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Abstract

In this paper we propose a global optimality criterion for globally minimizing a quadratic form
over the standard simplex� which in addition provides a sharp lower bound for the optimal value�
The approach is based on the solution of a semide�nite program �SDP� and a convex quadratic
program �QP�� Since there exist fast �polynomial time� algorithms for solving SDP�s and QP�s the
computational time for checking the global optimality criterion and for computing the lower bound
is reasonable� Numerical experiments on random test examples up to �� variables indicate that the
optimality criterion veri�es a global solution in almost all instances�

Keywords� global optimality criterion� nonconvex quadratic programming� semide�nite programming

AMS subject classi�cation� 	�C
�� 	�C��� 	�C��� ��K��

� Introduction

We consider the global quadratic optimization problem over the standard simplex �

global minimize f�x� �� xTFx ���

subject to x � �n

where the admissible set is the n�dimensional standard simplex

�n �� fx � IRn�� � xi � �� � � i � n� �� eTx � �g�

F � IRn���n�� is an inde	nite symmetric matrix and e � IRn�� is the vector of ones
 Problems
of the type ��� occur for example in the search for a maximum �weighted� clique in an undirected
graph
 Problem ��� is also strongly related to the problem of minimizing a quadratic form over a
polyhedron� which has numerous applications
 Indeed� given a polyhedron D � IRn and a candidate
global minimizer x� it is possible by cutting planes to split of a simplex from the polyhedron which
contains x�
 Finding a global solution � and even checking if a local solution is a global solution �
of ��� is known to be NP�hard �see �
��
 Several authors proposed branch�and�bound algorithms for
solving ��� �see for example ��������������������
 Most of these algorithms use bounding techniques which
produce lower bounds which are almost never exact
 This can lead to a large number of iterations of
a branch�and�bound procedure since the admissible set has to be subdivided very often in order to
improve the bounds
 It is therefore desirable to have lower bounds which are very accurate or even
exact� so that only a moderate number of iterations of a branch�and�bound algorithm are needed to
verify global optimality

In this paper we present a lower bound for ��� which is very accurate and in many instances exact
so that it can serve as a global optimality criterion
 Since the approach is based on the solution of a
semide	nite program �SDP� and a convex quadratic program �QP�� which can be solved in polynomial
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time� the numerical cost is reasonable
 To our knowledge this is the 	rst e�cient global optimality
criterion for ��� which can be checked in polynomial time
 Only few global optimality criteria for
��� are available
 In ��� a global optimality criterion for ��� is proposed based on the veri	cation
of a copositive condition which is again an NP�hard problem
 In ��� a global optimality criterion is
described which can be easily checked
 However� no numerical results are reported which demonstrate
the e�ectiveness of the criterion
 In ��� a local optimality criterion for a d
c
 formulation of problem ���
is used to compute estimates of global minima which are often exact
 An overview of global optimality
conditions for general global optimization problems is given in ���

The paper is organized as follows
 In Section � we introduce some notations and summerize some
results on quadratic forms over the standard simplex
 In Section � we describe a semide	nite pro�
gramming bound for ��� which was obtained in ���
 Section � is devoted to the new global optimality
criterion and lower bound for ���
 Numerical experiments on random test examples� which are re�
ported in Section �� demonstrate the e�ciency of the criterion and show that the new lower bound
improves considerably a known SDP bound


� Notations and some properties of quadratic forms over the stan�

dard simplex

We use the following notations
 Let A � IR�n���n��� be a given matrix and denote by Al � IR�n���n���

and by Ac � IR�n���n��� the matrices de	ned by

Al
ij ��

�

�
�Aii �Ajj�� Ac

ij ��
�

�
�Aii � �Aij �Ajj�� � � i� j � n� �� ���

We have obviously A � Al � Ac
 The quadratic form xTAlx is linear over �n and the entries of the
matrix � �Ac are the second order derivatives of the quadratic form xTAx along the edges of �n� i
e

��ei�ejx

tAx � � � Ac
ij
 The notation B � � means that the matrix B is positive semide	nite
 Let

I � f�� ��� n � �g be a given index set
 The I�face of a standard simplex �n is de	ned by

�I �� fx � �n � xi � �� i �� Ig�

The set of non�binding constraints at a point x � �n is de	ned by

��x� �� fi � � � i � n� �� xi � �g�

The complementary set of ��x� is denoted by ���x� �� f�� ���� n��g n��x�
 In ���� the following results
concerning quadratic forms over �n were proved�

Lemma �
�i� Let F�G � IR�n���n��� be symmetric matrices and G � F �componentwise�� Then xTGx � xTFx
for x � �n�

�ii� Let � � IR�n���n��� � IR�n�n� be the linear map de�ned by ��G�ij �� Gij�Gn���n���Gn���i�Gn���j

�� � i� j � n� where G � IR�n���n��� is a symmetric matrix� A quadratic form xTGx is convex on �n

if and only if ��G� � ��
�iii� Let

Ec �� fij � F c
ij � �� � � i � j � n� �g ���

be the edge set of edges of �n where the objective function f�x� � xTFx is strictly convex� If ��G� � �
and Gij � Fij for ij � Ec then G � F �

�



� A semide�nite programming bound

In ���� a lower bound for the optimal value of problem ��� was proposed which can be computed by
solving a semide	nite program �SDP� and a convex quadratic program �QP�
 The bound is based on
Lemma �
 Consider the following SDP�

W� �� argmin tr J�F �G�

subject to Gij � Fij � ij � Ec ���

diag G � diag F� ��G� � ��

where � is de	ned as in Lemma � �ii� and J � IR�n���n��� is the matrix of ones
 Then �

bsdp� �� min
x��n

xTW�x ���

is a lower bound for ���
 This follows from Lemma � �i� and �iii� since W� � F 
 The constraint
diag G � diag F ensures that the function values of xTW�x and f�x� are equal at the vertices of
�n
 From Lemma � �ii� it follows that ��� is a �convex� QP
 Since SDP�s and QP�s can be solved in
polynomial time bsdp� can be solved in polynomial time
 Preliminary computational experiments in ���
indicate that the bound bsdp� improves considerably the semide	nite programming bound introduced
by Shor and others �see �����


� A global optimality criterion and an improved lower bound

In this section we propose a global optimality criterion and a new lower bound for ���
 The following
result provides a criterion for checking if a local minimizer of ��� is a global minimizer


Lemma � Let x� be a local minimizer of ��� and let g�x� be a quadratic form over �n which satis�es�

�a� g�x� � f�x� for x � �n�

�b� g�x� � f�x� for x � ���x���

�c� �ei�ekg�x
�� � � for i � ���x��� where k � ��x���

�d� g�x� is convex on �n�

where f�x� is the objective function of ���� Then x� is a global minimizer of ����

Proof
 Because of properties �b� and �c� it follows that x� is a local minimum point of g�x� over �n

Since g�x� is convex x� is also a global minimum point
 Using �b� and �a� we infer

f�x�� � g�x�� � g�x� � f�x� for x � �n�

�

The global optimality criterion of Lemma � can also be formulated as an optimization problem which
is similar to ���
 This formulation provides in addition a lower bound for ����

Proposition � Let x� be a local minimizer of ���� � � IR a positive penalty parameter and k � ��x���
Consider the mixed linear�semide�nite programming problem �LSDP��

�W�� s
�� �� argmin

X
i�j���x��

�Fij �Gij� � � � s

subject to �s � �ei�ek�x
TGx�� i � ���x��� ���

Gij � Fij � ij � Ec

diag G � diag F

��G� � �� s � ��

�



Then

bsdp� �� min
x��n

xTW�x

is a lower bound for ���� If the optimal value of ��� is zero then bsdp� is the optimal value of ��� and

x� is a global minimizer of ����

Proof
 Lemma � �iii� impliesW� � F and therefore bsdp� � f� by Lemma � �i� where f� is the optimal
value of ���
 Let us now assume that the optimal value of ��� is zero
 We show that g�x� satis	es
conditions �a���d� of Lemma � where g�x� �� xTW�x
 Property �a� follows from W� � F 
 Since the
optimal value of ��� is zero we have W��ij � Fij � � for i� j � ��x�� implying �b� and since s� � � we
have �ei�en��g�x� � �s� � � implying �c�
 Condition �d� follows from ��W�� � � via Lemma � �ii�


�

We show that problem ��� is well de	ned
 Let qmin �� minf�F c
ij � � � i� j � n � �g and let

�W � IR�n���n��� be the matrix de	ned by

�Wij �� F l
ij �

�
qmin if i �� j
� else

� � � i� j � n� ��

Since F c
ii � � it follows qmin � � and therefore �W � F 
 Note that �� �W � � �qmin�I � J� where I is

the n	n identity matrix
 Hence convexity of the quadratic form xT �Wx over �n follows immediately
via Lemma � �ii� and �W satis	es the constraints of problem ���

The number of variables in the LSDP ��� can be reduced by eliminating the constraints diag G �
diag F 
 De	ne the linear map � � IR�n�n� � fU � IR�n���n��� � diag U � �g by

��X�i�n�� � ��X�n���i � �
�

�
Xii� � � i � n

��X�ij � Xij �
�

�
�Xii �Xjj�� � � i� j � n

��X�n���n�� � ��

where X � IR�n�n�
 We have ����X� �F l� � X� diag ���X� �F l� � diag F and �ei�ek�x
T ���X� �

F l�x� � �eTi X�x�Xii��ei� ek�
TF lx where �x �� �x�� ��� xn�
 Substituting G by ��X��F l in problem

��� we obtain the following equivalent semide	nite program with the variable X � IR�n�n��

W� �� ��X�� � F l� �X�� s�� �� argmin
X

i�j���x��

��F c
ij ���X�ij� � � � s

subject to �s � �eTi X�x� �Xii � �ei � ek�
TF lx�� i � ���x���

��X�ij � �F c
ij � ij � Ec� �
�

X � �� s � ��

� Numerical results

We made several numerical experiments to compare the bounds bsdp� and bsdp�
 The SDP�s were solved
using the implementation of Borchers ��� of the interior point algorithm of ���
 The LSDP �
� was

transformed into an SDP by de	ning the matrix �X ��

�
X �
� s

�
and claiming �X � �
 The QP�s were

solved by a descent method
 All computations were performed on a HP J ��� workstation
 We used
two kinds of test problems
 The 	rst test problems were generated using the procedure random qp
described in the Appendix with parameters k � � and � � ���
 In ���� it was shown that this procedure
generates problems of the form ��� where the optimal value f� and a global minimizer x� are known
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Table �� Comparison of bsdp� and bsdp� using random test problems with known solutions

n s�n esdp� esdp� optsdp� optsdp� timesdp� timesdp�
�� �
� �
������ �
������ �� �� �
��� �

��
�� �
� �
����� � �� ��� �
��� �
���
�� �
� �
���� � �� ��� �
��� �
��

�� �
� �
������ � �� ��� �� 
�
�
�� �
� � � ��� ��� ��
� 
�
�
�� �
� �
������ � �� ��� ��
� 
�
�

Table �� Comparison of bsdp� and bsdp� using random test problems where a global minimizer is
estimated by a heuristic

n dens esdp� esdp� optsdp� optsdp� timesdp� timesdp�
�� �
�� �
�� � �� ��� �
��� �
���
�� �
� �
�
 � � ��� �
��� �
���
�� �

� �
�� � �� ��� �
��
 �
��

�� �
�� �
�� �

� � �� �
�
 �
��
�� �
� �
�� � � ��� ��
� ��


�� �

� �
�� �
��� � �� ��
� ��
�

Table � displays the numerical results
 We made always �� runs and averaged the quantities
 The
parameter n denotes the problem size and s denotes the number of negative eigenvalues of the Hessian
of the objective function
 The percentage relative error of the bound bsdp� and bsdp� is denoted by

esdp� �� ��� �
f� � bsdp�
jFmaxj

and esdp� �� ��� �
f� � bsdp�
jFmaxj

respectively where Fmax �� max
��i�j�n��

jFij j
 We

have max
x��n

f�x��f� � �Fmax since f�x� � co fFij � � � i� j � n��g �see ����
 The percentage averaged

number of instances where bsdp�� bsdp� are exact is denoted by optsdp� and optsdp� respectively

The second test problems were generated using the procedure rand qps described in the Appendix
 A
global minimizer of these problems is not known in advance
 We estimated a global minimizer using
a heuristic which is presented is ����
 The results are displayed in Table �
 Apart from the parameter
dens which denotes the density of edges of �n where f�x� is strongly convex� i
e
 dens �� ��Ec

n�n��� � the
notation is as in Table �

The results of Table � and Table � show that bsdp� is in general more accurate than bsdp�
 While
bsdp� is only exact for some instances� bsdp� is almost always exact
 This demonstrates that the new
global optimality criterion is e�cient
 The results demonstrate in addition that the heuristic of ����
works well
 It is not clear if the inaccuracies of bsdp� in Table � come from inexact estimations of the
heuristic
 The computational time for computing bsdp� is larger than for computing bsdp
 Solving the
LSDP �
� directly �without transforming it into an SDP� would save probably computational time


Appendix� Random test case generators

In order for the reader to be able to reproduce the numerical experiments we describe the methods
for generating random test problems of the form ���
 The 	rst method is presented in ���
 It produces
a quadratic optimization problem with known optimal value f� and solution x�
 The parameters n�
s� k and � �� � s � n � �� � � k � n� � � ��� ��� denote the problem size� the number of negative

�



eigenvalues of the Hessian of f�x�� the number of non�binding constraints at x� and a measure how
close local �not global� minima of ��� are to f�


random qp �n� s� k� ��

�
 Choose random values �i � ��b�� a��� � � i � s and �i � �a�� b��� s� � � i � n �� � a� � b��


�
 Choose a random values f� � �a�� b�� �a� � b� � ��


�
 Choose random vectors �vi � ��a�� a�� where �vi ��

�
�ui
�wi

�
� �ui � IRs� �wi � IRn�s and �u� � �u� �

�� � �uk �a� � IRn� � � i � n�


�
 Set ui �� �jf��f���ui�j
��� ��ui for � � i � k and ui �� �jf��������f���ui�j

��� ��ui for k�� � i � n��

where f��x� ��
sX

i��

�ix
�
i 


�
 Choose a random vector 	 � �k�� and set x� ��

�
	

�

�



�
 Set wi �� �wi � z� �� � i � k� and wi �� �wi� �k � � � i � n� �� where z ��
kX

i��

	i �wi




 Set vi ��
�ui
wi

�
for � � i � n��� V �� �v�� ��� vn��� and F �� V T diag ���V de	ning the objective

function f�x� � xTFx


The second type of test problems were generated by the following procedures which compute the
entries of the matrices F � F c and F l�

void rand�qps�int n�double dens�double dvert�int �seed�rmatrix �Fc�rmatrix �Fl�

rmatrix �F�

�

int i�j�l�

double r���	
double�seed���	�
�����	
�����	�

Fc��	�� seed���

for�i���i�n�i���

for�j�i���j��n�j���

if�random�r������dens�

Fc�i�j��Fc�j�i��random�r��	���	��

else

Fc�i�j��Fc�j�i��random�r����	��	��

for�i���i��n�i��� Fl�i�i��random�r���dvert��

for�i���i�n�i���

for�j�i���j��n�j��� Fl�i�j��Fl�j�i���	�
�Fl�i�i��Fl�j�j���

for�i���i��n�i���

for�j�i�j��n�j��� F�i�j��F�j�i��Fl�i�j��Fc�i�j��

�

double random�double �r�double a�double b�

�

r�fmod�r
��������	��	��

return�r
�b�a��a��

�

The parameter seed is initialized by one


�
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