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1 Introduction

Although extensive literature on the numerical treatment of DAEs of index 1 has
been available for years ([8], [9], [3]), so far, the problem of the correct reflection of
qualitative solution properties by numerical approximations have been solved only
insufficiently.

For DAEs, it would be desirable to obtain results on the dynamic system behaviour,
which are analogous or similar to those available for autonomous regular ODEs (e.g.
[14]). If we assume linear homogeneous DAEs with constant coefficients

Ax'(t) 4+ Bz(t) =0

*This paper has been done during the stay at the Institute of Mathematics at the Humboldt-
University Berlin, supported by a grant from the “Secretaria de Estado de Universidades, Investi-
gacion y Desarrollo”




as test equations, the linear stability theory of regular ODEs can be formally applied
[8]. However, the problem with DAEs is that time-varying coefficients have a much
stronger impact than in case of regular ODEs. In comparison, the class of the well
understood linear constant coefficient DAEs is, within the framework of DAEs, not
nearly as important as the regular constant coefficient ODEs within the framework
of regular ODE-theory.

The simple academic example [10] makes this very obvious.

Example 1.1 The DAE

d—1 dt\ , y—1 ot B
( 0 O)x(t)+a<5_1 &_1)27(15)—0 (1.1)
has index 1 on IR for arbitrary parameters o # 0,0 # 1. Its solution is
1—4t

r1(t) = s (1), wo(t) = el Dy,

For § < o, the solution is exponentially stable, and one would expect the B-stable
implicit Euler method to reflect this behaviour well independently of the chosen step-
size. However, the implicit Euler method applied to (1.1) leads to

]_ — 5tn+1 ]. + 5h
Tin+1 = ﬁxznﬂa Toan+1 = mxzn-

For 0 = 0, i.e. in the constant coefficient case, all things are fine. But obviously,
if § # 0, the condition § < o does not imply |1 + dh| < |1 + oh| without stepsize
restrictions.

Observe that close to oh ~ —1 the numerical approximation explode while with the
true solution nothing happens.

Considering linear variable coefficient DAEs

A(t)a'(t) + B(t)a(t) = gt (1.2)
and nonlinear equations

A(t)x'(t) + b(x(t),t) =0,

one is confronted with the question about the precise meaning of the term A(¢)z'(¢)
and therefore how it should be discretized. In particular, we would like to know
the right function class where the solution should belong to. Clearly, for a constant
coefficient A(t) = A, we may interpret

Az'(t) == (Az(t)) = A(AT Az(t)) = AAT(Az(t)),

where AT denotes the Moore-Penrose inverse. Note that Im AAT™ =Tm A, Ker ATA =
Ker A.



However, the situation is more complicated if A(¢) varies with time. In [8], a pro-
jector function P(t) along the nullspace Ker A(t) (i.e. P(t)? = P(t), Ker P(t) =
Ker A(t)), e.g. P(t) = A(t)TA(t), is introduced and the meaning of A(t)a'(t) is
given by

A()2'(t) = A P@)' (1) = A {P(H)=(t))" — P'()=(t)} -
Hence (1.2) is reformulated as
A@)(P®)x(t) + (B(t) — A P'(8)x(t) = q(t) - (1.3)

Note that, if the nullspace Ker A(t) is constant, we may choose a constant P(t) = P,
such that

A@®)a'(t) = A@t) P2’ (t) = A(t)(Px(t))',

and the derivative P'(¢) in (1.3) disappears. In this case, the numerical integration
methods are known to work well as expected from the regular ODE view point [8].
Note that in our above example (1.1) the subspace Ker A(t) varies with ¢.

A further interpretation of the leading term in (1.2) is (e.g. [7])
A@)a'(1) = (A(t)z(t))" — A'(D)(1)
what leads to the reformulation of (1.2) as
(A®)=(0) + (B(t) — A'(t))(t) = q(t) . (1.4)

Example 1.2 Reformulating (1.1) into (1.4)

(050 s} o fo (0702 ) = (85 ) =0,

the implicit Euler method leads to

1-— 5tn+1 1
Tin+1 = ﬁm,nﬂ, Toany1 = mm,n-

Now we are lucky. For 6 — o < 0, without any stepsize restriction, the numerical
approzimation T, tends to zero as the true solution x(t,y1) does.

By means of a projector function R(t) onto Im A(¢) (i.e. R(t)? = R(t), Im A(t) =
Im R(t)), say R(t) = A(t)A(t)*, one may also use

A@)a'(t) = R()A(D)2'(t) = R(t) {(A@D)2(1) — A'(t)x(t)}
yielding

R(t)(A(t)x(t))" + (B(t) — R(H)A'()x(t) = (1) - (1.6)
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In [7], a particular well behaviour of numerical approximations for (1.4) is reported
for time invariant subspaces Im A(¢). In this case we may use a constant R(t) = R,
so that the formulations (1.6) and (1.4) are numerically equivalent, i.e. , they give
the same numerical solution. Recall that this is the case for the above example.
Observe that the leading terms in both reformulations (1.3) and (1.6) are given in
terms of two matrix functions, namely A(t), P(t) and R(t), A(t) respectively.

At this place, it should be mentioned that the adjoint equation to (1.2) resp. (1.3)
has the form ([2])

(A" (t)y(t)" = B (t)y(t) =0,

or more precisely

P(1)(A"(1)y(t)) — (B*(t) = P*(t) A (1))y(t) = 0.

Again, the leading term is given by two matrix functions.

It comes out that to formulate the leading term of a DAE properly we should consider
two matrix functions. None of them has to be necessarily a projector function but
both have to be well matched together in some sense. This concept is used in [1],
[11], where linear equations

A@)(D(0)=(1) + B(t)x(t) = q(t) (1.7)

and their adjoint equations are analyzed.

It is worth mentioning that in very early papers concerning the numerical integra-
tion of DAEs (e.g. [12]) leading terms as in (1.7) were considered. In particular,
different versions of linear multistep methods applied to nonlinear DAEs of index 1
are shown to be stable and convergent.

In the present paper we take off this approach. In Section 2 we formulate and
analyze the DAE

Az (®), ) (DB)2(1)) + b(x(),£) = 0 (1.8)

by means of an appropriate generalization of the decoupling technique proposed in
[8]. In particular, while in [8], due to different projectors, a variety of inherent reg-
ular ODEs had to be taken into account, now the inherent regular ODE is uniquely
determined by the problem data.

Runge-Kutta (RK) methods and Backward Differentiation Formulas (BDFs) are ap-
plied to general index-1 DAEs in Section 3. We provide stability inequalities and
show convergence in the case of a compact integration interval.

In Section 4 we deal with the question whether decoupling and discretization com-
mute. A positive answer has nice consequences for the qualitative behaviour of the
approximation on infinite intervals. This is why we call those DAEs numerically
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well formulated.

Finally, in Section 5 we give a further generalization when (D(¢)z(¢))" in the leading
term of (1.8) is replaced by a possible nonlinear version (d(z(t),t))’. Some conclu-
sions and forthcoming work are pointed out in Section 6.

2 DAEs with properly formulated leading term
and the decoupling in the index-1-case

Consider equations of the form
A(z(t),t)(Dz)'(t) + b(x(t), 1) =0 (2.1)

where A : Dy x Iy C IR™ x IR — L(IR™),b: Dy X Iy — IR™ are continuous with
continuous partial derivatives A’ 0/, and D(t) € L(IR™) depends continuously on
t €.

For brevity, instead of (2.1) we sometimes write

f((Dz)'(t), x(t),t) = 0 (2.2)

with f(y,x,t) := A(x,t)y + b(x, ).
A function z(.) : Z, — IR™ is said to be a solution of (2.1) in the interval Z, C Z,,
if it belongs to the function space

Ch(Z,, R™) = {x(.) € C(Z,, R™) : (Dz)(.) € C(ZT,, R™)}

and (2.1) is satisfied for all ¢ € Z,.
Obviously, with

My(t) :={x € Dy : b(z,t) € Im A(x,t)}, t € I,
we have for all solutions that
z(t) € My(t), teZ,.

If A(z,t) and D(t) remain everywhere nonsingular, then (2.1) simply represents a
regular ODE with respect to D(t)z(t), and My(t) = Dy ([5]). We are interested in
the more complicated case of DAEs characterized by everywhere singular matrices
A(x,t) and D(t).

Definition 2.1 The DAE (2.1) has a properly formulated leading term, if
Ker A(x,t) ® Im D(t) = R™ for all x € Dy, t € I, (2.3)

and if there is a R € CY(Zy, L(IR™)) such that
R(t)* = R(t), Im R(t) = Im D(t), Ker R(t) = Ker A(x,t), for all t € Ty, x € Dy.
The matriz functions A(z,t) and D(t) are said to be well matched.
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Observe that the conditions on R(t) imply that A(x,t)R(t) = A(x,t),
fy,x,t) = f(R(t)y,=,t) and R(t)D(t) = D(t).

Remark 2.1 In particular, if the leading term of (2.1) is properly formulated,
Ker A(x,t) is independent of x, and both Im D(t) and Ker A(x,t) have constant
dimension, say v and m — r. Furthermore, both subspaces are spanned by C' func-
tions.

Remark 2.2 Condition (2.3) is equivalent to the three relations
Im A(x,t)D(t) = Im A(x, t),
Ker A(x,t)D(t) = Ker D(t) ,
Ker A(xz,t) NIm D(t) = {0}, x € Dy, t € I,.

Remark 2.3 The (reformulated) DAEs (1.3) and (1.6) have properly formulated
leading terms. In general, in a properly formulated DAFE, the matrices defining the
leading term are well matched together, and the leading term shows precisely all
involved derivatives.

For the rest of the paper we introduce the following definitions and notations:
Ny(t) := Ker D(t),
Qo(t) is a projector onto Ny(t), Py(t) := I — Qo(t),
B(y,z,t) := by (z,1) + (Alz, 1)y);, ,
So(y, z,t) :={z € R™: B(y,z,t)z € Im A(z,t)},
Ay (y,x,t) := Az, t)D(t) + By, x, t)Qo(t).

Observe that by construction, it holds that B(y,z,t) = B(R(t)y, z,t).

If the DAE (2.1) has a properly formulated leading term, then for each xy € M(¢)
there is a unique yo € Im D(t) such that A(zo, t)yo+0b(xo,t) = 0. Then So(yo, zo, ) =
Ty Mo(t) holds true.

Further, we denote by D(t)~ the reflexive generalized inverse of D(t) that has the
additional properties

Dt)D(t)” =R(t),  D(t)"D(t) = Py(t).
Obviously, D(t)~ depends on how Py(t) is chosen. Observe that D(t)Py(t) = D(t)

and hence D(t)Qo(t) = 0. Observe too that Py(t)D(t)~ = D(t)~, and hence
Qo(t)D(t) = 0.

In the following, throughout this paper, we assume the DAE (2.1) to be properly
formulated in the sense that the matrices defining its leading term are well matched.
It should be stressed that this has nothing to do with the mathematical notion of
well-posedness of a problem. It only says that the derivatives involved in fact are
figured out in a proper way.

We begin with the definition of DAE tractable with index-1.
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Definition 2.2 DAE (2.1) is said to be tractable with index 1, if
No(t) N So(y, z,t) = {0}, €Dy, t€Ly,yc R". (2.4)

Remark 2.4 It would be enough to impose Nyo(t) N TyoMo(t) = {0} for all x €
Mo(t), that, due to the continuity of Ai(y, x,t) with respect to its arguments, implies
immediately No(t) N So(y,x,t) = {0} on a neighbourhood. One can interpret Dy to
represent this neighbourhood.

Remark 2.5 Using [8, Th. 13, p. 198], the relation (2.4) is equivalent to any of
the following conditions:

1. Ay(y,x,t) is nonsingular for all x € Dy, t € Iy, y € IR™.
2. No(t) & So(y,x,t) = R™ for all x € Dy, t € Iy, y € IR™.

The projector onto So(y,x,t) along No(t) is called the canonical projector in the
index 1 case and will be denoted by Py(y,x,t). An useful representation ([8]) is

P, =1—QuA['B.
For any vector z, we can write
r = Py(t)r + Qo(t)r = D(t)”" D(t)x + Qo(t)x .
In this way (2.2) can be expressed as
FR@)(D(t)=(t))', D(t) D(t)x + Qo(t)x,1) = 0. (2.5)

Denoting w(t) = D(t)~(D(t)z(t))" + Qo(t)z(t), as D(t)w(t) = R(t)(D(t)z())’,
Qo(t)w(t) = Qo(t)x(t), we rewrite (2.5) as

7 (D), D) D)D) + Qolty(t), 1) = 0.
In the following lemma we study the equation
F(D(t)w, D(t) " u + Qo(t)w,t) =0.
Lemma 2.1 Given ty € Iy, xy € My(to), yo € Im D(ty) such that

N(to) N S(yo, zo, t0) = {0}, f (o, 0,t0) =0,

we denote

Uy = D(to)l‘o Wy = D(to)_yo + Qo(tg)l‘o s
and define
F(w,u,t) = f(D(t)w, D(t) " u+ Qo(t)w, 1)
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for (w,u,t) € Nog C IR™ x IR™ x IR, where Ny is a neighbourhood of (wy, ug, to).
Then, there is a continuous function

w: B(ug, p) x T — R™, w(ug, ty) = wp
that satisfies

F(w(u,t),u,t) = u € B(ug,p), teT.

0,
It holds that w(u,t) = w(R(t)u,t). Furthermore w has a continuous partial deriva-
tive w!, satisfying

wy(u,1) = —(A7'B)(D(Hw(u, 1), D(t) u+ Qo(t)w(u,t), ) D(t)",

wh, (g, to) = —(AT'B) (o, Zo, to) D(to) ™ .
Proof. Since F(wy,ug,ty) =0, as
F,(wo, ug, to) = A(zo,t0)D(to) + B(yo, To, to)Qo(to) = A1 (Yo, To, to) ,

the assertion results from the Implicit Function Theorem.

By Lemma 2.1, the relations
f(D(t)w, D(t)"u+ Qo(t)w,t) = 0 and w = w(u,t)

are locally equivalent around points z:g € My (tp). Given a solution z(.) € C|,(Z, IR™)
of the index-1 tractable DAE (2.1), we may apply Lemma 2.1 at each z(t) €
My(t),t € Z. By uniqueness and continuity arguments we find the function w
to be given around {(u(t),t):t € I}, where

u(t) == D(t)z(t),  w(t) := D) (D()z(t))" + Qo(t)z(1).

By this way, the following representation of the solution results:

z(t) = D™ (H)u(t) + Qo(t)w(u(t), 1), (2.6)
where u(.) € C! satisfies the equation

R(t)u'(t) = D(t)w(u(t), ). (2.7)
Since R(.) € C! we may rewrite (2.7) into

u'(t) — R'(t)u(t) = D(t)w(u(t), ). (2.8)

The solution representation (2.6), (2.8) gives a nice insight in the DAE structure.
We will refer to (2.8) as the inherent regular ODE. Recall that the flow is governed
mainly by the inherent regular ODE.

Obviously, in the context of Lemma 2.1, we may consider the regular ODE (2.8)
without assuming the existence of a DAE solution.
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Theorem 2.2 Let all assumptions and the function w : B(ug,p) X T — IR™ of
Lemma 2.1 be given.

(i) Then, the time varying subspace Im D(t) = Im R(t),t € Z, is an invariant
subspace of the inherent reqular ODE (2.8) of the DAE (2.1).
That is, if a solution starts in u(ty) € Im D(ty) for some ty € Z, it holds that
u(t) € Im D(t) for all t, where the solution exists.

(i1) If Im D(t) does not vary with t, the inherent reqular ODE simplifies on the
invariant subspace Im D(ty) to

u'(t) = D(t)w(u(t),t), u(ty) € Im D(t).

(1ii) The inherent reqular ODE (2.8) is uniquely determined by the data of the DAE.
In particular, (2.8) is independent of the choice of the projector Py(t).

Proof.

(i) Inserting any solution u(-) € C'! in (2.8) we multiply the resulting identity by
(I — R(t)), what leads to

(I = R(t))u'(t) — (I = R(t)) R (t)u(t) = 0,
o, with v(t) := (I — R())u(t),
V() = —R(Hut) + (T — RE)R (t)u(t)
— —R(t)u(t) + R'()R(t)u(t)
= —R(t)(t).

Hence, v(t) vanishes identically if v(ty) = 0.

(ii) Denoting by R € L(IR™) a constant projector onto the constant subspace
Im D(t) we have R = R(t)R, R(t) = RR(t) and

R (t)R(t) = R(t)RR(t) = (R(t)R)'R(t) = R'R(t) = 0.

Therefore, due to u(t) = R(t)u(t), the term R'(t)u(t) in (2.8) disappears.

(iii) We consider two projectors P,, Py along Ny, and the Corresponding pseugloin—
verses D(t)~, D(t)~. We apply Lemma 2.1 using Py, D(t)~ and Py(t), D(t)~



respectively.
The relation w = w(u, t) is locally equivalent with

0 = fDB)w, D) u+ Qo(H)w,?)

= f(D(t)w, B(){D(t) u+ Qo(t)w} + Qo(t){D(t) u+ Qo(t)w}, t).

Since

Py(){D(t)"u + Qo(t)w} = Py(1)D(t) u = D(t)u,
this means

w=wu,t) & 0= f(DE)w, D) u+Qo(t)/{D(t) u+ Qo(t)w},t)
& = By(t)w + Qo(t){D(t) u+ Qo(t)w} = w(u,t).

Hence D(t)id = D(t)w = D(t)i(u, ) and thus

D(t)w(u,t) = D()is(u,t).

]

We recall that for properly formulated DAEs, the inherent regular ODE is uniquely
determined by the problem data whereas in [8], due to different projectors, a variety
of inherent regular ODE had to be taken into account

Remark 2.6 In particular, the matrices DAT' and —DA{IBD_V: Duw! do not
depend on the choice of By. Namely, wit}VL the two projectors Py, Py along Ny, we
have Ay = AD + BQqy and Ay = AD + BQo. We compute

Ay = AD + BQoQo = Ay(Py + Qo)
and hence
AT = (Pt Qo) AT = (Bo + Qo)A
obtaining DAT' = DAT'. Compute further
DA'BD~ = DA'BD DD =DA;'BD DD = DA'BP,D~
DAT'BD™ = DA;'BD~.

We close this section with a solvability statement that follows the lines of [8].
We denote by |||.]||cc the maximum norm on a compact interval Z.

10



Theorem 2.3 Let the DAFE (2.1) be tractable with index 1.
(i) Through each xy € My(to) passes exactly one solution of (2.1).

(ii) Given a solution z, € CH(Z,IR™) of (2.1), T compact, ty € I, then all per-
turbed I'VPs

F((D2)' (1), x(t),t) = q(t), Dl(to)(x(ty) — 2°) =0, (2.9)

2 € R™, q € C(Z,IR™), are uniquely solvable on CL(Z,IR™), supposed the
perturbations || D(to)(z° — z.(to))|| and ||| ¢|||s are sufficiently small.

(iii) For the solution x(.) of (2.9) it holds that

Il = 2 llo < K{IID(t0)(x(to) — z(to))[| + [l ¢ [[[o} -

Proof.

(i) Using Lemma 2.1 we construct the inherent regular ODE (2.8). Then we solve
the IVP for (2.8) with u(ty) = D(tp)xo and define the continuous function

() = D(t) " u(t) + Qo(H)w(u(t),t), x(ty) = wo.

Obviously, D(t)z(t) = D(t)D(t) u(t) = R(t)u(t) = u(t) is continuously dif-
ferentiable, thus z(.) € C},. From the ODE (2.8) we have

Therefore

(ii) Denote u.(t) := D(t)x.(t), t € Z. By means of Lemma 2.4 below we provide
a function w(u,t, p) which is defined for

ueU,:= ) B(ult),p), teZ, pe B(0,71)
tez

for certain p > 0,7 > 0, such that

f(D(t)w, D(t) u+ Qo(t)w,t) —p=0.
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(iii)

We consider ¢(.) € C(Z,R™), satisfying ||| ¢|||lc < 7, and z° € IR™, such
that ||D(to) (2" — x.(to))|| < p; thus if we denote u® := D(ty)z?, it holds that
|u® — u.(to)|] < p. We solve the TVP

u'(t) = R (Hu(t) = D(H)w(u(t),t,q(1)), ulto) = u’.
Again, u(t) = R(t)u(t) holds true, and

z(t) == D(t)"u(t) + Qo(t)w(u(?),t, q(t))
is the wanted solution.

From

u'(t) —ui(t) = ( (u(t) = u.(t))

)
D(t) {w(u(t), t,q(t)) — w(u.(t),t,0)} ,  teTL,
ulto) = ua(to) = ( 0)(2(to) — . (to))

we derive
u'(t) —ui(t) = R(t) (u(t) —u(t))
+D(t) /01 Wy, (su(t) + (1 = s)u(t), t, sq(t)) ds (u(t) — u.(t))

+D(t) /01 () ds qlt).

Since T is compact, we may obtain uniform bounds for D! = —DA;'BD, R’
and Dw,, = DA, In consequence,

[ (#) = w (O < L [lu(t) — ue ()] + Lalla@)]],

what leads to

[u(t) = w ()] < L ([[D(to) ((to) — 2. (to) | + [l [l]oc) -

Finally, in
w(t) —z.(t) = D) (u(t) — u.(t))
Qo (1) [ @l sut) + (1 = s)ua(0), . sa(0) ds (u(t) — (1)

+Qo(t) /01 w;(. ) ds q(t)

we may use bounds for D™, Qow!, = —QoA7'BD~ and Qow,, = QoAT"
obtain the desired inequality. O
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As a simple consequence of the Implicit Function Theorem, analogously to Lemma
2.1, the following assertion results.

Lemma 2.4 Let ty € Z, 9 € M(ty), yo € Im D(to) such that
N(to) N S(yo, xo, to) = {0}, f (o, 0,t0) = 0.
We denote
ug = D(to)zo wo = D(to) yo + Q(to) o ,

and

F(w,u,t,p) = f(D({t)w, D(t) u+ Qo(t)w,t) — p

with (w,u,t,p) € R™ x IR™ x IR x IR™ in a neighbourhood of (wy, ug, o, 0).
Then the equation F(w,u,t,p) = 0 determines implicitly the function w = @(u,t,p)
and

w(“’ t’ p) = ,L’[](R(t)u7 t7p) Y
W, = —A'BD-,
w(u,t,0) = w(u,t)

with w(u,t) the function from Lemma 2.1

3 Numerical integration

Once we have analyzed initial values problems for (2.2), in this section we study its
numerical solution with Runge-Kutta methods and BDFs. Recall that for index-1
properly formulated DAEs, the leading term shows all the involved derivatives. For
that reason, when we use an standard ODE method to solve the DAE (2.2), we can
ensure that it is used only for the part of the solution which is derived and therefore
we can expect good numerical results.

3.1 Numerical integration by Runge-Kutta methods

We consider an s-stages Runge-Kutta method with coefficients (b*, A). We assume
that the matrix A is regular and the method is stiffly accurate, i.e. , ay = b;,
i=1,...,s. We denote t,; = t,_1 + ¢;h, and o;; = (A™");;. As usual we assume
that Al = ¢ and thus ¢; = 1. Given an approximation z,,_; of the solution of (2.2)at
tn_1, the new approximation xz, at t, =1t,_1 + h is given by

Tn = an
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where the internal stages X,;, i = 1,..., s are obtained solving the system

nz’

with the internal derivatives defined by

(DX, = Za” — Dy 1%n_1), i=1,...,5.

Observe that (3.1) is the numerical solution obtained when the equivalent problem

z—D(t)x = 0, (3.2)
f((R2),x,t) =
is solved with this RK method.

If we apply the decoupling process to (3.1), we obtain

RpilUly; = Duiw(Uni, ti), '
QO,nani = QO mw( ni»> tn ) 1=1,...,s, (35)

where Unz = Dme, Up—1 = Dn—ll‘n—l and
y _ 1< ,
U]nizﬁzaij(Unj_un—l), Z:].,...,S.
i=1

Thus the numerical solution can be decoupled into
Ty = D;Uns + QO,ans

where U, is the last internal stage in (3.4) and Qo , X, is given by (3.5).

Remark 3.1 Observe that given x,_1, we only advance with D,_1x,_1, and thus
the errors in the nullspace of D are not propagated.

Remark 3.2 For non stiffly accurate RK methods, once we have computed the in-
ternal stages X,,;, we can define the numerical approxrimation at t, as

Ty = PTp_1 + (btA_l ® Im)Xn

where X, = (Xu1, ..., Xns) and p=1—b"A""1. But in this case, in general, Qo nTy
does not satisfy equation (3.5), i.e. x, may not belong to My(t,).
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In order to obtain a convergence result, we proceed like in the standard theory of
numerical method for ODEs studying first the stability of the scheme. For this
reason we consider the perturbed schemes

F(IDX1.;, Xniy tni) = Oni) 1=1,...,s, (3.6)
where
(DX, = Za” — Dy 1%p_1), i=1,...,s,
and
fUDX)s Xnis tni) = 0iy, i =1,...,5, (3.7)
where

X];n:%zal] (Dannj_anljnfl); izl,...,S.
j=1

The decoupling process for (3.6) and (3.7) gives

Rm[U];n — mw( niy ma ) (38)
QO,nani = QO niW ( matnia&ni)a 1= 17 e S,

and
QoniXni = Qoni®(Uniytni, Oni) 1=1,...,s,

respectively, where w(u,t,p) is determined by Lemma 2.4. Recall that w(u,t,0) =
w(u,t) with w(u,t) the function obtained from Lemma 2.1.

An stable scheme is defined as follows.

Definition 3.1 The Runge-Kutta method (3.1) is said to be stable if, for all suffi-
ciently small perturbations |0p;| < T, |0ni| < 7, it holds that

|z — 2| < K <||D0x0 Doo|| + max {lngax 166 — 5&||}> n>1,
where K does not depend on the stepsizes used.

Theorem 3.1 Let z, € Cp([to, T],IR™) be a solution of the index-1 tractable DAE
(2.2). Let w from Lemma 2.4 be given on U X [ty, T] x B(0,7), where U C IR™ is a
sufficiently large neighbourhood of the set {D(t)x,(t) : t € [ty, T]|}. Let DAT'BD™,
AT' and P, be bounded. Then, the RK scheme applied to (2.2), with t, < T, is
stable.
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Proof. We denote E,; = Uy; — Uy, €41 = Up_1 — Uy_1. Thus subtracting (3.8)
from (3.9), we obtain

=2

RyiEy; = Dy (?D(Um', tni,
where

E;’i:%zszlaij(E”j_e"I)’ i=1,...,s.

=

Observe that

RuiEpi = By + 3 Ofij%(Rm' — Ruj)Enj + 32831 Oéij%(an — Ry 1)én1-
Thus denoting
Wi = /01 W (TUp; + (1 — 7)Ups, tnis Ons) dT,

Tni = D {?D(Um', tis Oni) — W(Unis tis 5m)} )

Gni = — ]Z; aij%(Rni - an)Enj - ]z; O‘z’j%(an - Rn—1)€n—1,
we can write (3.10) as

Bl = DpiWoiBni + Toi + ¢piy  i=1...,5. (3.11)

With the notation E!, = (E E!.), and in a similar way E,, 7, and ¢,, and

nly) 7" ~ns

D, = diag (gn1,- - -, gns), we rewrite (3.11) as
E, =DpywEn+ T+ bn s
and using that
hE, = (A" Q1) (B, —1®e€, 1) ,
we obtain
(A1) —hDpy)En= (A" @) (1® ey_y) + h7y + hopy, .

Now there exists an h, such that for h < h,, the matrix (I — h(A ® I)Dpy) is
nonsingular and

(I =h(A® DDpyi) | < 1+hCy
for some constant C independent of the stepsize. Consequently
E, = (A'®1)—hDpy)  {(A' @ (1@ en_1) + hry + oy}
= (I-hARD)Dpy) ' {(1®e,) + MAR )T +h(AR )¢y} ,
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and hence
[Enll < (14 hC)|len1]l + hCal7all + hCalldnll - (3.12)
As R(t) € C*', we have
16l < L (1Zll + llen-1ll)
and thus for h < 1/(CyL), (3.12) gives
[Enll < (14 hCs)llen—1 ]| + hCal|mall,
and using that e, = E, s, we obtain
lenll < (1 + hC3)llen—1ll + hCollmal -
At this point we simply have to observe that
170ill < K118ni — bl
to get
leall < (1 +hCs) el + hCoK]|8ni — buil| -

Now the standard recursion procedure gives the required stability bound for e,,,

lenll < K. (Jleoll + max { max 16 — 3all})

1<i<

Finally, since

Tn =T = Dyen+ Qo (W(tn, tn,0ns) — (in, tn, Ons))
= D, e, + Qo {/01 W (sty 4+ (1 — 8)tn, tn, $0ps + (1 — 8)dns) ds} en
+Qua{ [ a6 ds} (o= )
= [ QuaAT (- )BE ) ds Dyent [ Quad! () ds (s — 50
we may estimate
20 = Zll < Klleall + Ksl|6ns — sl

and obtain the required inequality.
|

From this stability result, now we can obtain the order of convergence for the RK
method.

17



Theorem 3.2 If the RK method satisfies the condition C(q) and the solution x(-)
of (2.2) satisfies D(-)x(-) € CT, then the method is convergent of order q.

Proof. We consider the solution z,(t) in the perturbed scheme

f([D‘T* ;7,1,7 (tnl)atnl) :Snia 1= ]-7---73

with
D«T* — ZOQJ n]x* ) anlx*(tnfl))a

and the unperturbed scheme (3.1) for the numerical solution.
Due to stability,

| — 2(t,)]| < K (||DO:E0 Do (fo)|| + max max ||5&||> (3.13)

i<n 1<i<s

As
Oni = A(-'L.* (tni)a tm)[D‘T*]Inz - b(IL’* (tni)’ tnz’)

= A(:C*(tm');tni) {[Dx*];; - (D«T*),(tn)}a

the C(g) condition implies that d,; = Q(h?), and from (3.13) we obtain the desired
result.

|

3.2 Numerical integration by BDF's

We consider now the numerical solution of properly formulated DAEs with £ step
variable coefficients BDFs, with & < 6. We proceed in a similar way to the study of
Runge-Kutta methods in the previous subsection.

For BDFs, given an approximation z,_; of the solution of (2.2) at t,_;, the new
approximation x, at t, =1t, 1 + h, is obtained via

f([Dz],, xp,tn) =0 (3.14)
where [Dz]! is defined by

- h 4 n jtn—j -

Observe that like for RK methods, (3.14) is the numerical solution obtained when
the equivalent problem (3.2), (3.3) is solved with the BDF method.

18



We apply the decoupling process to (3.14) to obtain
R,[ul, = Dyw(u,,t,)

n
QO,nl‘n = QO,nw(unatn) )
where u,, = D,,x, and
Z Qpjthp—j -
n §=0

Thus the numerical solution can be written as

Tn = D;un + QO,nmn € MO(tn)a

where u,, is obtained from in (3.15) and Qo ,, is given by (3.16). For BDFs, Re-

mark 3.1 is also valid.

Again, to obtain a convergence result we proceed like in the standard theory of
numerical methods for ODEs and firstly we study the stability of the scheme. That

is why we consider the perturbed schemes

f([Dx],, 2, tn) = 0n

where
[Dx];, = Zana n—jTn—j
nj 0
and
f([Dz];,, &, tn) = by
where
[Dz], = Zang n—jTn—j -
nj 0

The decoupling process for (3.17) and (3.18) gives
Rn[u]l = an(unatnaén)

n

QO,nxn — QO,n’JJ(Um tn; 577,) )

and
Rn[ﬂ];; = an(ﬂna ln, gn)
QU,n«Tn - QO,nw(an; tn; 577,) .
respectively.

An stable scheme is defined as follows.
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Definition 3.2 The BDF method (3.14) is called stable if for all perturbations
10n]] < 7, ||0n]| < 7, T sufficiently small, it holds that

— Tl < — D7 —6all) -
o = all < K (e 1D = Dyl + mae 15, — 5]
Recall that in the regular ODE case there are restrictions to choose the stepsize for
the variable coefficient BDF. Thus we only consider grids tg < t; < --- < t,,t, <T,
such that there is a IRF-norm || - ||, with ||F,|l. < 1 for n > k and all grids, where

— O, —0lp,
1 ~
~7:n - .. ) Qpj = ani/ano .
1 0
Observe that in the constant stepsize case, F, = F is constant and || - ||, exists due

to Dahlquist’s root criterion for £ < 6.

Theorem 3.3 Let the assumptions of Theorem 3.1 be given. Then the BDF applied
to (2.2) is stable on grids with | F,|l. < 1.

Proof. Subtracting (3.19) from (3.20) and denoting e,y = 4,1 — u,—1 We obtain
Ry, = Dy, (1(iin, tn, 0n) — (tin, tn, 6,)) (3.21)

where

L
, P — . .
e, = . E QpjCn_j -

n j—Q

Observe that

k

1

Ruel =el + Zanj—(
= I

Rn - Rn_j)en_]‘ .
Thus denoting &y = a,;/an and
1
W, = / B (T + (1 = TV, by G) dT
0
Tn — Dn {ﬁ)(anatnagn) _w(ﬂnatnaén)} Y
b 1
¢n = Z an]h_(Rn - Rnfj)enfj;
i=1 n

we can write (3.21) as

k
- hn ~ hy,
€n = — Z OnjCn—j + Danen + —T7 — hn¢n . (322)
j=1 Qno Qin
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Now there exists an h, such that for h, < h,, the matrix (I — ;’—%Dan) is nonsin-

gular and
—1
([ — ﬂD,ﬁ@)
Qno

for some constant independent of the stepsize. Denoting H, := (I — ;’—%Dan),
equation (3.22) can be written as

<1+hC.

h

k
en=H ! (— > anjenj+ —Tn — hnqbn) : (3.23)
7=1

no

With the notation
E,=(en,- - €n_ti1), T, = (H, ', 0,...,0),
- k
\Ijn = (DanHn_l Z anjen_j, 0, Ceey 0) y (I) = (O[noH ld)n, yeeey 0) s
j=1

we rewrite (3.23) as

hn, hn, hn,
Ey=(Fo®@DEy_y +—T, — 20, — —,.
Qnp Qno Qnp

Hence taking into consideration that there is a norm such that ||F,||. <1 for all n,
we have,

| Enll« < [ En1lls + han||Tolls + hay || W, + @]«

where a, = 1/]ang|. Now, as [|T,||, < k||6, — 0,]| and ||®, + @,|l. < L||Ep-1]|,
using the standard recursion procedure we obtain the required stability bound for
é,. Proceeding with z, — 7, like in the RK case, we obtain the stability bound.

|

Theorem 3.4 We consider the k-step BDF. If the solution x.(-) of (2.2) satisfies
D()x.(-) € C* and Dyxy — Doz, (t;) = O(h*),0=0,... k —1, then the method is
convergent with order k.

Proof. We consider the solution z,(t) in the perturbed scheme

F(ID.), wu(tn) tn) = O,
with

1 k
Dl‘* _h_z n]l‘*
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and the unperturbed scheme (3.14) for the numerical solution.
Due to stability,

I = @ (ta)l] < K ( max | 1Dewe = Dy (t)]| + max 15, (321)
As
On = A(wa(tn), ta) D] — b(2u(tn), tn)

= A(x*(tn),tn){[Dx*];L - (Dx*),(tn)}a

the consistency with order k of the BDF implies 6,, = O(h*). From (3.24) we obtain
the desired result.

|

As expected, the standard integration methods work well on compact intervals.
Choosing sufficiently fine grids we obtain sufficiently close approximation. This
applies also to the special DAE (1.2) in both its well formulated versions (1.3) and
(1.6).

In the following section we deal with the qualitative behaviour of the numerical
approximations on infinite intervals. In particular, we would like to point out the
difference of (1.2) and (1.6) for example (1.1).

4  Numerically well formulated DAEs

As we have seen in Section 2, for the properly formulated index-1 DAE (2.1), the
inherent regular ODE is

(Dz) = R'Dx + w(Dux, 1)

and has Im D(t) as invariant subspace. Let’s see the consequences of the condition
Im D(t) to be constant on the inherent regular ODE.

Lemma 4.1 For the index 1 case, if Im D(t) is constant, then the solution compo-
nent Dx satisfies

(Dz)" = w(Duz,t). (4.1)

Proof. For the index 1 case, in the inherent regular ODE we have the terms
R'(t)D(t)z(t), with Im R(¢) = Im D(t). Thus if Im D(t) is constant, then we can
find a constant projector V such that ImV = Im D(¢). As R(t) is a projector and
ImV = Im R(t), we have R(¢)V = V and hence also R'(t)V = 0. On the other

22



hand, as V' is a projector and ImV = Im D(t), we have VD(t) = D(t) and thus
(I —V)D(t) = 0.Therefore

R'(t)D(t) = R'(t)VD(t) + R'(t)(I = V)D(t) = 0.
O

The condition Im D(t) to be constant also has nice consequences for the numerical
solution.

Theorem 4.2 We consider the numerical solution of an index-1 DAE with an stiffly
accurate RK method or a BDF method. Assume that Im D(t) is constant. Then the
numerical solution can be decoupled into

Ty = D;Dnmn + QO,nmn
where

1. D,x, s the numerical solution with the RK method or the BDF applied to the
regular ODE (4.1).

2. QO,nxn - QU,nw(xna tn)

Proof. First, observe that from the definition of [DX]], for RK methods or [Dz]!,
for BDF, for any constant matrix M we have

M[DX],, = [MDX]’ M[Dz], = [MDz], .

Applying to the RK method (3.1) a similar decoupling process to the one used to
obtain the inherent regular ODE, we obtained (3.4)-(3.5). As Im D(¢) is constant,
there exists a constant projector V such that Im D(¢) = Im V. For such a projector
we have R(t)V =V, VD(t) = D(t), (I —V)D(t) = 0. Therefore

Rni[ DXT,; = RuiVIDX],; + Roi(1 = V)[DXT,; = VIDXT,, = [DX];
It means that we are solving the inherent regular ODE (4.1) with the RK method.

In a similar way, for the BDF (3.14), the decoupling process gives (3.15)-(3.16). Pro-
ceeding in a similar way as it is done for RK methods we obtain R,,[Dzx|, = [Dz]),
which implies that we are also integrating the inherent regular ODE (4.1) with the
BDF method. =

Hence if the inherent regular ODE is contractive for a certain norm, then the ap-
proximations D, z,, given by an algebraically stable RK method behave also con-
tractively for that norm.

The fact that Im D(¢) constant implies that we are actually integrating numerically

the inherent regular ODE on the right subspace, allow us to give the following
definition.
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Definition 4.1 We will say that index-1 DAEs with constant Im D(t) are numer-
ically well formulated.

With other words, numerically well formulated DAEs are those, where the discretiza-
tion and the decoupling commute.

As we could realize in Example 1.1, if the DAE is not numerically well formulated,
for algebraically stable RK methods we may have strong restrictions on the stepsize
h in order to reflect the asymptotical behavior of the solution.

With the concept of numerically well formulated DAEs, we can explain within the
same framework the known conditions that ensure a good qualitative behaviour for
the numerical solution, namely, the subspace Ker A(z,t) to be constant, the sub-
space S(t) to be constant, and the formulation (1.4) with constant subspace Im A(t).

Constant subspace KerA(x,t). Recall from [8] that, if Ker A(x,t) is constant
the equation

Az, t)x" 4+ b(x,t) =0 (4.2)
should be rewritten as
Az, t)(Pz) + b(x,t) =0 (4.3)

using a constant projector P along Ker A(x,t). Here we have D := P, R := P, thus
a numerically well formulated DAE results, just with constant R. This confirms the
positive results in [8] on contractivity, etc. In particular we have:

Proposition 4.3 Given the indez-1 DAE (4.2) and its numerical solution with an
stiffly accurate RK method or a BDF. If Ker A(x,t) is constant, then (4.2) is nu-
merically equivalent to the numerically well formulated DAE (4.3).

Constant subspace S(t). We consider the index-1 homogeneous equation (1.2),
Le.

A(t)z'(t) + B(t)z(t) = 0. (4.4)

As for any smooth projector P(t) along Ker A(t) it holds that PP'P = 0 and for the
homogeneous problem we have z(t) = Ps(t)x(t), with Ps(¢) the canonical projector,
we obtain that if Ps(¢) is differentiable, (4.4) is equivalent to the equation

A(t)(Ps(t)x(t)) + B(t)x(t) =0, (4.5)

which has a properly formulated leading term. It turns out that problems (4.4) and
(4.5) are also numerically equivalent when they are solved with stiffly accurate RK
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method or BDFs. To see this observe that the numerical solution of (4.4) with a
stiffly accurate RK method satisfies X,,; = P; ,;X,,; and thus, instead of

AniXp; + BpiXni =0, 1=1,...,s,
with

s
Xni:xnfl"i_hzainl izl,...,S,

nj
Jj=1

we can write equivalently
Anl[PSX];zz+anPs,annz:0, 1=1,...,s,
with
S
! .
Ps,nani = Fsn-1Tp-1 +h2a2][PsX]n], 1 = 1,...,8,
j=1

that means that we are actually integrating (4.5). Similar reasoning gives the result
for BDFs.

Now, if Im Ps(t) = S(t) is constant, then the DAE (4.4) is numerically well formu-
lated. We summarize the above lines in the next Proposition.

Proposition 4.4 Given the linear, homogeneous index-1 DAE (4.4) and its numer-
ical solution with an stiffly accurate RK method or a BDF. If S(t) is constant, then
(4.4) is numerically equivalent to the numerically well formulated DAE (4.5).

As the following example shows, if Im P;(¢) = S(¢) is not constant, then we may
have restrictions on the stepsize h in fact.

Example 4.1 Recall once more example (1.1). For this problem
ot —1 ot
S(t)—{$-$1—1_6$2} KerA(t)—{x.xl_l_éxg}.

And thus Im Py(t) is not constant. Remember that in this case for the implicit Euler
method we have strong stepsize restriction.

On the other hand, as the following example stresses, the fact that Im Py(¢) is not
constant does not necessarily imply stepsize restrictions.
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Example 4.2 We consider the DAE
0 at\ —t at@y4—t)> B _
(0 1>x+<1 ol — 1) =0 z2(0) =1
which has index 1 for 1 —at # 0 and whose solution is
z1(t) = atxsy(t), To(t) = e gy

In this case S(t) = {x € R? : z; = atxy }, varies with time, and thus apparently
(4.5) is not numerically well formulated. Nevertheless, the numerical solution with
the implicit Fuler method is

1
=——2=x
1+ ah
What happens in this case is that Ker A(t) = {x € IR* : x5 = 0} is constant and the

problem is numerically equivalent to

A(t)(Pz) + B(t)z =0

Tip = Qly Top, Top 1n—1-

with P a constant projector along Ker A(t), which is numerically well formulated
(cf, Proposition 4.3).

Formulation (1.4) with constant subspace ImA(t). Modified BDF methods
and modified RK method to integrate linear variable coefficients DAEs have been
proposed in [4], [6] respectively. Both approaches are based on the numerical inte-
gration of the DAE (1.4), i.e.

(A(t)z) + (B(t) — A'(t))z =0. (4.6)
This DAE is not properly formulated but the equivalent DAE
Ri(t)(A(t)x) — Ra(t)A(t)z(t) + B(t)z(t) = 0 (4.7)

where R4(t) is a projector onto Im A(¢), has well matched coefficients R4 and A.

In [6], [7] contractivity conditions for the A(t)x () part of the solution were studied.
It was proved that for stiffly accurate algebraically stable RK methods, , provided
that Im A(t) is constant, the A(t,41)2,41 part of the numerical solution for (4.6) is
also contractive.

We can now give an explanation of this fact.

Proposition 4.5 Given the indez-1 DAE (4.6) and its numerical solution with an
stiffly accurate RK method or a BDF. If Im A(t) is constant, and R4 denotes a con-
stant projector onto Im A(t), then (4.6) is numerically equivalent to the numerically
well formulated DAE

Ra(A(D)z) — RaA®) x(t) + B(t)z(t) = 0 . (4.8)
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The example (1.1) has Im A(t) constant thus the DAE formulated as (4.8) is numeri-
cally well formulated. The inherent regular ODE constructed with Ax is contractive
for 6 — p > 0 and thus the Az part of the numerical solution also has this contrac-
tivity behavior for any stepsize. When this equation was integrated in [6], [7] as
(4.6), we were actually integrating the numerically well formulated DAE (4.8).

5 The general index-1 case

Sometimes more general descriptions as (2.1) arise, namely
Az (), 1) (d(x(t), 1)) + b(z(1), 1) = 0, (5.1)
where d : Dy x Ty — IR™ is an additional continuous function, that has a continuous

partial derivative d,(z,t) =: D(z,1).

Definition 5.1 FEquation (5.1) has a properly formulated leading term if
Ker A(z,t) ® Im D(z,t) = R™ for all x € Dy, t € Ty,

and there is a projector function R € CY(Zy, L(IR™)) such that R(t)* = R(t),
Ker A(z,t) = KerR(t), Im D(z,t) = ImR(t) and d(z,t) = R(t)d(z,t) for all
x € Dg,t € IU-

In particular, Ker A(z,t) and Im D(z,t) do not depend on z , i.e. one should try
arrange things in such a way. Note that, if at the beginning only one of these sub-
spaces is independent of x, we may have both of them independent of x in a new
version by simply rearrangements.

If (5.1) has a properly formulated leading term, the enlarged system
y(t) —d(z(t),t) = 0 '

represents a properly formulated DAE of type (2.1).

If z, € C with d(z.(.),.) € C' solves the original DAE (5.1), then the pair (z.,.) €
C, y.(.) == d(x.(-),"), R()y.(-) = y.(-) € C" satisfies (5.2) and vice versa. In this
sense are (5.1) and (5.2) equivalent.

Definition 5.2 The DAE (5.1) with properly formulated leading term is said to be
tractable with index 1, iof

Ker A(z,t) N So(y,x,t) = {0} forx e Dy,t €Iy, ye R™ .

Theorem 5.1 The DAE (5.1) and its enlarged system (5.2) are index 1 tractable
at the same time.
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Proof. We put (5.2) in the form A(z,t)(Dz)' +b(i,t) = 0,4 = ( z ) and compute

22

Ng(t) ﬂgo(gj,i,t) = {( s ) e R™" x IR™: 21 = D(IL’,t)ZQ,
29 € No(z,t) N Sg(y,x,t)} .

|

Remark 5.1 Via Theorem 2.3, solvability statements are given for (5.2), hence
also for (5.1).

In Section 3 we have mentioned the equivalence of the RK methods and BDF ap-
plied to (2.1) and its enlarged system (3.2), (3.3). The same holds true for (5.1)
and (5.2). Therefore, the above assertions about stability and convergence of RK
methods and BDFs can be used to obtain stability and convergence results for these
methods when they are applied to (5.1). In the consequence, (5.2) and so also (5.1)
are numerically well formulated supposed Im R(t) = Im D(z,t) does not vary
at all.

One could think writing (5.1) better as
A(x(t), t)d. (z(t), t)x" (t) + b(x(t),t) + A(x(¢), t)d,(x(t),t) =0 . (5.3)

However, for singular A(x,t)d,(x,t) there is again the problem on the precise mean-
ing of the leading term. In this sense applying numerical integration methods to the
DAE (5.3) is not only (sometimes much) more expensive but also mathematically
somewhat wrong, except for the case of a constant nullspace Ker (A(zx,t)d. (z,t)).

6 Conclusions

When modeling complex processes by means of DAEs, at the beginning, one should
carefully investigate the leading term and propose properly formulated problems.
From the numerical point of view, working with well formulated problems means in
some sense that the ODE method is used to discretize only the differential compo-
nents. The discussion of numerical integration methods has made clear that the case
of a time invariant Im D(¢), i.e. numerically well formulated problems, is essentially
favourable. If it is possible, one should use a numerically well formulated version.
On a different place we will discuss how to realize this property when modeling
problems.
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Let us conclude this paper mentioning that there is some hope to handle also higher
index DAEs better.
The famous index-2 example treated in [13]

0 0 ' L nt _( 9()
(1 nt>x+<0 1+n>x_< 0 ) n7 =L

is known to bring e.g. the implicit Euler method in big trouble. However, applying
the same method to a numerically well formulated version, i.e. (1.6) , it works fine.
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