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Abstract

The generic character of the regularity in the sense of Jongen�
Jonker and Twilt is studied for a particular class of embeddings� which
represents a quadratric penalty procedure� In this paper we state a
suitable perturbation result �into the mentioned class�� which is the
main part for the proof of the genericity� Finally� the results of some
numerical experience are mentioned and two selected examples are
presented�

� Introduction�

The use of smooth penalty functions to solve constrained optimization prob�
lems in a sequential unconstrained optimization setting has been reported as
a numerically ine�cient approach for a long time� The principal di�culty
appearing is the inevitable ill�conditioning when the penalty parameter is
close to the prescribed term �see for example ��� �� �	
�

Recently� these sequential optimization approaches have been re�examined
from a pathfollowing point of view in many papers� The idea is to reformu�
late the optimality condition of the unconstrained optimization problems in
a parametric system of nonlinear equations� The pathfollowing algorithms
stated on these systems of parametric equations can give us a new idea of
the capacities of the sequential approach�

In the paper ���	 two smooth penalty functions �quadratic penalty for
equality constraints� and logarithmic barrier functions or quadratic penalty






loss for the inequality constraints
 are analyzed from the pathfollowing point
of view� Two di�erent systems of equations are used for the pathfollowing
procedure� As a consequence of reformulating these sequential algorithms
as a parametric system of equations the ill�conditioning can be removed�
Further papers studying the structure of the solution of the expanded La�
grangian system in the neighbourhood of singularities of di�erent nature
���
	����	
 have been published recently� This analysis follows the ideas of
the investigation of general one�parametric optimization problems� and the
classi�cation of the possible singularities using tools from bifurcation analy�
sis� In general� this classi�cation results from the violation of the conditions
de�ning the nondegenerated critical points� The study of the stucture of
the critical set in the neigbourhood of singularities and the characterization
of the structures in terms of the problem data is done for singularities of
codimension zero or one ����	����	
�

For general one parametric optimization problems� two recent� impor�
tant approaches to the analysis of the global structure of critical points are
available� These approaches examine restricted classes of one�parametric
optimization problems �we call them regular one�parametric problems
 for
which the structure of some critical sets is relatively simple to describe� One
approach based on piecewise di�erentiable mappings is due to Kojima and
Hirabayashi ��
�	
 and deals with the global structure of the Karush�Kuhn�
Tucker set� The other approach� based on transversal intersection� is due to
Jongen� Jonker and Twilt ��
�	� �
�	
� In this latter approach the generalized
critical points are classi�ed into �ve types� which are then analyzed in de�
tail� This approach is of fundamental importance� since it treats the generic
behaviour of one parametric optimization problems�
With the tools developed by Jongen� Jonker and Twilt di�erent sequential
methods for constrained optimization ���	� ��	���	���	
 have been studied� Re�
sults obtained by using pathfollowing procedures with jumps ��
�	� ��	
 for
di�erent penalty� exact penalty and multiplier embeddings with the possibili�
ties of their �pure� sequential versions were compared� Convergence analyses
were stated under usual assumptions on the sequential approach and under
the regularity of the embeddings obtained� This regularity of the stated em�
beddings in the sense of Jongen� Jonker and Twilt is the key assumption
in order to pro�t from the local description of a �nite number of possible
singularities� The genericity of the class of regular problems introduced by
Jongen� Jonker and Twilt �JJT�regularity
 is obtained in a full C� di�eren�

�



tiability setting� As a consequence this assumption can lose its genericity
when dealing with particular classes of one�parametric problems�

In this direction new classi�cations of singularities for parametric prob�
lems with special structure have been developed� As examples let us mention
the papers �
�	� ���	 and �
�	�

Our purpose in this paper is to state the genericity of the JJT�regularity
for the particular class of one�parametric problems obtained by use of an
embedding representing the quadratic penalty method�

Consider the general optimization problem

P minff�x
j x �Mg�

where

M �� fx � IRnj hi�x
 � �� i � I� gj�x
 � �� j � Jg

and I � f
� � � � �mg� J � f
� � � � � pg�
In order to solve this problem we can use a sequence of unconstrained

optimization problems with a quadratic penalty term as in the following
one�parametric problem�

P �t
 minff�x
 �

�
t

�
 � t


��
��X
i�I

h�i �x
 �
X
j�J

�minfgj�x
� �g

�

�� j x � IRng

In this case the values of the parameter are taken increasing to 
�
In ��	 the close connection of the solution of this problem with a one�

parametric constrained one is stated� After some transformations in order
to get better properties of the one�parametric problem� the �nally proposed
embeddings are of the form�

bP �t
 minf �f�x� v� w� t
j�x� v� w
 � �M �t
g� �



where

�f�x� v� w� t
 �� tf�x
 � �
 � t
kx� x�k� � kv � v�k� � kw � w�k�

and

�M�t
 ��

����	�x� v� w
 � IRn�m�s









thi�x
 � �
 � t
�vi � v�i 
 � �� i � I
tgj�x
 � �
 � t
�wj � w�

j 
 � �� j � J

p� kx� x�k
�
� kv � v�k� � kw �w�k� � �

����

�



Here the vectors �x�� v�� w�
 � IRn�m�s� w� � IRs� x� � IRn� and the
positive number p � IR are �xed and such that

kx� � x�k� � kw� � w�k� � p

w�
j �w�

j � �� �j � J
��


We will state the generic character of the JJT�regularity for the paramet�
ric problem de�ned in �

� Many classical concepts and results related to
optimization theory and one�parametric optimization will be supposed to be
known� Let us mention some of them�

� The concept of generalized critical points� and stationary points�

� The linear independence constraint quali�cation �LICQ
�

� The �ve types of generalized critical points de�ning regularity in the
sense of Jongen� Jonker and Twilt�

� The strong� or Whitney� topology in the space of all three time di�er�
entiable mappings�

For a de�nition of most of the concepts �and even more
 see e�g� the
books �
�� 
�	 and the paper �
�	�

The rest of the report is organized as follows� In the second section the
generic property will be presented and its proof will be reduced to three
claims� The proof of these claims is the purpose of the third section� Some
conclusions and examples are presented in the last and fourth section�

Thoughout the report� we employ the following notation� IfK � f
� � � � � sg
and d � IRs� we denote by dK the subvector composed from the components
di� i � K� For a di�erentiable function f � IRs � IR� Df�x
 denotes the row
vector of partial derivatives�

� Genericity result�

We begin with recalling the de�nition of a JJT�regular parametric optimiza�
tion problem in a slightly modi�ed form �see �
�	 or �
�	
�

�



De�nition �

Let us consider a general parametric optimization problem P �t
 de�ned by the
functions �f�y� t
�H�y� t
� G�y� t

 � C��IRn���� IRn���
� Let S be a subset
of IRn���� We call the parametric problem P �t
 JJT�regular on S if each
generalized critical point of P �t
 contained in S belongs to one of the types ��
�� �� � or � 	see 
����� This property will be denoted as follows
 P �t
 � Fj

S
�

If S has the structure S� � IR� with S� � IRn� 	 or IRn� � S�� with
S� � IR� we will use the notation P �t
 � FjS� 	or P �t
 � FjS�� instead
of P �t
 � Fj

S��IR
	 or P �t
 � Fj

IRn��S�
�� Finally� P �t
 � F stands for the

case of S � IRn���� as usually�

As indicated in the introduction� we consider the embedding de�ned in
�

�This parametric problem �P �t
 is constructed using the function data

�f�H�G
 �� �f�x
� hi�x
� i � I� gj�x
� j � J
 � C��IRn� IRm�s��


This construction can be interpreted as a mapping � � C��IRn� IRm�s��
 ���
C��IRn�m�s��� IRm�s��
 de�ned as follows�

��f�H�G
 �

�BBBBBBBBBBBBBBB�

tf�x
 � �
� t
kx� x�k� � kv � v�k� � kw � w�k�

th��x
 � �
 � t
�v� � v��

���

thm�x
 � �
� t
�vm � v�m

tg��x
 � �
� t
�w� � w�

�

���

tgs�x
 � �
� t
�ws � w�
s


p� kx� x�k
�
� kv � v�k� � kw �w�k�

�CCCCCCCCCCCCCCCA
��


In this section we analyze the assumption ��f�H�G
 � F � Then we have
to study the properties of the set ����F
� It is well known that F is an
open and dense subset of the space C��IRn�m�s�� � IRm�s��
 endowed with
the strong �or Whitney
 topology� In this sense it is a generic assumption to
suppose that a general one�parametric optimization problem belongs to the
set F � It is important to note that� from the genericity of F � one cannot
directly conclude any topological property of the set ����F
 with respect
to the strong topology� In order to conclude such properties the mapping �
should be analyzed in detail�

�



Theorem �

The set ����Fj�����
 � C��IRn� IRm�s��
 is open and dense with respect to the
strong topology�

The result can be obtained by means of a local��global construction
from the di�erential topology if we prove the local stability of the condition
��f�H�G
 � Fj������ and the possibility to achieve this condition locally by
means of perturbations with polynomials up to degree two�

The local stability can be easily reduced by continuity and compacity
arguments to the local stability of the �ve types of generalized critical points
de�nning the JJT�regularity�

The property to be proved concerning perturbations can be formulated
in the following form�

Proposition �

Let � �f � h�� � � � � hm� �g�� � � � � �gs
 � C��IRn� IRm�s��
 be �xed� then each measur�
able subset of the set��������������������������	

�A� b� c�� � � � � cm�s� d





















�

�BBBBBBBBBBBB�

�f � ���xTAx� bTx
�h� � cT� x� d�

���
�hm � cTmx� dm

�g� � cTm��x� dm��
���

�gs � cTm�sx� dm�s

�CCCCCCCCCCCCA
�� Fj�����

��������������������������

��


has Lebesgue measure zero�

The vector A � IR���n�n��	 is considered here as a symmetric matrix�
the vector b and the vectors ci and cj belong to the space IRn� and the
vector d belongs to the space IRm�s� Therefore in ��
 a subset of the space
IR���n�n��	�n�n�m�s	�m�s is de�ned and the Lebesgue measure a�rmation of
the above theorem is understood in this space�

With A will be denoted the whole vector of perturbations and with B the
vector of perturbation corresponding to the constraints� then A � �A� b�B
 �
�A� b� c�� � � � � cm�s� d


�



For a �xed A � �A� b�B
 we will use �� �f�H�G�A
 or ��x� v� w� t�A
 for
referring to the problem with data�

�

�BBBBBBBBBBBB�

�f � ���xTAx� bTx
�h� � cT� x� d�

���
�hm � cTmx� dm

�g� � cTm��x� dm��
���

�gs � cTm�sx� dm�s

�CCCCCCCCCCCCA
and �M�H�G�B� t
 to its parameter�dependent feasible set�

Following the same lines as for the analogous Theorem in ���	 the proof
of our Proposition 
 is reduced to the following three claims�

Claim �

For almost all A � IR���n�n��	�n�n�m�s	�m�s each generalized critical point
satisfying LICQ� for the problem de�ned with the data �� �f �H�G�A
� is either
a point of Type �� Type �� or Type ��

Claim �

For almost all B � IRn�m�s	�m�s the following two conditions hold


�� The subset n
�x� v� w� t
 � �M �H�G�B� t
jLICQ fails to hold

o
��


is a zero�dimensional manifold�

�� At each point �x� v� w� t
 belonging to the set de�ned in ��
 the following
two conditions hold true


	a� The gradients 	derivatives with respect to x� v� w and t � of the
active constraints 	equalities and active inequalities� are linearly
independent�

	b� Each vanishing linear combination of the partial derivatives of the
active constraints has components corresponding to active inequal�
ities di�erent from zero�

�



Claim �

Let B � IRn�m�s	�m�s be a �xed vector satisfying the conditions of the Claim
�� then for almost all �A� b
 � IR���n�n��	�n� each point belonging to the set
de�ned in ��
 is of Type ��

The main tool used for the proof of these claims is the Parametrized
Sard�s Theorem �cf��
	
� The idea of the proofs consists in �nding mappings
that depend on the parameters of the perturbations and on other variables
satisfying two conditions �these other variables containing the variables of
the one�parametric problems and the multipliers
�


� Zero is a regular value of the mapping�

�� If we �x the perturbation parameters and consider the mapping de�
pending only on the other variables� then the regularity of the value
zero for the restricted mapping implies conditions contained in the def�
initions of the �ve types of generalized critical points�

The main di�erence between the claims stated above and the analogous
statements in ���	 is the reduced number of perturbation parameters aris�
ing in our one�parametric problem� Note� for example� that there are no
perturbations with respect to the variables v and w � and that the compati��
cation constraints are not perturbed� either� In this sense the main di�culty
consists in proving that zero remains a regular value�

� Proof of the claims

We �x a tuple of functions � �f� �H� �G
 � C��IRn� IRm�s��
 for the whole section�
Let us introduce some practical notations before getting into details� The
new variable y is de�ned as y � �x� v� w
 � IRn�m�s and u � IRm�s�� will be
used to denote the multipliers associated with the problem ��y� t�A
�

It is also necesary to refer separately them�s�� components of ��y� t�A
�
Let us then introduce a subindex in the following form�

���y� t� �A� b

 � tf�x
 � �
� t
kx� x�k� � kv � v�k� �

�kw �w�k� � t����xTAx� bTx


�



�i�y� t�B
 � thi�x
 � �
 � t
�vi � v�i 
 � t�cTi x� di
� i � I

�m�j�y� t�B
 � tgj�x
 � �
� t
�wj �w�
j 
 � t�cTm�jx� dm�j
� j � J

�m�s���y� t�B
 � p� kx� x�k� � kv � v�k� � kw �w�k�

For an index subset K 	 f�� � � � �m�s�
g we will use �K�x� v� w� t�A
 �
C��IRn�m�s��� IRjKj
 for referring to the mapping formed with index in K�

Proof of Claim 
 �
In this proof we de�ne a mapping according to three �xed index sets�

Namely

� K� 	 fm � 
� � � � �m � s � 
g� interpreted as the index set of active
inequality constraints for the problem ��y� t�A
� We suppose the most
general case� i�e� fm� s� 
g � K��

� K� 	 f
� � � � � �g where � � n �m � s �m � jK�j and j�j denotes the
cardinality�

� K� 	 K�� to be interpreted as the vanishing multipliers associated to
active inequality constraints�

Let us denote by K� the index set obtained by adding the equality con�
straint indices to K� � then K� � f
� � � � �mg 
 K�� We de�ne now the
following mapping �see �
�	 for the meaning of this system
�

H�y� t� u�A
 �

�BBBBBB�
Dy���y� t� �A� b

�

P
k�K�

ukDy�k�y� t�B


�k�y� t�B
� k � K�

uk � �k�y� t�B
� k � f
� � � � �m� s � 
g nK�

�CCCCCCA
In the following we will denote the set of symmetric matrices of size p�p

by M s�p
 and identify the elements of this space with the vectors of the
space IR���p�p��	� Let us de�ne now the following map� giving its values on
the space M s��
�

M�y� t� u�A
 �

�B� D�
y�
��y�t��A�b		�

P
k�K�

uk
k�y�t�B	� DT
y 
K�

�y�t�B	

Dy
K�
�y�t�B	 �

�CA
�



Let M�K�
 � M s��
 be the set of those symmetric matrices with rank
jK�j whose columns with indices in K� are linearly independent� It is known
�cf� ���	
� that M�K�
 is a smooth manifold with codimension ����� �
jK�j
��� jK�j�

� We denote by � � C��IR��������	� IR������jK�j	���jK�j��	
 a
smooth mapping de�ning the manifoldM�K�
 locally� An important obser�
vation about these mappings � is that their Jacobian contains an identity
matrix corresponding to the partial derivatives with respect to the compo�
nents of the matrices not belonging to columns of index in K��

We can now introduce the mapping �� that plays the role mentioned in
the previous section�

���y� t� u� z�A
 �

�BBB�
H�y� t� u�A


M�y� t� u�A
� z
��z

uK�

�CCCA
Here the variable z belongs to the space IR��������	� The principal aim of

this proof consists in the study of the Jacobian of ��� which is presented in
the following matrix ��

D�y�t� Du Dz DA Db Ddl
� tIn �

m


 � � �





H



 � � �

� � tIm�s







 � � �






 tI���n�n���





M�z




 � � �I��������� �
� � 




��z	




 � � I������jK� j����jK� j���j� � � �





uK�

j
� IjK�j

j� � � � �
k

��


We will prove that� under some restrictions� this matrix has full row rank
if ���y� t� u� z�A
 � �� These restriction are�


� t is not � or 
�

�� The matrix Dy�K�
�y� t�B
 has full row rank �can be interpreted as

LICQ
�


�



From the structure of the matrix ��
 it is possible to note that� if K�

contains the set of indices fn � 
� � � � � �g� then ���n�n � 

 is greater than
or equal to ����� � jK�j
�� � jK�j � 

 and the desired rank condition can
be reduced to a rank condition over a partial Jacobian of some components
from H�y� t� u�A
 �to be explained later
�

Since ���y� t� u� z�A
 � �� the structure of K� mentioned above is reduced
to an analysis of the last �m � s � jK�j columns of M�y� t� u�A
 �see the
following matrix ��



Dx D�v�w	 k � K� n fm�s��g m�s��l N
� DT

x�k ���x�x�	

m




 � �Im�s
�
 � t
I

�
���v�v�	

���w�w�	









 Dx�k �
� t
I j � � �



j

���x�x�	T ���v�w	T���v��w�	T � �
k

��


If the vector �w�w�
 has all its components with indices from K� equal
to zero� then the rank condition follows from the restrictions imposed by use
of a suitable part of the matrix �Im�s� In the other case we are done� because
the sub�matrix presented in ��
 is nonsingular��BBBBBBBB�

�Im�s
�
 � t
I

�
���v � v�

���w � w�


�
� t
I j � �

���v�w
T � ��v�� w�
T �

�CCCCCCCCA
��


Finally� we can conclude the full rank of the last �m � s� jK�j columns
of M�y� t� u�A
�

Now we come back to the matrix ��
� Let � � ��H� �M � ��� �K�
 be the
coe�cients of a vanishing linear combination of the rows of this matrix� We
want to show that � � �� The coe�cients corresponding to the map H
can be divided into the following parts �H � ��x� ��v�w	� �f������m�sg� �m�s��
�
where �m�s�� corresponds to the compacti�cation constraint and �f������m�sg

to the other equality and inequality constraints�







From the identity tIn �resp� tIm�s
 found in ��
 on the row corresponding
to derivatives with respect to the parameter b �resp� d
 it follows immediately
that �x � � �resp� �f������m�sg � � 
� Now� these equalities� the proved fact
about the last columns ofM�y� t� u�A
 and the structure of ��
 lead to �M � �
and �� � ��

In order to prove that ���v�w	� �m�s��� �K�
 � � let us analyze the rest
of the jacobian given in ��
� The part to be annalysed is presented in the
following matrix ��
�

Dx D�v�w	 f������mg K�l
�
� t
Im � ���v�v�	

m


 � �Im�s ���t	IK���







 �
�

���w�w�	






 ���x�x�	T ���v�v�	T j���w�w�	T � �



j

� � � � j IjK�j j �
k

��


If we can prove that �m�s�� � � then we are done� This identity
follows immediately in case that �x� v
 �� �x�� v�
 �observe the structure
of the columns associated to Dv and f
� � � � �mg
� We suppose then that
�x� v
 � �x�� v�
� Since the compacti�cation constraint is supposed to be
active� it holds that kw �w�k� � p �� ��

If the index m � s � 
 does not belong to the set K��In other words�
the last column of ��
 contains only zeros in the rows corresponding to �K�
�
then the nonsingularity of the submatrix�BBB�

�Im�s
���v � v�

���w � w�


���v � v�
T j � ��w � w�
T �

�CCCA
implies that ���v�w	� �m�s��
 � � and we are done�

In case of fm� s� 
g � K� �um�s�� � �
� the equation

Dy���y� t� �A� b

�
X
k�K�

ukDy�k�y� t�B
 � �


�



�contained in H�y� t� u�A
 � �
 considered only in the derivatives Dw is
reduced to the following equalities on j � J �

��wj � w�
j 
 �

�
�
� t
um�j� m� j � K�

�� m� j �� K�
�
�


On the other hand� the inequalities

kw �w�k� � p
kw� � w�k� � p

imply the existence of an index �without lost of generality 

 in J such
that w� is di�erent from w�

� and from w�
�� We obtain from the equalities

�
�
� that m � 
 � K� � um�� �� K� and w� � w�
� �� �� Returning to the

matrix ��
 we note that� it follows from um�� �� K� that �w� � � and� �nally�
�m�s���w� � w�

�
 � �� which implies �m�s�� � � and we are done�
It has been proved that at each zero of the mapping ���y� t� u� z�A
� such

that t is not � or 
� and Dy�K�
�y� t�B
 has full row rank� the Jacobian of ��

has full row rank� too� This condition is analogous to the transversality used
in ���	� and the conclusion about the types of generalized critical points is
obtained with the same arguments� This observation concludes the proof of
the �rst claim� �

We go into the proof of the second claim and the notations introduced in
the proof of the �rst one will be used implicitly�

Proof of the Claim � �
The proof will be done again for the case of t �� 
 and t �� �� as a

consequence the compacti�cation constraint must be active at each point
where the LICQ fails to hold� because the gradients corresponding to the
other constraints are linearly independent� The mapping to be used in this
proof depends on two index sets as in the claim before� Let us then �x again
K� and K� as in the above proof� Since the compacti�cation constraint must
be active we suppose� for simplicity of notation that fm�s�
g �� K��In this
proof we have to introduce a variable to denoting the coe�cients of a linear
combination of the active constraints� Let us take the variable � having
indices in K��notation as in the proof of the �rst claim
� and then � � IRjK�j�
The mapping to be used in this proof is de�ned as follows�


�



���y� t� ��B
 �

�BBB�
P

k�K�
�kDy�k�y� t�B
 �Dy�m�s���y� t�B


�k�y� t�B
� k � K�

�m�s���y� t�B

�K�

�CCCA
Since Dy�m�s���y� t�B
 � ���x � x�� v � v�� w � w�
 �� � at a zero

�y� t� ��B
 of �� this mapping must be di�erent from the zero vector by

� � IRjK�j � Let us suppose w�l�o�g that �� �� �� which implies immediately
�v� � v��
 �� � and 
 �� K�� We consider in the matrix �


 the Jacobian of
this mapping in those points where ���y� t� u�B
 � �� t �� 
 and t �� ��

Dx D�v�w	 D�� D�K�
Dc� Dd

K�l N
� DT

x��
N

��tIn �
m




 � ��Im�s

�
 � t

�

� � �









 Dx�K�
�
 � t
I

K�
j� � �

N
tIK�







 ���x�x�	T ���v�v�	T j���w�w�	T � � � �



j

� � � IjK�j � �
k

�




In order to note that this matrix has full row rank we suppose that the
vector � � ��x� ��v�w	� �K� � �m�s��� �K�
 contains the coe�cients of a vanish�
ing linear combination from the rows of �


 �Note that the subdivision of �
concides with that of the rows
� We should prove that � � ��

Since t and �� are di�erent from zero� the matrices tIK�� ��tIn and IjK�j

lead to the equalities �x � �� �K� � � and �K� � �� Now the nonzero scalar
�
 � t
 in the column corresponding to the partial derivative with respect
to �� implies that the coe�cient �v� is zero� too� Analyzing the column
corresponding to the partial derivative with respect to v� and taking into
account that �v� � v��
 �� � we can conclude that �m�s�� � �� The same can
be obtained for the other components of ��v�w	 �for �v� this is already known

by use of a suitable part of the matrix ��Im�s�

Applying the parametrized Sard�s Theorem� the same full rank condition
about the Jacobian evaluated in the zeros can be ensured� assuming the
parameter B to be �xed in a set with a complement of measure zero� These


�



leads to the statements of this lemma with similar arguments as used in the
proof of Lemma 
 in ���	 �note� for example� that the transversal condition
used there is rewritten here in the full row rank of the Jacobians
� With this
reference we conclude the proof of the claim� �

Let us now deal with the last claim�
Proof of Claim � �
In this proof we work with a �xed value of the parameter B satisfying the

thesis of the above claim� For simplicity we suppose that B � � and omit it
in the notations� We should prove that for almost all values of the remaining
parameters each point belonging to the set de�ned in ��
 is of Type � �Type �
is not possible because the number of active constraints can not be a greater
than the number of variables in this parametric problem
� Since the set given
in ��
 is a countable one� it is su�cient to prove the statement for a �xed
point �y� t
 belonging to the set de�ned by ��
� We prove the claim again
for the case that t is di�erent from � and 
� In particular it follows that the
compacti�cation constraint must be active at �y� t
� Following the notation
used in the above proof let us denote by K� the index set of active inequality
constraints at �y� t
� Let � be a vector such thatX

k�K�

�kDy�k�y� t
 �Dy�m�s���y� t
 � �

From the results of the above claim it is not di�cult to conclude the
following facts�

� The vector � � IRjK�j is uniquely determined and all its components
are di�erent from zero�

� DtL�y� t
 �� � and the matrix W TD�
yL�y� t
W is regular� where by

de�nition�
L�y� t
 ��

X
k�K�

�k�k�y� t
 � �m�s���y� t


and the columns of the matrix W form a basis for the orthogonal of
the linear space generated by the vectors fDy�k�y� t
� k � K�g�

The result of this claim can be reduced to the ful�lment of the following
two inequalities for almost all values of the parameters �A� b
�


� Dy���y� t� �A� b

W �� ��


�



�� Dy���y� t� �A� b

W �W TD�
yL�y� t
W 
��W TDT

y ���y� t� �A� b

 �� ��

In order to prove these inequalities let us calculate a matrix W � Since
the columns of W form a basis for the orthogonal of the matrix

Dx Dv Dwl
Dx�I�y� t
 �
 � t
Im �

mj
Dx�K��y� t
 � �
 � t
I

jK�j
j �

k
the matrix W can be taken with the structure

W �

�B� ��
� t
In �
Dx�K��y� t
 �

� Is�jK�j

�CA �

Now the �rst inequality is rewritten as

Dy���y� t� �A� b

W �
�
t�t� 

�xTA� bT 
 � �T� �T�

�
�� �

where �� � IRn and �� � IRs�jK�j are vectors not depending on the pa�
rameters �A� b
� Since �� is �xed� the �rst part of Dy���y� t� �A� b

W is
di�erent from zero for almost all �A� b
� �By �xing A the vector b is also
�xed automatically
�

For the second inequality we need a formula for �W TD�
yL�y� t
W 
��� By

de�nition this matrix is obtained by multiplying the following terms�

W T

�B� �� � �
� ��Im�jK�j �
� � ��Is�jK� j

�CA W�

After a short calculation we obtain that

�W TD�
yL�y� t
W 
�� �

�
�� �
� ��Is�jK� j

�
�

where the expressions � stand for terms being not interesting for the analysis
�in particular� these terms do not depend on the parameters �A� b

� It must
be noted that the term �� is a nonsingular matrix of size n�n� Finally� the
desired inequality can be written in the form

�t�t� 

�xTA� bT 
 � �T� 
���t�t� 

�Ax� b
 � ��
� �jj��jj
� �� ��


�



The nonsingularity of �� and the independence of �A� b
 of the terms ���
�� and ��� implies the above inequality to hold for almost all values of the
mentioned parameters�

This observation concludes the proof of this claim� �
Since these claims have been proved in case that t is di�erent from � or


� it should be mentioned how the proof for these values can be completed�
For the value t � � we have no parameter of perturbation in our opti�

mization problem� With the following lemma we aim at proving that the
regularity in t � � follows from the special way we selected �x�� w�
 and
�x�� w�
 �see �


�

Lemma �

Each generalized critical point of the problem

min jjx� x�jj� � jjv � v�jj� � jjw � w�jj�

s�t�
v � v� � �
w � w� � �

�jjx� x�jj� � jjv � v�jj� � jjw � w�jj� � �p

�
�


is nondegenerated�

Proof�
It is immediately noted that the LICQ holds at each feasible point of the

problem de�ned in �
�
� For the sake of simplicity let us suppose that there
are no equality constraints�

Let us begin proving the strict complementarity�
If a linear constraint is active� then the corresponding partial derivative of

the quadratic constraint �equal to ���wj �w�
j 

 vanishes� and the inequality

w�
j �� w�

j implies that the corresponding multiplier is not zero� On the other
hand� if the multiplier corresponding to the quadratic constraint vanishes� it
follows that x � x�� and for all j � J � wj is equal to w

�
j or to w�

j for all j � J �
The latter fact together with the inequalities

jjx� � x�jj� � jjw � w�jj� 
 jjx� � x�jj� � jjw� � w�jj� � p

implies that the last constraint cannot be active and� thus� the strict com�
plementarity is proved�


�



The nonsingularity of the Hessian from the Lagrangian restricted to the
tangent space is obtained by proving that the Hessian is always strictly de��
nite� Since the linear constraints have no in�uence on this Hessian� it is only
important to consider the matrices corresponding to the objective function
and to the latter constraint� Both matrices represent the identity� but with
di�erent sign� Now the de�niteness of the Hessian can be concluded if the
multiplier corresponding to the quadratic constraint is di�erent from �
�
This follows immediately from the inequality x� �� x�� �

For t � 
 we consider two cases separately� First� using the parametrized
Sard�s Theorem it can be easily proved that it holds for almost all values of
the parameter A � At each feasible point of the set����	�x� v� w
 � IRn�m�s









hi�x
 � cTi x� di � �� i � I

gj�x
 � cTm�jx� dm�j � �� j � J
�jjx� x�jj� � jjv � v�jj� � jjw � w�jj� � �p

����

the LICQ is ful�lled�

As second step it should be proved that for almost all values of the pa�
rameter A� each generalized critical point of the problem

min f�x
 � ���xTAx� bTx� jjv � v�jj� � jjw � w�jj�

s�t�
hi�x
 � cTi x� di � �� i � I

gj�x
 � cTm�jx� dm�j � �� j � J
�jjx� x�jj� � jjv � v�jj� � jjw � w�jj� � �p�

�
�


where the LICQ is ful�lled� is a nondegenerated one�
The idea is to consider a mapping very similar to ��� The modi�cations

to be done on �� are the following�


� Eliminate the variable t� since the problem given in �
�
 is not para�
metric�

�� Consider a new multiplier associated to the compacti�cation inequality
constraint�

�� Add the gradient of the objective function to the sum of gradients in
��


�



After these modi�cations� similar arguments �using also that w� �� w�

lead to the use of the parametrized Sard�s Theorem and� after a simple anal�
ysis� to the mentioned result �note that a zero of the mentioned mapping is
associated to each generalized critical point with the LICQ
�
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Figure 
� The four x�components of the solution curve of problem ���

The proof for t � 
 is completed combinning both partial results and the
fact that the intersection of a �nite number of sets of measure zero is again
a set of measure zero�

Le us still mention that the statement obtained for the latter case t � 

provides a measurable set� and a suitable combination with the statement
for t di�erent from 
 can now be realized�

This observation concludes the proof of the genericity result�


�
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 �left
 and the corresponding multiplier
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 in the solution curve of problem ���

� Examples and numerical results�

In order to give a better idea of the feasibility of this continuation method
and its robusticity we have selected some standard problems from the lit�
erature and computed the corresponding paths by means of the embedding
studied in this paper� Our purpose with these calculations is not to com�
pare the power of the continuation methods with other algorithms� For the
pathfollowing in our the system we have used PAFO� which was develop at
the Humboldt�University Berlin� We are more interested in testing the pos�
sibility of calculating the actual solution of optimization problems by using
pathfollowing procedures� Therefore� we mainly report about the success or
failure of the quadratic penalty embedding for the calculation of a solution�

The problems selected were taken from two recent papers testing algo�

��
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Figure �� The x�components of the solution curves for example 
�

rithms for solving nonlinear optimization problems� From ���	 we tested all
problems except for the numbers ��� 
� and 

� �in the numeration of the
book �
�	
� For all these examples the calculation of the given solution �using
the startpoint proposed in the book
 runs without any di�culties� In fact�
singularities of Type � are not presented� From the paper �

	 we tested
almost all examples of nonlinear programming problems presented �some of
them having too large a dimension are not yet solvable by PAFO
� For the
other group the studied embedding has also been successful� In the case of
problem 
� a new solution which improves the solution proposed for the ex�
ample is generated inclusively� Furthermore� we have also used the proposed
starting points for these examples� Note that in our continuation method
any kind of �rst approximation step� by the resolution of a �xed optimiza�
tion problem� in order to aproximate the penalty curve is used�

We present some �gures representing the graphics of the obtained solution
curves for the problems mentioned above� The �gures 
� � and � represent
the solution curves obtained for the problem �� of �
�	 �example of Rosen�
Zusuki
 and �gure � corresponds to the calculations of the nonlinear problem

 in �

	�

As we present the results of the example 
 of �

	 only to show that we
obtain a new solution� the corresponding �gure � contains information on
the original variables x only�

Finally� we have implemented the following example�

f�x
 � �x� � �
� � ���x��

�
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 �left top
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 �right top
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 �bottom

for example 
� without compacti�cation�

s�t �
�


� � �x�� � �x�� � �x�� � ��x� � x��

Starting point� x� � ���� ���

In this example� the LICQ is not ful�lled in the points generated by us�

ing the pure approach of any sequential method� This is due to the selected
startpoint� With the given startpoint the solution curve obtained converges
to a point where the LICQ and the MFCQ are not ful�lled� In our continua�
tion approach this will be noti�ed by the appearance of a generalized critical
point of Type �� where it is imposible to jump�

We follow the curve of generalized critical points �for decreasing parame�
ter t and negative multipliers
 and �nally� after the appearance of new degen�
erated critical points of Type �� the value t � 
 is attained and a solution of

��
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Figure �� The curves x��t
 �left top
� x��t
 �left bottom
 and w�t

�right top
 for example 
� with compacti�cation�

the example is obtained� This example gives an idea of the utility of the con�
tinuation approach in order to obtain convergence without the assumption
of the MFCQ� but with the generic assumption of regularity of the obtained
embedding�

For a better understanding we have calculated this example twice� �rst
without the use of a compacti�cation constraint� and� second� with this con�
straint� Figure � shows some components for the �rst calculation and the
sake of convergence is noted� In this case the �pure� penalty method would
converge to the unfeasible point where the LICQ is violated� Observe how
the introduced variable w tends to in�nity when we approximate the point
���� �
� where the LICQ is violated�

In �gure � the curves of the second calculation are presented� An enlarge�
ment of the x�t
 component in the neighbourhood of x� � �� shows one of

��



the points of Typ � in the right bottom�
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