Lemma 4.6 and 4.35 that

@30) o [ ([ 7P+ 10 - Q0. HOIE ) as = o

Since
-1 ! 1/2 2 -1 1/2 2 t—oo
t ||a 8tP(S)||gdS St ||a 8tP||L2((0’OO)’g)d1'dS — 0
0

by Lemma 2.2 i), 2.23 and 4.36 yield

Jim 1 1/ IQE(s). H(s))[3ds = lim ¢~ 1/ 1(E(s), H(s)) |2 ds = Ene,

which completes the proof. O
From Lemma 4.1 and the previous lemma one obtains now easily
COROLLARY 4.8. For all R > 0 one has

t1/|| () |2y ds =3 0.

In what follows let

D(By) def Hewrit(IR?) X Heyp (IR?) and By (e, h) ( curl h, — curl e).

Furthermore, let Qy be the orthogonal projector on (ker By)*, which consists of all

u € L*(IR?) with div u; = 0. The following estimate will be used in the proof of 4.7.

LEMMA 4.9. Let s € [0,1]. Then there exists a constant K; € (0,00) such that

(L + |2])°F, Qo) r2(me)| < Kl (e 11 + |21)° 8l Loo (me9)

for all f € HY(IR3) and g € L*>(IR3) with (1 + |x|)*f € L*(IR?) and (1 + |z|)°g €
L% (IR3). Here 1/qo = 1/(2ro) + 1/2, where ro as in assumption 4.9.
Proof. By a standard density argument it suffices to consider f,g € C°(IR?).

Recall that 2rg > 3. Let p; % (L 72— 52)7" € (25,00] (p1 = o0 for s = 1) and
P2 def (£- o )~! Since (s — 1)p1 < —3 and sp2 > 3 one has
(4.37) (1+ |z))*~" € LP*(IR?) and (1 + |z|)~% € LP*(IR?).

Now F % (1 + |2)*Qof — Qo (1 + |2])°F) obeys

BoF = s(1+ o))" | *SQof + (1 + |a])* Bof — Bo (1 + [z])°F)

= s(1+ |2[)* |2~ S[Qof — f],
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where Sw 1 (—x Aw,,x Aw,). Hence

11+ |2))' = BoF |l z2(me) < sll(Qo = Vfllr2(me) < slIfll2me)-

A similar estimate using div (Qof) = 0 yields

=
1L+ J2)' " div Byl 2me) < sl1(Qof) llz2(me) < sllfllzacms)-

With 1/¢ def 1/p1 + 1/2 we obtain by 4.37 and Hélder’s inequality

|| curl E;llpa(rsy < C1l|BoF||pa(ms)

< Cill(+ 12D * ™ lem ey (1 + |2)'=* BoFll 2 (mey < Collfllpa(me)
and
| div Ejl|ze(ms) < Callfllr2(ms)
By Sobolev’s inequality or directly Lemma 1 in [8] one obtains

(4.38) IF|| - (r3) < C3||DF||La(ms)

< Cy (Il curl Bl|pa(msy + || div Fllpa(ms)) < CslIfllz2(ms)

Here r &' (% -5 t=(1/6+%52 - 52)" € (2,6). Now, %+pl—2+qio = 1. Therefore

27rg

4.37, 4.38 and Holder’s inequality yield

(4.39)  [(F,@)r2(ms)| < 1Fllzr(me) (1 + )72l Lez o) [[(1+ 2])° 8| oo ()

< Csllfll 2 (mey (1 + |2])*gll oo ()

Since qo > 6/5 one has ¢ < 6. Therefore, it follows from Holder’s inequality, 4.39
and the embedding H'(IR*) — L% (IR*) that

(4.40)  [((1+ [z])°F, Qo) 2(mrs)| < (Qof, (1 + |2])°8) r2(rs) + (F,8)r2(R3)
< 5| Qof || 1 (me) (1 + |2])° 8 oo (m2) + (F, 8) £2(rs)|

< Collfll (o) (1 + [2])° 8[| oo (r2)

ad
Since supp xo C €2, Lemma 2.2 yields xo(E(),H(-)) € L*(0,00), D(Byp)) and
hence

(4.41) Qoo (E(-), H()) € L((0,50), D(Bo) N (kerBo)*)

C L>((0,00), H'(IR?)),
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where yo € C*(IR3) as in 4.14.
LEMMA 4.10. There holds i)

0= Qona(B(s), HGs) sy ds 50
0

t
t_l/ “QOXO(E(S)vH(S))||2L2(R3)d8 o Eo.
0
and i)
t
til/ 1QoX0(E(s), H(5))| 22 ({jz|>aspds = 0 for all a € (1,0).
0

Proof. First the following estimate is proved.

(4.42) II(1 = Qo)xoullr2(ms) < K1 (||(1 - Q)ullx + ||u||L2(QﬂBRO))

for all u € X with some constant independent of u. For this purpose let u € X
and define £ % (1 — Qo)xou € ker By, i.e. curl f,=0o0n IR?. Hence there exist
¢j € LS(IR®) with Vip; € L*(IR3) such that

Hence

||f||2L2(R3) = <X0u7f>L2(R3) = /R3 Xo (W V1 +u,Ves) do

= (. (VIxom] VivoeaD)x = [ (To)or = m(Tro)en) de

Since (V[xo¢1], V[xoy2]) € ker B and supp (Vo) is bounded, it follows

(4.44) 1(1 = Qo)xoullFz(grey = [Ifll72(ms)
< C1lI(L = Qullx (IV (xown)llzems) + IV (xowa) 2 (o))
+Crllullzz@nnay) (I#1ll25a) + le2llr2(5,))
< (0 = Qullx + allz @y )
(IVerllL2cms) + llerllLsms) + IVo2llL2(msy + lloillLe(ms))

< G (10 = Qullx + lull20npay) ) IEllzrs)-
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This completes the proof of 4.42. Now, assertion i) follow immediately from Lemma

4.7, Corollary 4.8 and inequality 4.42.
Next, part i), Corollary 4.8 and Lemma 4.7 yield by the boundedness of supp

(1—xo)

t t
Jim ¢ [ Qo (B(6) B ey s = Jim ¢ [ 1o () ) [ s

~ lim ¢ /|| N heds = Eno,

t—o00

whence ii). Finally, part iii) follows from i) and Theorem 4.2. 00
Next 4.7 is proved.
THEOREM 4.11. Suppose g € C§°(IR) with g(u) =1 on a neighbourhood of [0, 1].
Then
“H(Sg(|z]/t)Qoxo(E(t), H(t)), Qoxo(E(t), H(t))) 2 (gs) X s

where £ as in 2.29 and Su (—zAuy,xzAuy) .
Proof. Define

F(t) € (Sg(|z]/t)Qoxo(E(t), H(1)), Qoxo(E(t), H(1))) 12 (o).
Then

(4.45) F'(t) = 2(Sg(||/t)Qoxo (E(t), H(t)),
Qoxo (B(E(?), H(t)) = (j(),0) = ROP(1))) 12(s)

—72 (Sleelg/(|21/H) Qo xo (B (), H(E)), Qoo (B(t), H(D)) 2 o)

= 3 h(t) +2(Sg(ll/)Qoxo (B(8), H(1)), BoQoxo(E(t), H(1))) 12 esy

=0

472 (S]alg (|21 /) Qo X0 (B (1), H()), Qoo (), H(E)) 2 e
by 2.15. Here

(4.46)  ho(t) € —2(Sg(|2]/1)Quxo(E(), H(1), Qoxo(§(1), 0) 12 sy
(447)  ho(t) & —2(Sg(l2/H)Qoxo(B(1), H(£)), QoXoRAP(1)) 1o (s -

(4.48)  ha(t) = 2(Sg(w]/)Qoxo(E(t), H(t), QoCo(B(t), H(1))) 12 s, »

where Cy as in 4.15.
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For u € (ker By)* N D(By) C H'(IR?) one has div u; = 0. Therefore, it follows
from the identity # A curl a = V(za) — a — (zV)a that

(Sg(lz[/t)w, Bov) r2(ms) + (Sg(|2]/t) Bow, V) 12(ms)

= / g(lz|/t)ha- (x A curl vy, A curl v,)dx
R3
+ /R3 g(|z|/t)(x A curl uy,x A curl u,) - vde
= [ stial/ra- (View,). Viewsl) de + [ g(lel/6) (View,], Viow)) - vda
R3 IR3
2 [ aleliuevds = [ ool vl

=2t (Sg' (el /o) (gl + g (/000 o ey

L3(R?)

def

with Su = |z|~! ([zu,]z, [zu,]z) .

Hence

2(Sg(|=/t)Qoxo(E(t), H(t)), BoQoxo(E(t), H(?))) 2 gs)

= (lg(l2l/) + 7 zlg' (J2|/D)]Qoxo (B(t), F()), Qoxo(E(), F(1))) 2 s

—2t~ ! <S’g’(|1'|/t)QOXo(E(t), H(t)), Qoxo(E(t), H(t))>

With 4.45 -4.48 it follows

L2(IR3)

3
(4.49) F'(t) = [|Qoxo (E(t), Ht)|[72( sy + D _ hy(t)
j=0
where
(4.50) hs(t)
def

= (lg(al/t) = 1+t~ alg'(12]/D)Qoxo(B(t), H(1)), Qoxo(B(t), H(t))) 1 ps)

7 (25 + 7" [219)g'(121/1) Qoxo (B(1), (), Qoo (B(1), H(1))

L2(IR?)

In the following estimates C; are constants independent of s. Lemma 4.9 and 4.41
yield by Holder’s inequality and assumption 4.9

|ha(s)] < Cull(L+ J2]) "2 Sg(|2]/5)Qoxo(E(s), H(s)) |1 (me)
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11+ [2)"? Xo RSP (5)|| Lo (o)
< Gl + ) "2 S g (|l /$)Qoxo (B(s), H(s)) a1 (o)
1L+ 1) 292 2ro (i) 205 P(9) | 22y

< Cos' 2|0, P(s)llg

For all T > 0 one obtains

t T t
t—l/ I (5)|ds gt—l/ |h1(s)|ds+02t_1/ $1/2(|0,P(s) o ds
1 1 T

T t 1/2
gm/ 7 (5)]ds + Cs </T ||asP(s)||gds>
1

and hence by Lemma 2.2

1/2

t o0
i sup e~ [ (s)1ds < € ( / ||asP<s>||z~ds)

t—00

for all T' > 0, which implies that
t t
(4.51) 4 / 1B (s)]ds "= 0.
1

Next

|ho(t)] < Cll(1 + |2) 7" Sg(l2]/t) Qoxo (B(t), (&)l 11 + [z x0 (3(t), 0}l 20

< Calli@®llL2(Bg,) < Callit)llLz@)

by assumption 4.10 which implies that
(4.52) 4 /0  ho(s)|ds "= 0.
Similarely
72 (8)] < C5I(1+ |2]) Sg(l2]/)Qoxo (B(t), H(t)) | |(1 + |2])Co (E(t), H(t))[| 2o
< Cel|(E(t), H(t))||22(Br,)
and hence by Corollary 4.8

t
(4.53) 1 / |ha(s)|ds =5 0.
0



24 F. JOCHMANN

Since ¢'(Jz|/t) = 0 and g(Jz|/t) = 1 if |2| < at with some a > 1, Lemma 4.10 iii)
yields

t t
459 1 [ Pra(o)lds < ot [ 1Q0x(B(E) FE sy ds =¥ 0

Now, it follows from 4.49-4.54 and Lemma 4.10 that

t
lim t'F(t) = lim til/ F'(s)ds
t—oc0 t—o0 1

t
= lim t71/1 ||Q0X0(E(S)7H(S))H%z(Ra)dS = -

t—o00

This completes the proof. O
Now the main results of this section 1.7 and 1.9 can be proved.
THEOREM 4.12. For alla <1 and b > 1 one has

(4.55) I(E®), H(1) | 12(@ns,,) = 0
and
I(E@), H(t) — t™"SX{at<|e|<ver (B, H(®))||x =30.

Furthermore

t—o0

(L = Qo) xo(E(t), H(t))||L2(mrz) — 0.

Proof. Suppose § > 0. Choose g € C§°(IR,[0,00)) with g(y) =1 on [0,1 +d/2]
and g(u) =0 for all w > 1+ . Then

11 = Qo)xo(B(), H() 172 (o)
= [Ixo (B(t), HO)IZ2 ey — Qoo (B (1), H(E)IZ2( s
< 1B, HO))I% — 1Qoxo(E(t), H(t))[|72 s
< 1B, )5 — 1+t

(Sg(lz]/t)Qoxo (E(t), H(t)), Qoxo(E(t), H(t))) 12 ()
Theorem 4.11 yields

liﬁigp 1(1 = Qo)xo(E(t), Ht)I72(msy < (1 = (1 +0)7") Exc
since limsup,_,  [[(E(#), H(t))|% < € by 2.23. By letting § — 0 this implies

(4.56) Jim [1(1 = Qo)xo (B(t), H(1)) 12 (s = 0
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This improves assertion i) of Lemma 4.10. Next, one obtains from Theorem 4.2, the
boundedness of supp (1 —xp), Lemma 2.2 i), 4.56 and Theorem 4.11 that for all 5 > 1

(457) Jim 7 (S 1o <y (B, HL(1), (B(E), (1)) x
= Jim ¢ 1(Sg(||/0)(B(), H(D), (B(), H(1))) x
= Jim 1 (Sg (|| /0)xo(B(0), H(1)), xo(B(1), H(1))) 1o

= tlggo t~(Sg(|z|/t)Qoxo(E(t), H(t)), Qoxo(E(t), H(t))) 12(R2) = Eso-

Here a function g € C§° (IR, [0, c0)) with the properties g(y) = 1 on [0, 8] and g(u) =0
for all u > 24 is chosen.
Let # > 1. Then one obtains from 4.57

/ (E(t), H(t))de < / I(E(r), H(t)) Pde
QNBg: QNBg;
g / o] |(B(), H(t)) Pde
{at<|z| <Pt}

< NE®@).HE)[% - 51! / 2] |(B(), H(t)Pde

QﬂBﬁi

+B—1a/§m I(E(t), H(t))|*dx
< EW), HW))IX — B~ (Sx (2 <pey (E(t), H(1)), (B(t), H(t))) x

ta / (B, H)Pdr
Hence

(1—a) /mB |(E(t), H(t)Pda < [|(B(t), H())I[%

=B NS X o<ty (B(E), H(t)), (E(t), H(t))) x

Invoking 4.57 one gets

(1-a) limsup/ |(E(t), H(t))|?de < (1 — 1) for all 3 > 1.
QN Ba:

t—o0
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By letting 8 — 1 this impliess

(4.58) IEW®), H(1) | 12(@n5,.) =5 0.

This completes the proof of the first assertion 4.55.
Suppose § > 1. Then it follows from Theorem 4.2 that

i sup ¢ 1S <oy (B(E), () < limsup ¢S o <0) (B H() L
—00 —00

< Blimsup [|(E(t), H(t)llx < BEYL
t—00
Letting 8 — 1 this yields
lim sup £ M8 X e <oy (B0, HD)[|x < €37
—00
By 4.57 one obtains

lm sup 111120y (B, H(0) = (B(t), H) Iy

= limsup (¢ (S x| <be} (B(t), H()) 1%

t—o00

_2t71 <SX{\m\§bt}(E(t)vH(t))v (E(t)vH(t))>X + ||(E(t),H(t))||§() S 07

which completes the proof. O
REMARK 2. The above theorem does not provide any information on the asymp-
totic behaviour of P. But if the potential is quadratically coercive in the sense that

P(VPV)(z,p) > aolpl® for all p € R’
with some ag > 0 it follows easily from a similar estimate as 2.17 that
(4.59) IP(t)|12(cnBr) —= 0 for all R > 0.
provided that E satisfies
(4.60) NE®)||22(@nBr) —= 0 for all R > 0.

In particular 4.59 holds if condition 1.8 is fulfilled by Theorem 4.12. Furthermore it
turns out that condition 1.8 is also necessary for the local decay of the electromagnetic

field in this case. This can be seen as follows. If ||(E(t), H(t))||L2(nBR) 20 for
all R > 0 then also 4.59 holds and therefore

(4.61) (E(t),H(t)) =5 0 in X weakly
and

(4.62) P(t) =% 0 in L*(G) weakly.
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Hence one obtains from 4.1, 4.61and 4.62 by letting t — oo that

(1-Q)(D1,Ho) = (1- Q) ((EmHo) +RPO) - | w(j(s)ﬁ)ds)

=w — lim (1-Q) (E(?), H(t)) + RP(t)) =0,

t—o00

whence 1.8.

Invoking a result in [9] concerning the linear inhomogeneous Maxwell equations
without polarization it can be shown that the solution (E,H) of 1.1-1.5 is asymp-
totically free in the sense that there exists a uniquely determined pair of functions
(Fo,Go) € L*(IR?) with div Fp = div G = 0, such that
(4.63) I(E(), H(t) = (F(1), G(1))l|p2(0) =5 0

Here (F,G) € C(IR,L?(IR?,@%)) denotes the solution to Maxwell’s equations in the
whole space, that is

(4.64) OF = curl G, 0;G=—curl F,
supplemented by the initial-condition
(4.65) F(0,z) = Fo(x),G(0,2) = Go(x).

This means that the solution to 1.1-1.4 behaves asymptotically like a free space solu-
tion to equations 4.64, 4.65 as t — oo. In what follows suppose that in addition

(4.66) (14 |z])Heoqt/2 e L(@)

for some ag > 0 and 1 € (3,00). Again this condition is fulfilled in the case where
the set G is bounded.
THEOREM 4.13. The strong limit

U< lim exp (—tBy) J*(E(t), H(t))

exists in L>(IR®) and U € (ker Bo)t. Here J* : L*(Q) — L*(IR®) provides the
extension by zero on IR3\ Q.
Proof. Tt follows from Theorem 4.12 that for all a <1 < b

(467) i [l S X gar<al<on QoXo(B(), H() — J*(B(t), H(1) 2 = 0.

Let g be defined as in [9], Theorem 8 by g(t,u) < cat=1=%u® for u < (1 + a)lat

and g(t,u) def =1 for u > (14+a) tat. Here def ap/2 > 0 with agp as in assumption
466 and cq 2 (14 a~1)l+e.

Since g(t,t) = t~!, it follows easily from 4.67, Theorem 4.2 and Theorem 4.12 that
(068) T [Sg(t. o) Qoo (E(), H(t) — J*(E(O). H(®)|12 = 0.

Next Theorem 4.12 yields further lim;_, [|(1 — Qo) J*(E(t), H(¢))||2 = 0, and hence
by 4.68

(4.69) lim [|L(t)xo(E(t), H(t)) — J*(E(t), H(£))|| L2 = 0,

t—o00
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where L(t) € QoSg(t,|z])Qo € B(L?, L?) with g defined as above.

The following result concerning the inhomogeneous linear Maxwell equations can
be found in [9], Theorem 8.

THEOREM 4.14. Suppose that u € L>((0,00),D(B)) N C([0,0),X) solves
Opa = Bu+f, where f € L}, ([0,0),X) obeys (1 + |z|)tTf € L*((0,00), L% (Q)) +
L*>((0,00), L1 (Q))).

Then the strong limit

Jimexp (=Bo) L(t) xou(t)

with respect to the L?(IR3)-topology exists.

Here ¢, € [6/5,2) is defined by 1/q; = 1/2+ 1/r;, where ap > 0 and 71 € [3,00)
are as in assumption 4.66.

In order to apply Theorem 4.14 let u(t) def (E(t),H(t)) and f(¢) def ORP(t) +
(j(t),0). With the assumptions 4.66, 4.10 and Lemma 2.2 one has (1 + |z|)!*o°f €
L>((0,00), L7 (€2)). Hence u satisfies the conditions of Theorem 4.14, which implies
the existence of the limit

(4.70) lim exp (~#Bo) L (1) xo(E(r), H(1).

By 4.69 one obtains the existence of the limit

(4.71) U lim exp (—tBo) J* (E(1), H(1)) in L*(IR®).
o0

Since ran L(t) C ran @y, it follows from 4.69 and 4.71 that
U € ran By = (ker By)*, i.e. div (U;) = 0 on IR®. Now, it follows easily that

(F,G) % exp (tBy) U satisfies 4.63. O

REFERENCES

[1] R. Apawms, Sobolev spaces, Academic Press 1975.

[2] H. BAarucq AND B. HANOUZET, Asymptotic behavior of solutions to Mazwell’s equations
in bounded domains with absorbing Silver-Miiller’s condition on the exterior boundary,
Asympt. Anal. 15 (1997), pp. 25 - 40.

[3] R. BoyD, Nonlinear Optics, Academic Press, New York 1992.

[4] G. CARBOU AND P. FABRIE, Time average in micromagnetism , J. Diff. Equations. 147 (1998),
pp. 383 - 409.

[5] C.M. DAFERMOS Asymptotic behavior of solutions of evolution equations , Nonlinear Evolution
Equations 103-123, Acad. Press, New York, 1978.

[6] A.HARAUX, Stabilization of trajectories for some weakly damped hyperbolic equations , J. Diff.
Equations. 59 (1985), pp. 145 - 154.

[7] F. JOCHMANN, A compactness result for vector fields with divergence and curl in LY(Q) in-
volving mized boundary conditions, Appl. Anal. 66 (1997), pp. 198-203.

(8] , The semistatic limit for Mazwell’s equations in an ecterior domain, Comm. Part. Diff.
Equations, 23 (1998), pp. 2035-2076.
[9] , Asymptotic behaviour of solutions to Mazwell’s Equations in exterior domains, Asympt.
Anal., 21, (1999), pp. 331-363.
[10] , Regularity of weak solutions to Mazwell’s Equations with mized boundary conditions,
Math. Meth. Appl. Sci. 22, (1999) , pp. 1255-1274 .
[11] , Asymptotic behaviour of solutions to a class of semilinear hyperbolic systems in arbi-

trary domains, J. Diff. Equations, 160, (2000), pp. 439-466.

[12] J. L. Jory, G. METIVIER AND J. RAUCH, Global solvability of the anharmonic oscillator model
from nonlinear optics, SIAM J. Math. Anal., 27, 4, (1996), pp. 905-913 .

[13] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,
Springer, New York 1983.



ANHARMONIC OSCILLATOR MODEL 29

[14] R. PICARD, An elementary proof for a compact embedding result in generalized electromagnetic
theory, Math. Z. 187 (1984), pp. 151 - 161.

[15] M. SLEMROD, Weak asymptotic decay via a relazed invariance principle for o wave equation
with nonlinear nonmonotone damping, Proc. Roy. Soc. Edinburgh 113 A, (1989), pp. 87-97

[16] C.WEBER A4 local compactness theorem for Mazwell’s equations, Math. Methods Appl. Sci. 2,
(1980), pp. 12-25.



