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Abstract. The optimal design problem for maximal torsion stiffness of an infinite bar
of given geometry and unknown distribution of two materials of prescribed amounts is
one model example in topology optimisation. It eventually leads to a degenerated convex
minimisation problem. The numerical analysis is therefore delicate for possibly multiple
primal variables u but unique derivatives σ := DW (Du). Even sharp a posteriori error
estimates still suffer from the reliability-efficiency gap. However, it motivates a simple edge-
based adaptive mesh-refining algorithm (AFEM) that is not a priori guaranteed to refine
everywhere. Its convergence proof is therefore based on energy estimates and some refined
convexity control. Numerical experiments illustrate even nearly optimal convergence rates
of the proposed adaptive finite element method (AFEM).

1. Introduction

The optimal design of two materials with given amounts to fill a given domain for a
maximal torsion stiffness has attracted much attention since the pioneering analysis of Kohn
and Strang, cf. [1, 14] for the setting of topology optimization and [23, 24, 20, 16, 17, 10, 12]
for mathematical and numerical studies. The mathematical modelling (outlined in Section 2)
leads to generalised solutions characterised by some convexified minimisation problem

(1.1) min
v∈H1

0
(Ω)

∫

Ω

ψ
(

|Dv|
)

dx−
∫

Ω

v dx.

For parameters 0 < t1 < t2 and 0 < µ1 < µ2 with t1µ2 = t2µ1, the energy density function
ψ : [0,∞) → R is defined by ψ(0) = λΘ(µ1 − µ2) for given numbers λ,Θ ∈ R and

(1.2) ψ′(t) :=







µ2t for 0 ≤ t ≤ t1,
t1µ2 = t2µ1 for t1 ≤ t ≤ t2,
µ1t for t2 ≤ t.

The purpose of this paper is to devise an adaptive algorithm and to analyse it in the spirit
of [3, 4, 15, 21, 22, 25]. This adaptive finite element method (AFEM) for (1.1) consists of
loops of the form

SOLVE → ESTIMATE → MARK → REFINE.

Because the right-hand side is constant, all data oscillation terms vanish and we are led to
refined estimates for the stress error with edge contributions only.
Throughout this paper, the energy density W : R

n → R reads W (A) := ψ(|A|) and its newly
established convexity control property (see Proposition 4.2) reads

(1.3) |DW (A) −DW (B)|2 . W (B) −W (A) −DW (A) · (B − A) for all A,B ∈ R
n.

Key words and phrases. convergence, adaptive algorithm, optimal design problem.
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It is known that exact and discrete minimizers u and uℓ are (possibly) non-unique, while

σ := DW (Du) and σℓ := DW (Duℓ)

are unique [12]. Theorem 4.3 below refines [12] and shows

(1.4) ‖σ − σℓ‖L2(Ω) .
(

∑

E∈Eℓ

η2
E

)1/2

for the edge jumps
ηE := hE [σℓ] · νE

of the normal components σℓ · νE of the piecewise constant discrete stress σℓ and the size
hE := |E| of the interior edge E ∈ Eℓ in the triangulation Tℓ of level ℓ of the adaptive
algorithm.

The main result in Theorem 3.1 in the spirit of [15, 21, 22, 25] (but without data oscillation)
guarantees convergence of the adaptive algorithm (AFEM) specified in Section 3. Proofs of
that and (1.3)-(1.4) follow in Section 4. Numerical experiments in Section 5 with domains
Ω and meshes T0 from Figure 1.1 conclude the paper. The initial mesh T0 = red2(Tc) is
obtained from the depicted Tc through two uniform red-refinements. In general, an energy
reduction cannot be expected after one refinement of a triangulation.
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Figure 1.1. Domains Ω1, ...,Ω4 and corresponding coarse meshes Tc with
T0 := red2(Tc) for the numerical experiments with (AFEM).

Example 1.1 (Counter-Example for Error and Energy Reduction). Suppose Ω =
⋃ T0 =

⋃T1

is a regular polygon, decomposed in the regular triangulations T0 and T1 = bisec3(T1) as
depicted in Figure 1.2. Then σ0 = σ1 for the minimizers u0 = u1 of (1.1) in P1(T0) ∩H1

0 (Ω)
and P1(T1) ∩H1

0 (Ω), respectively.

Proof. To sketch the proof notice that σ0|Tj
is parallel to Dϕ|Tj

for the globally continuous
and T0–elementwise affine ϕ ∈ P1(T0) ∩ H1

0 (Ω) defined by ϕ(A) = 1 plus ϕ = 0 along ∂Ω.
Since σ0 = DW (Du0) there holds

σ0|Tj
= sDϕ|Tj

for some s ∈ R independent of j = 1, 2, ..., k. Equilibrium for u0 = sϕ yields
∫

Tj

σ0 ·Dϕdx−
∫

Tj

ϕdx = 0

and s = h2/3 for h = |A− C1| = |A− C2| as in Figure 1.3. It remains to prove that
∫

Ω

DϕE · σ0 dx =

∫

Ω

ϕE dx
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Figure 1.2. Triangulation T0 = {T1, ..., Tk} (left) and T1 = bisec3(T0) (right)
into congruent triangles with vertex A in the center, which is the only free
node and the newest vertex in T0.

A

B1

B2

B3

C1C2

D1

D2

D3

K1

K2

K3

K4

Figure 1.3. Support ωE = K1 ∪ ...∪K4 with E = ∂T1 ∩ ∂T2 = conv{A,B2}
and ϕE ∈ P1(T1) ∩H1

0 (ωE) defined by ϕE(D2) = 1 and ϕE = 0 on ∂ωE .

for any interior edge E in T0 and corresponding nodal basis function ϕE ∈ P1(T1) ∩H1
0 (Ω).

Adopt notation from Figure 1.3 for E = conv{A,B2}. Then ϕE is the nodal basis function
of D2 in T1 and DϕE|K1

is parallel to the straight line through A and C1, while DϕE|K2
is

parallel to that through B1 and B2. Since σ0|K1∪K2
is parallel to the straight line through A

and C1, it is orthogonal to the edge conv{B1, B2}. Consequently, with
∣

∣DϕE|K1

∣

∣ = 2h−1,

∫

T1

σ0 ·DϕE dx =

∫

T1

sDϕ ·DϕE dx

= s |K1| 2h−2 = (2/3)|K1| = |T1|/6 =

∫

T1

ϕE dx.
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The same formula holds when T1 and K1 are replaced by T2 and K3, respectively. The two
formulae prove

∫

Ω

σ0 ·DϕE dx =

∫

Ω

ϕE dx.

Since E is arbitrary, it follows that σ0 = σ1 and u0 = u1. �

The example shows that energy reduction may fail without an inner node property of the
refinement in step MARK of (AFEM) in Section 3.

2. An Outline of the Mathematical Modelling

This section recalls the essential steps for the mathematical modelling of an optimal design
problem and its connection to the variational problem

(P ) inf
v∈V

G(λ, v)

for V := H1
0 (Ω) and its supremum over the real parameter λ and derives the formula for

G(λ, v).

2.1. Class of Shear Modulus Variables. Given a simply-connected bounded 2D Lipschitz
domain Ω ⊂ R

2 consider the infinite cylinder Ω × R under torsion. The 3D problem is
invariant under translation along the third component and so reduces to a 2D problem in
Ω as discussed below. The optimal design problem is to maximise the torsion stiffness for
an optimal composition of the prescribed section Ω with two materials of reciprocal shear
stiffness 0 < µ1 < µ2 <∞ located at Ω1 and Ω2,

Ω = Ω1 ∪ Ω2 and Ω1 ∩ Ω2 = ∅.

The amounts of the materials are prescribed with some parameter 0 < Θ < 1 and exactly
fills the domain (so that a partition is possible), i.e., where | · | denotes the area (the 2D
Lebesgue measure)

|Ω1| = Θ |Ω| and |Ω2| = (1 − Θ)|Ω|.
It turns out that the torsion stiffness depends only on the shear modulus µ(x) which depends
on the material point x ∈ Ω. In fact, one seeks some shear modulus distribution in the set

M := {µ ∈ L∞(Ω) : µ(x) ∈ {µ1, µ2} for almost every x ∈ Ω}

and this defines Ωj := {x ∈ Ω : µ(x) = µj} up to sets of measure zero. The optimal design
problem is therefore recast to seek some shear modulus distribution in the set

MΘ :=
{

µ ∈ M :

∫

Ω

µ(x) dx = µΘ |Ω|
}

with µΘ := Θµ1 + (1 − Θ)µ2

to model the volume constraint.
4



2.2. Torsion Stiffness. Given any µ ∈ MΘ, one requires the torsion stiffness T of the
3D beam with a section Ω and the non-homogeneous shear modulus µ(x)−1. The reciprocal
torsion T−1 is also given by a minimisation problem for the 2D stress vector σ2D = (σ2D

1 , σ2D
2 )

in the section Ω,

T−1 = inf
σ2D∈Σ

E/m2

where E is the elastic energy and m is the resulting 2D moment. For any given σ2D,

E =
1

2

∫

Ω

µ(x)|σ2D(x)|2 dx and m =

∫

Ω

(

x2σ
2D
1 (x) − x1σ

2D
2 (x)

)

dx

(recall that σ2D
j and xj denotes the jth component of σ2D and x, respectively). The stress

field σ2D is admissible, written σ2D ∈ Σ, if it belongs to L2(Ω; R2) and the distributional
divergence divσ2D satisfies equilibrium (which reads in its strong form)

divσ2D = 0 in Ω and σ2D · ν = 0 along ∂Ω

(where ν denotes the exterior unit normal along the boundary ∂Ω). In other words, σ2D is
divergence free in the simply-connected domain Ω. Hence there exists some u ∈ V such that

σ2D = (−∂u/∂x2, ∂u/∂x1)

and this defines a one-to-one relation between σ2D ∈ Σ and u ∈ V . Moreover, a direct
substitution followed by an integration by parts (with u = 0 along ∂Ω) leads to

m = −
∫

Ω

(x2∂u/∂x2 + x1∂u/∂x1) dx = 2

∫

Ω

u dx.

In conclusion, the reciprocal torsion stiffness reads

8T−1 = inf
v∈V

∫

Ω
µ|Dv|2 dx

(
∫

Ω
v dx)2

.

From calculus of variations, any minimiser u ∈ V satisfies the first-order variation in the
sense that

∫

Ω

µDu ·Dv dx =
(

8T−1

∫

Ω

u dx
)

∫

Ω

v dx for all v ∈ V.

Apparently, any multiple of u is also a minimiser and hence the scaling of u may be fixed.
In the sequel we choose the multiple constant such that

8T−1

∫

Ω

u dx = 1.

Therefore, any minimiser u ∈ V satisfying this constraint is a weak solution of

−div(µDu) = 1 in Ω

and this unique u attains the minimum in

− T

16
= min

v∈V

(1

2

∫

Ω

µ|Dv|2 dx−
∫

Ω

v dx
)

.
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2.3. Optimal Design. According to the previous subsections, let F (µ, v) be defined for
µ ∈ M and v ∈ V by

F (µ, v) :=
1

2

∫

Ω

µ|Dv|2 dx−
∫

Ω

v dx.

Then, the optimal design problem for the maximal torsion stiffness reads: Find the optimal
design µ in

(M) inf
µ∈MΘ

inf
v∈V

F (µ, v).

An analytic solution is known for the open ball where Ω2 is the centered smaller ball and
Ω1 is the complementary ring with radius determined by the volume constraint. Otherwise,
there may be no classical solutions with a discrete µ (where discrete means that µ assumes
only the two values µ1, µ2) and, in fact, sequences of designs in MΘ exist with finer and finer
oscillations and smaller and smaller values of infv∈V F (µ, v) such that the weak limit of such
sequences in L∞(Ω) is no longer in MΘ.

The rest of this subsection outlines the relaxation procedure by Kohn and Strang in the
essential steps and solely on the formal level. The deeper functional analytic justification
can be found in [19].

In the first step of the reformulations, one replaces the volume constraint in MΘ by some
Lagrange parameter ansatz where (M) is equivalent to

sup
λ∈R

inf
µ∈M

inf
v∈V

(

F (µ, v) − λ

∫

Ω

(µ− µΘ)dx
)

.

One then replaces the order of the last two infima in step two.
Given any λ ∈ R and v ∈ V , step three computes

inf
µ∈M

(

F (µ, v) − λ

∫

Ω

(µ− µΘ)dx
)

=

∫

Ω

g̃λ(|Dv|) dx−
∫

Ω

v dx+ λ|Ω|µΘ

in a pointwise minimisation with

g̃λ(t) := min{(1
2
t2 − λ)µ1, (

1

2
t2 − λ)µ2}.

That is, given |Dv(x)| and v(x), µ(x) is chosen as the value of µ1 or µ2 which leads to the
smaller value

(
1

2
|Dv(x)|2 − λ)µj.

Thus, if 1
2
|Dv(x)|2 − λ < 0 then µ(x) = µ2 and if 1

2
|Dv(x)|2 − λ > 0 then µ(x) = µ1; in case

1
2
|Dv(x)|2 − λ = 0 any choice is possible with a vanishing contribution. This leads to the

aforementioned formula with g̃λ.
Step four considers the problem for fixed λ ∈ R and

G̃(λ, v) =

∫

Ω

g̃λ(|Dv|) dx−
∫

Ω

v dx+ λµΘ|Ω|,

namely the nonconvex minimisation problem (for each given parameter λ)

inf
v∈V

G̃(λ, v).

It is well-established in the modern calculus of variations that, owing to the non-convex g̃λ

the infimum may in fact not be attained. Nevertheless, the infimal value can equivalently
6



be computed as the minimal value of the convexified problem where g̃λ is replaced by its
convex hull gλ := g̃∗∗λ . With t1 :=

√

2λµ1/µ2 and t2 :=
(

µ2/µ1

)

t1 there holds

gλ(t) :=











µ2(t
2/2 − λ) for t ≤ t1,√

t1t2µ1µ2 t− λ(µ1 + µ2) for t1 ≤ t ≤ t2,

µ1(t
2/2 − λ) for t2 ≤ t.
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Figure 2.1. Plot of two parabola and one straight line in the definition of
gλ(t) for µ1 = 1, µ2 = 2, and λ = 1/2. For these values it holds that t1 =
√

2λµ1/µ2 = 1/
√

2 and t2 = (µ2/µ1)t1 =
√

2.

Figure 2.1 illustrates the functions gλ and g̃λ. Altogether, the problem (M) is equivalent
to the saddle point problem

(S) sup
λ∈R

inf
v∈V

G(λ, v) for G(λ, v) =

∫

Ω

gλ(|Dv|) dx−
∫

Ω

v dx+ λµΘ|Ω|.

The main result of Kohn and Strang [19] proves that (M) and (S) are equivalent. The proof
therein follows the outline given here and fills the remaining mathematical gaps rigorously.
This paper is devoted to the numerical analysis of (P ) which results from (S) by freezing
the parameter λ.

3. AFEM and Its Convergence

This section states the algorithm (AFEM) to generate self-adapted meshes and discusses
its convergence properties.

(AFEM) Input: A coarse regular triangulation T0 = red2(Tc) with Tc from Figure 1.1. For
ℓ = 0, 1, 2, ... (until termination) do SOLVE, ESTIMATE, MARK, REFINE to output a sequence
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of discrete spaces V0 ⊂ V1 ⊂ V2 ⊂ ... ⊂ ∪∞
ℓ=0Vℓ ⊆ V = H1

0 (Ω) and discrete minimizers
u0, u1, u2, ... with associated stress approximations σ0, σ1, σ2, ...

SOLVE: Given the regular triangulation Tℓ of Ω into triangles set

Pk(Tℓ) := {vh ∈ L∞(Ω) : ∀T ∈ Tℓ, vh|T is a polynomial of total degree ≤ k},
let Nℓ be the union of all vertices of triangles in Tℓ also called nodes, and Eℓ denote the set
of all interior edges in Tℓ. Compute a discrete minimizer uℓ of I in Vℓ := P1(Tℓ) ∩ V with
Newton-Raphson scheme where W (·) = ψ(| · |) with ψ from (1.2) and

I(v) :=

∫

Ω

W (Dv) −
∫

Ω

v dx for all v ∈ Vℓ.

Set σℓ := DW (Duℓ) ∈ L2(Ω; R2).

ESTIMATE: Compute ηE := h
1/2
E || [σℓ] · νE||L2(E) for all E ∈ Eℓ and set

η
(ℓ)
E

:=
(

∑

E∈Eℓ

η2
E

)1/2

,

η
(ℓ)
A := ||σℓ −Aℓσℓ||L2(Ω),

η
(ℓ)
G := ||Duℓ − AℓDuℓ||L2(Ω).

Here, given pℓ ∈ P0(Tℓ)
2, the function Aℓpℓ ∈ S1(Tℓ)

2 = P1(Tℓ)
2 ∩H1(Ω; R2) is defined by

(

Aℓpℓ

)

(z) := |ωz|−1

∫

ωz

pℓ dy

for z ∈ Nℓ ∩ Ω and ωz, with area |ωz|, is the union of all T ∈ Tℓ with vertex z.

MARK: Sort Eℓ in (E1, ..., EN) with ηE1
≤ ηE2

≤ ... ≤ ηEN
and choose the minimal k with

1

2
η

(ℓ)
E

≤
(

N
∑

j=k

η2
Ej

)1/2

.

Set Mℓ :=
{

Ek, Ek+1, ..., EN}.

REFINE: Generate refined triangulation Tℓ+1 with subordinated finite element space Vℓ+1 :=
P1(Tℓ+1) ∩ V ⊃ Vℓ such that every triangle T in Tℓ with some edge E in Mℓ is refined by
bisec5 in Tℓ+1 and the shape regularity and conformity of Tℓ+1 is maintained.

More details on REFINE can be found in [7] for 2D triangulations into triangles with
refinements from the list depicted in Figure 3.1.

Theorem 3.1. There exists some constant 0 < κ ≤ 1 (which depends on T0 and W only)
such that σ = DW (Du), σℓ = DW (Duℓ) from the Algorithm (AFEM), and

0 ≤ δℓ := minE(Vℓ) − minE(V ) = E(uℓ) −E(u)

satisfy

κ(2µ2)
−2‖σ − σℓ‖4

L2(Ω) + δℓ+1 ≤ (1 − κδℓ)δℓ for ℓ = 0, 1, 2, ... .
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Figure 3.1. Possible refinements of a triangle T in (AFEM).

The proof of Theorem 3.1 follows in Section 4. The interpretation of Theorem 3.1 is that
(δℓ)ℓ=0,1,2,... behaves like a linearly convergent sequence (with limit zero) as long as δℓ ≥ ε > 0
stays away from zero (with an energy error reduction factor ρ := 1− κε < 1). This is called
q-linear convergence in the preasymptotic range. It follows that

δℓ ≤ ρℓδ0 for all ℓ = 0, 1, 2, ..., L

and L such that δL < ε. Since δℓ ≤ δℓ+1 there holds

δℓ < ε for all ℓ = L,L+ 1, L+ 2, ...

This and the fact that ε > 0 may be chosen arbitrarily small implies convergence

(3.1) lim
ℓ→∞

δℓ = 0

of the energy errors and as a consequence of the stress errors

lim
ℓ→∞

‖σ − σℓ‖L2(Ω) = 0.

Moreover, the proof of Theorem 3.1 implies that

(2µ2)
−2

∞
∑

ℓ=0

‖σ − σℓ‖4
L2(Ω) +

∞
∑

ℓ=0

δ2
ℓ ≤ κ−1δ0.

In other words, with the sequence spaces

ℓp := {(xj)j=0,1,2,... ∈ R
N0 :

∞
∑

j=0

|xj |p <∞},

there holds

(‖σ − σj‖L2(Ω))j=0,1,2,... ∈ ℓ4 and (δj)j=0,1,2,... ∈ ℓ2.

4. Proofs

Theorem 3.1 and the reliability (1.4) is based on the new estimate (1.3) which will be a
consequence of the following lemma.

Lemma 4.1. For ψ as in (1.2) and all a, b ≥ 0 there holds

2
(

ψ(a) − ψ(b)
)

+ bψ′(b) − aψ′(a) ≤ ψ′(a)2
(

a/ψ′(a) − b/ψ′(b)
)

.
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Proof. Suppose first that a ≥ b and let I := |(a, b) ∩ (t1, t2)| be the length of the interval
(a, b) ∩ (t1, t2). Since ψ′ is monotone, there holds

(4.1) (−I)(µ2t1)
2 ≤ (−I)ψ′(a)2.

Note that (4.1) is trivial if I = 0 and otherwise follows from a ≤ t2 and ψ′(a) ≤ ψ′(t2) =
µ1t2 = µ2t1. On defining φ(t) = ψ′(t)/t there holds

t2φ′(t) =

{

0 for t 6∈ (t1, t2),
−µ2t1 for t ∈ (t1, t2),

(

1/φ(t)
)′

=

{

0 for t 6∈ (t1, t2),
1/(µ2t1) for t ∈ (t1, t2).

Therefore, we deduce with (4.1) that
∫ b

a

t2φ′(t) dt = −Iµ2t1 ≤ −I ψ
′(a)2

µ2t1
= −ψ′(a)2

∫ b

a

(

1/φ(t)
)′
dt

= −ψ′(a)2
(

1/φ(b) − 1/φ(a)
)

= ψ′(a)2
(

a/ψ′(a) − b/ψ′(b)
)

.

Integration by parts implies
∫ b

a

t2φ′(t) dt = −2

∫ b

a

tφ(t) dt+
(

b2φ(b) − a2φ(a)
)

= −2

∫ b

a

ψ′(t) dt+
(

bψ′(b) − aψ′(a)
)

= −2
(

ψ(b) − ψ(a)
)

+
(

bψ′(b) − aψ′(a)
)

.

The combination of the two estimates implies the lemma in case a ≤ b. If a > b then the
choice I = −|(b, a) ∩ (t1, t2)| and the above argumentation show the lemma. �

Proposition 4.2. For A ∈ R
n let W (A) := ψ(|A|). For any A,B ∈ R

n there holds

(2µ2)
−1 |DW (A) −DW (B)|2 ≤W (B) −W (A) −DW (A) · (B − A).

Proof. We abbreviate a := |A| and b := |B|. Noting that A · DW (A) = aψ′(a) and B ·
DW (B) = bψ′(b) we deduce from Lemma 4.1 that

LHS := B ·DW (B) −A ·DW (A) − ψ′(a)2
(

a/ψ′(a) − b/ψ′(b)
)

≤ 2
(

W (B) −W (A)
)

.

Using once more that aψ′(a) = A ·DW (A) we rewrite the left-hand side as

LHS = 2DW (A) · (B − A) +B ·
(

DW (B) − 2DW (A)
)

+ ψ′(a)2 b

ψ′(b)
.

Since B =
(

b/ψ′(b)
)

DW (B) and ψ′(a)2 = |DW (A)|2 we infer that

B ·
(

DW (B) − 2DW (A)
)

+ ψ′(a)2 b

ψ′(b)
=

b

ψ′(b)
|DW (A) −DW (B)|2.

A combination of the estimates with b/ψ′(b) ≥ 1/µ2 implies the assertion. �

Remark 4.1. Proposition 4.2 is sharper than the estimate in [10, 12, 13], but those are in
fact equivalent [17, 18].

Theorem 4.3. There hold (1.4) and

(2µ2)
−1‖σ − σℓ‖2

L2(Ω) + δℓ .
(

∑

E∈Eℓ

η2
E

)1/2

.
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Proof. For almost all x ∈ Ω and σℓ := DW (A), A = Duℓ(x) and σ := DW (B), B = Du(x),
Proposition 4.2 reads

(2µ2)
−1|σ(x) − σℓ(x)|2 ≤W (Du(x)) −W (Duℓ(x)) − σℓ(x) ·D(u− uℓ)(x).

The integration over x ∈ Ω leads to

(4.2) (2µ2)
−1‖σ − σℓ‖2

L2(Ω) + δℓ ≤ Resℓ(u− uℓ)

for the residual

Resℓ(v) :=

∫

Ω

v dx−
∫

Ω

σℓ ·Dv dx.
Given this residual, one argues as in the linear situation for the design of explicit residual-
based error estimators. With a particular weak Clement-type interpolation operator J from
[8] one argues as in [4, 5, 9] to deduce

‖Resℓ‖V ∗ .
(

∑

E∈Eℓ

η2
E

)1/2

.

Note that the right-hand side is constant and hence data oscillation terms vanish. Finally,
owing to the reliability-efficiency gap [9], there is no (immediate) control on ‖u− uℓ‖V and
hence solely growth conditions are available to guarantee ‖u‖V + ‖uℓ‖V . 1. Therefore, the
aforementioned estimates and

‖u− uℓ‖V . 1

yield the assertion. �

Remark 4.2. Theorem 4.3 is sharper than the corresponding results in [9, 12, 13].

Proof of Theorem 3.1. The residual is the same as for linear elliptic problems, e.g., as for the
Poisson problem. Hence the subsequent arguments are well established in [4, 15, 21, 22, 25]
and therefore are briefly mentioned. The reliability of the residual-based estimates from
Theorem 4.3 and the bulk criterion give

(4.3) (2µ2)
−1‖σ − σℓ‖2

L2(Ω) + δℓ .
(

∑

E∈Mℓ

η2
E

)1/2

,

where ηE := h
1/2
E ‖[σℓ] · νE‖L2(E) is computed with respect to the triangulation Tℓ. For each

E in Mℓ the step REFINE allows the design a discrete test function ϕE in Vℓ+1 with support
ωE = int(T+ ∪ T−) for the neighbouring elements T+, T− in Tℓ with E = ∂T+ ∩ ∂T− and the
properties

∫

E
ϕE ds = 1

2
hE and, by the inner node property,

∫

ωE
ϕE dx = 0 plus ‖ϕE‖V ≈ 1.

Then,with a piecewise integration by parts

1

2
ηE =

∫

E

ϕE[σℓ] · νE ds =

∫

ωE

σℓ ·DϕE dx+

∫

ωE

ϕE divh σℓ dx.

Since the discrete stress is piecewise constant, its piecewise divergence vanishes. Since σℓ+1

is in discrete equilibrium with ϕE ∈ Vℓ+1 and right hand side 1 there follows
∫

ωE

σℓ+1 ·DϕE dx =

∫

ωE

ϕE dx.

Consequently,
1

2
ηE =

∫

ωE

(σℓ − σℓ+1) ·DϕE dx.

11



Since ‖ϕE‖V . 1 this implies
ηE . ‖σℓ+1 − σℓ‖L2(ωE).

The finite overlap of the edge patches (ωE : E ∈ Mℓ) leads to

(4.4)
∑

E∈Mℓ

η2
E . ‖σℓ+1 − σℓ‖2

L2(ωE).

On the other hand, σℓ+1 = DW (A), A = Duℓ+1 and σℓ = DW (B), B = Duℓ lead in
Proposition 4.2 to

(2µ2)
−1‖σℓ+1 − σℓ ‖2

L2(Ω) ≤
∫

Ω

W (Duℓ) −W (Duℓ+1) dx−
∫

Ω

σℓ+1 ·D(uℓ − uℓ+1) dx.

Since uℓ+1 − uℓ ∈ Vℓ+1 and σℓ+1 satisfies the discrete equilibrium condition
∫

Ω

σℓ+1 ·D(uℓ − uℓ+1) dx =

∫

Ω

(uℓ − uℓ+1) dx,

the aforementioned estimate reads

(4.5) (2µ2)
−1‖σℓ+1 − σℓ ‖2

L2(Ω) ≤ δℓ − δℓ+1.

The combination of (4.3)-(4.5) provides

(2µ2)
−1‖σ − σℓ‖2

L2(Ω) + δℓ .
(

∑

E∈Mℓ

η2
E

)1/2

. ‖σℓ+1 − σℓ‖L2(Ω) ≤ (2µ2)
1/2(δℓ − δℓ+1)

1/2.

In other words, for some constant C ≥ 1 (which depends on the form of the triangular
element domains through the minimal interior angle, on µ1 and on the growth condition gλ),
there holds

(2µ2)
−2‖σ − σℓ‖4

L2(Ω) + δ2
ℓ ≤ C(δℓ − δℓ+1).

This is the assertion with κ = C−1 ≤ 1. �

5. Numerical Experiments

This section reports on four numerical experiments defined through the respective domains
Ω1,Ω2,Ω3,Ω4 and initial meshes T0 := red2(T0) plus the eventually computed values of λ
of Figure 1.1. In all of the examples, µ1 = 1, µ2 = 2, and Θ = 1/2. The real numbers

t1 =
√

2λµ1/µ2 and t2 = (µ2/µ1)t1 are defined through the parameter λ (from Figure 1.1)
which was determined by a golden section search in the interval [0, 1] and a minimization
of the energy functional in Vℓ with triangulations red4(T0) resulting from four uniform red-
refinements (cf. Figure 3.1) of the respective coarse triangulations T0. The sequence of
intervals Ij = [aj , bj ] provided by the search routine with stopping criterion bj −aj < 10−4 is
for j = 5, 6, ..., 20 given (for j = 5, 6, ..., 12 in the first and for j = 13, 14, ..., 20 in the second
row) by:

aj = 0 0 0 0 0 .005025 .005025 .006944
bj = .090170 .055728 .034442 .021286 .013156 .013156 .010050 .010050

aj = .006944 .007678 .008131 .008131 .008303 .008411 .008411 .008411
bj = .008864 .008864 .008864 .008584 .008584 .008584 .008518 .008477
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For each new interval end with j = 9, 10, ..., 20 (i.e., λj = 0.013156, 0.005025, 0.010050, ...)
we plotted the obtained solution of the minimization problem in Figures 5.1 and 5.2. After
20 iterations the numerical solution has approximately the right volume fraction 1/2 for each
of the two materials with a transition region separating them.

Each of the domains Ω1,Ω2,Ω3,Ω4 reflects particular characteristics of the adaptive nu-
merical approximation of (1.1): No significant local refinement is expected to occur in case
of the convex domain Ω1 which has also been computed on uniform triangulations in [19].
This is different for the L-shaped domain Ω2. The reentrant corner at the origin presumably
limits the regularity of the exact solution and therefore requires a higher resolution in its
neighborhood in order to obtain optimal approximations. The regular hexagon defined by
Ω3 can be regarded as an approximation of a circular domain. In analogy to known explicit
solutions of (1.1) in disks, an almost circular interface separating the two phases is expected
for Ω3. The existence and approximation theory discussed in the previous section does not
immediately apply to the case of the non-Lipschitz domain Ω4. Nevertheless, practical ex-
perience from elliptic problems suggests that adaptive finite element methods still provide
accurate approximations. These expectations are confirmed by our numerical experiments.

Figure 5.3, 5.7, 5.11, and 5.15 display the sequences of triangulations generated by (AFEM)
for the domains Ω1, Ω2, Ω3, and Ω4. For the domains Ω1 and Ω3 we do not observe a
significant local refinement, while for Ω2 and Ω4 there is a strong local refinement towards
the origin at which the domains have reentrant corners.

The Figures 5.4, 5.8, 5.12, and 5.16 display the quantities ηE, ηA, and ηG versus the number
of degrees of freedoms for sequences of uniformly and adaptively generated triangulations.
We remark that ηE and ηA provide upper bounds for the square of the stress error and
observe from the plots that these quantities decay to zero at different rates in the examples.
For the domains Ω1 and Ω3 they converge at the same rate to zero while for Ω2 and Ω4 the
adaptive mesh-refinement strategy leads to improved, nearly linear convergence rates for the
error bounds. The quantities ηG do not allow for a straight-line in the logarithmic scaling
of the plots. This is in agreement with the expectation that ηG cannot be a lower bound
for (any power of) the stress error. Figures 5.5, 5.9, 5.13, and 5.17 show the quantities δℓ
for ℓ = 0, 1, 2, ... and uniform and adaptive mesh-refinement with a logarithmic scaling on
both axis for the domains Ω1, Ω2, Ω3, and Ω4. We deduce a similar behavior as for the error
estimators.

The volume fractions Λ(|Duℓ|) are defined through the numerical approximation uℓ ∈ Vℓ

for ℓ = 11 by the function

Λ(t) =







0 for 0 ≤ t ≤ t1,
t2−t
t2−t1

for t1 ≤ t ≤ t2,

1 for t2 ≤ 1,

and displayed in Figures 5.6, 5.10, 5.14, and 5.18 for the domains Ω1, Ω2, Ω3, and Ω4. Strong
convergence of this quantity can only be expected if the approximations uℓ converge strongly.
Sufficient but very severe conditions for this based on stabilisation are stated in [2]. In all of
the examples we observe an arrangement of the two materials consisting of an interior region,
a boundary layer, and a small transition layer between the two regions. In order to make the
transition layer better observable we plotted for each of the four examples the microstructure
region consisting of those points {x ∈ Ω : 0 < Λ(|Du11(x)|) < 1} =: {0 < Λ(Du11) < 1} in
the domain Ω where the function Λ(|Du11|) is neither 0 nor 1.
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The overall experience with (AFEM) for this degenerated minimisation problem from
topology optimisation at hand is that local mesh-refinement is enforced as in strictly convex
minimisation problems. A strong local refinement towards the interface separating the two
phases does not arise in all of our numerical experiments and does not appear a necessity
for linear convergence of the stress error. We conjecture that to be different for higher-order
finite element methods.
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Figure 5.1. Sequence of volume fractions corresponding to solutions uh for
new interval ends in the golden section search for the determination of the
optimal λ in case of domain Ω1.
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Figure 5.2. Sequence of volume fractions corresponding to solutions uh for
new interval ends in the golden section search for the determination of the
optimal λ in case of domain Ω1 (in gray shading).
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Figure 5.3. Adaptively generated triangulations Tℓ for ℓ = 0, 1, 2, ..., 11 for Ω1.
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Figure 5.4. Error estimators ηE , ηA, and ηG versus number of degrees of
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Figure 5.5. Decay of δℓ on the sequence of adaptively generated triangula-
tions Tℓ for ℓ = 0, 1, 2, ..., 19 for Ω1.
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Figure 5.6. Volume fractions (upper left and lower plot) and microstructure
region {0 < Λ(|Du11|) < 1} plotted in a darker shading (upper right plot) on
T11 for Ω1.
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Figure 5.7. Adaptively generated triangulations Tℓ for ℓ = 0, 1, , 2, ..., 11 for Ω2.
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Figure 5.8. Error estimators ηE , ηA, and ηG versus number of degrees of
freedom for Ω2.

10
1

10
2

10
3

10
4

10
5

10
6

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

N

δ

δ
l
   (uniform refinement)

δ
l
   (adaptive refinement)

Figure 5.9. Decay of δℓ on the sequence of adaptively generated triangula-
tions Tℓ for ℓ = 0, 1, 2, ..., 19 for Ω2.
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Figure 5.10. Volume fractions (upper left and lower plot) and microstruc-
ture region {0 < Λ(|Du11|) < 1} plotted in a darker shading (upper right plot)
on T11 for Ω2.
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Figure 5.11. Adaptively generated triangulations Tℓ for ℓ = 0, 1, 2, ..., 11 for Ω3.

24



10
1

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

η

N

η
E
  (uniform)

η
A
  (uniform)

η
G

  (uniform)
η

E
  (adaptive)

η
A
  (adaptive)

η
G

  (adaptive)

Figure 5.12. Error estimators ηE , ηA, and ηG versus number of degrees of
freedom for Ω3.
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Figure 5.13. Decay of δℓ on the sequence of adaptively generated triangu-
lations Tℓ for ℓ = 0, 1, 2, ..., 17 for Ω3.
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Figure 5.14. Volume fractions (upper left and lower plot) and microstruc-
ture region {0 < Λ(|Du11|) < 1} plotted in a darker shading (upper right plot)
on T11 for Ω3.
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Figure 5.15. Adaptively generated triangulations Tℓ for ℓ = 0, 1, 2, ..., 11 for Ω4.
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Figure 5.16. Error estimators ηE , ηA, and ηG versus number of degrees of
freedomfor Ω4.
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Figure 5.17. Decay of δℓ on the sequence of adaptively generated triangu-
lations Tℓ for ℓ = 0, 1, 2, ..., 17 for Ω4.
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Figure 5.18. Volume fractions (upper left and lower plot) and microstruc-
ture region {0 < Λ(|Du11|) < 1} plotted in a darker shading (upper right plot)
on T11 for Ω4.
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