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Abstract

In this paper we study the asymptotic properties of d-dimensional
linear fractional differential equations with time delay. First results on
existence and uniqueness of solutions are presented. Then we propose
necessary and sufficient conditions for asymptotic stability of equations
of this type using the inverse Laplace transform method.
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1 Introduction

Delay or functional differential equations (DDEs) are used to describe sys-
tems with time delay. Such processes arise in many areas of science - in
biology (time to maturity and incubation time), controlled systems (delayed
feedback), economics (time to transport, time lag for getting information).
In general, time delay is believed to have a negative impact on stability of
systems. Detailed results on asymptotic properties of DDEs can be found in
the book of J.K. Hale and S.M. Verduyn Lunel, [6]. The general linear case is
treated in [8]. Over the past years the theory of fractional order linear delay
differential equations (FDDEs) has attracted attention of mathematicians
and engineers. In [1], [13], [5] the authors discuss the analytical stability
bound for the class of fractional delay difference equations. In [9], [10] finite
time stability of robotic systems is studied, where a time delay appears in
∗This work was supported by the Deutsche Telekom Stiftung and the International

Research Training Group 1339 SMCP.
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PDα fractional control system.
However, there exists no general theory of equations of such a type. In this
paper we study a generalization of equations presented in [1], [13], [5], [9],
[10], [14]. We consider a general d-dimensional linear FDDE

(Dα
c y)(t) =

∫ 0

−τ
y(t+ u)A( du), t ∈ [0, T ],

y(t) = ξ(t), for a.a. t ∈ [−τ, 0), y(0) = ξ0,

where Dα
c denotes the Caputo derivative of order α ∈ (0, 1), A is a IR× IR-

valued matrix of signed σ-finite Borel measures, τ time delay and ((ξ(x) :
x ∈ [−τ, 0]), ξ0) is the initial condition.
Using the inverse Laplace transform method we are able to give necessary
and sufficient conditions for asymptotic stability of linear FDDEs. It turns
out that this property depends on the structure of the measure A. If A
satisfies A[−τ, 0] 6= 0 and detA[−τ, 0] 6= 0 then the fundamental solution
converges to zero at polynomial rate. In the case A[−τ, 0] = 0 we obtain
polynomial convergence to the identity matrix.

This paper is structured as follows. In Section 2 we introduce notation,
definitions, and preliminary facts which are used throughout this paper. In
Section 3 we prove existence and uniqueness results for linear FDDEs. In
Section 4 we present the Laplace transform of the fundamental solution R
and general solution y and show how y can be expressed in terms of R and
the initial conditions ξ, ξ0. In the last section we state and prove our main
result on asymptotic properties of the fundamental solution.

2 Fractional Order Delay Differential Equation

In this section, we present notation, definitions, and recall well-known re-
sults about fractional differential equations. For more details the interested
reader is referred to the books by Samko et al. ([12], Chapter 2) and Kilbas
et al. ([7], Chapter 2).

We first introduce the Riemann-Liouville fractional integral, which is a gen-
eralization of the Cauchy formula for repeated integration ([11], section 2.7).
Throughout this paper, we assume that T > 0 and 0 ≤ α ≤ 1, which is the
case in many applications.

Definition 2.1. Let f ∈ L1[0, T ]. The integral

(Iαf)(x) :=
1

Γ(α)

∫ x

0
(x− t)α−1f(t) dt, x ∈ [0, T ], (2.1)

is called the Riemann-Liouville fractional integral of order α. For α = 0 we
set Iα = Id, the identity operator.
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The fractional derivative operator is the inverse operator of the Riemann-
Liouville fractional integral:

Definition 2.2.

1. By D we denote the operator that maps a differentiable function onto
its derivative, i.e.,

Df(x) := f ′(x).

2. For functions f on [0, T ] the operator Dα defined by

(Dαf)(x) := D(I1−αf)(x) =
1

Γ(1− α)
d

dx

∫ x

0
(x−t)−αf(t) dt, x ∈ (0, T ),

(2.2)

is called Riemann-Liouville fractional derivative of order α.

In particular, D0f = f and D1f = Df . The following lemma gives a
sufficient condition for existence of fractional derivatives:

Lemma 2.1 ([12], Lemma 2.2). Let f be an absolutely continuous function,
i.e., f ∈ Ca[0, T ], where

Ca[0, T ] = {f : [0, T ]→ IR,∃g ∈ L1[0, T ] : f(x) = f(0)+
∫ x

0
g(t) dt,∀x ∈ [0, T ]}.

Then Dαf exists almost everywhere. Moreover Dαf ∈ Lr(0, T ), 1 ≤ r <
1/α and

(Dαf)(x) =
1

Γ(1− α)

[
f(0)
xα

+
∫ x

0
(x− t)−αf ′(t) dt

]
.

When dealing with fractional differential equations one needs to specify
certain initial conditions to guarantee the uniqueness of solution. For the
Riemann-Liouville approach values of certain fractional derivatives and in-
tegrals are needed ([12], Chapter 42). We shall therefore turn our attention
to the Caputo approach, where the values of the function f itself and its
integer-order derivatives are specified as initial conditions, [3].

Definition 2.3. The Caputo derivative of order α ∈ [0, 1] is defined via the
Riemann-Liouville fractional derivative by

(Dα
c f)(x) := (Dα [f(t)− f(0)])(x), x ∈ [0, T ]. (2.3)

The Caputo derivative is well-defined for functions for which the Riemann-
Liouville derivative exists. In particular, it is defined for absolutely inte-
grable functions f ∈ Ca[0, T ].
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Theorem 2.1 ([7], Theorem 2.1). If f ∈ Ca[0, T ] then the Caputo fractional
derivative Dα

c f exists almost everywhere on [0, T ]. If α 6∈ IN, Dα
c f can be

represented by

(Dα
c f)(x) =

1
Γ(1− α)

∫ x

0
(x− t)−αf ′(t) dt =: (I1−αDf)(x). (2.4)

In particular, D0
cf = f and D1

cf = f ′.

Theorem 2.2 (Properties of the Caputo derivative).

1. Let f be a function with f ∈ L∞(a, b). Then

(Dα
c I

αf)(x) = f(x) for a.a. x ∈ (a, b). (2.5)

2. Let f be a function with f ∈ C([a, b]). Then

(Dα
c I

αf)(x) = f(x) for all x ∈ [a, b]. (2.6)

Proof. The proof can be found in [7], Lemma 2.21. �

Remark 2.1. The above definitions and results can be generalized to the
vector-valued functions, since the integrals and derivatives are taken component-
wise.

3 Existence and Uniqueness of Solutions of linear
FDDEs

Before discussing the questions of existence and uniqueness of solutions of
linear FDDEs, we introduce some notation and terminology used in the
theory of delay differential equations.
Let C(I, IRd) denote the set of continuous mappings from an interval I ⊆ IR
to IRd. The segment ϕt at time t ≥ 0 of a function ϕ ∈ C(I, IRd) is defined
as

ϕ : [−τ, 0]→ IRd, ϕt(u) := ϕ(t+ u).

For a linear, continuous and autonomous operator f : C([−τ, 0], IRd)→ IRd

let us consider the following fractional delay differential equation:

(Dα
c y)(t) = f(yt) t ≥ 0, y0 = ξ, (3.1)

whereDα
c denotes the Caputo derivative of order α ∈ [0, 1], ξ ∈ C([−τ, 0], IRd)

is the initial condition and τ > 0 is the length of the memory. According to
the Riesz representation theorem, f can be represented as an integral with
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respect to a IRd× IRd-valued matrix A = (aij), 1 ≤ i, j ≤ d, of finite signed
Borel-measures aij on [−τ, 0]:

f(ϕ) =
∫ 0

−τ
ϕ(u)A( du), for all ϕ ∈ C([−τ, 0], IRd).

Hence, in the sequel we consider the following differential equation

(Dα
c y)(t) =

∫ 0

−τ
y(t+ u)A( du), t ∈ [0, T ], T > 0. (3.2)

For the equation (3.2) to be well-defined we need to assign values of y for
a.a. t ∈ [−τ, 0) and for t = 0:

y(t) = ξ(t), for a.a. t ∈ [−τ, 0), y(0) = ξ0, (3.3)

where ξ is an IRd-valued bounded measurable function on [−τ, 0), i.e., ξ ∈
L∞([−τ, 0), IRd) and ξ0 ∈ IRd. For continuous initial conditions, we consider
ξ ∈ C([−τ, 0], IRd).

Definition 3.1. An IRd-valued function y on [−τ, T ] is called a solution of
(3.2) with initial condition (3.3) if it is continuous on [0, T ], satisfies (3.3)
on [−τ, 0] and

y(t) = ξ(0) + Iα(
∫ 0

−τ
y(t+ u)A( du))

= ξ(0) +
1

Γ(α)

∫ t

0
(t− s)α−1

∫ 0

−τ
y(s+ u)A( du) ds (3.4)

for t ∈ [0, T ].

The following lemma shows that the definition makes sense.

Lemma 3.1. Let y be an IRd-valued function on [−τ, T ], continuous on
[0, T ], satisfying (3.3) on [−τ, 0].

1. If y is a solution of the integral equation (3.4) with initial condition
(3.3) then y solves the differential equation (3.2) for a.a. t ∈ [0, τ)
and all t ≥ τ .

2. If y is a solution of the differential equation (3.2) with initial condition
(3.3) then y solves the integral equation (3.4) for all t ≥ 0.

Remark 3.1.
Is ξ continuous on [−τ, 0) and y is the solution of the integral equation, then
y solves (3.2) and (3.3) also for t ∈ [0, τ), i.e. we obtain an if and only if
statement.
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Proof.
1) The function t 7→

∫ 0
−τ y(t+ u)A( du) belongs to the class L∞[0, τ) and is

continuous on [τ, T ].

Dα
c I

α

∫ 0

−τ
y(t+ u)A( du)

(2.5)
=
∫ 0

−τ
y(t+ u)A( du)

and for a.a. t ∈ [0, τ) and all t ≥ τ it holds that

Dα
c y(t)

(3.4)
= Dα

c (ξ(0) + Iα0

∫ 0

−τ
y(t+ u)A( du))

= Dα
c ξ(0) +Dα

c

[
Iα0

∫ 0

−τ
y(t+ u)A( du)

]
=
∫ 0

−τ
y(t+ u)A( du).

2) The proof is similar to the proof of Lemma 2.1 of [3]. �

In the view of Lemma 3.1 we need to prove the existence and the unique-
ness of the solution of (3.3) and (3.4). The following theorem is proved by
means of the theory of Volterra equations.

Theorem 3.1. Let ξ be an IRd-valued measurable bounded function on
[−τ, 0) and ξ0 ∈ IRd. There exists a unique function y : [−τ, T ] → IRd,
continuous on [0, T ] that satisfies (3.3) and (3.4).

Proof. The space C([0, T ], IRd) is a complete metric space endowed with the
supremum metric. On C([0, T ], IRd) we define the linear map G by

(Gy)(t) =

{
ξ(0) + 1

Γ(α)

∫ t
0 (t− s)α−1

∫ 0
−τ ξ(s+ u)A( du) ds t ∈ [0, τ ],

ξ(0) + 1
Γ(α)

∫ t
0 (t− s)α−1

∫ 0
−τ y(s+ u)A( du) ds, t ∈ [τ, T ].

(3.5)

G is continuous: for t ∈ [0, τ ] it holds that

y(t) = ξ(0) +
∫

IR
gt(s)

∫ 0

−τ
ξ(s+ u)A( du) ds,

where gt(s) := 1
Γ(α)1{0≤s<t}(t−s)

α−1 ∈ L1(IR, IR). There exists a continuous
function gt,c with a compact support, satisfying ‖gt,c− gt‖L1 ≤ ε. Moreover,
for |t − t′| ≤ δ it holds that ‖gt,c − gt′,c‖L1 ≤ ε. Applying the triangle
inequality we obtain

|y(t)− y(t′)| ≤ ‖A‖‖ξ‖∞
∫

IR
|gt(s)− gt′(s)| ds ≤ 3‖A‖‖ξ‖∞ε,
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where the norm of A is defined by

‖A‖ := sup
‖f‖∞=1

∥∥∥∥∫ 0

−τ
f(u)A( du)

∥∥∥∥
and the norm on the right hand side denotes the usual operator norm for
matrices. The continuity of y for t ≥ τ is shown analogously.
Similar to the proof of Theorem 2.2. in [3] it can be shown by induction
that

‖Gjy −Gjz‖L∞[0,T ] ≤
(‖A‖tα)j

Γ(1 + αj)
‖y − z‖L∞[0,T ] (3.6)

holds. Hence, the Fixed Point Theorem of Weissinger ([7], Theorem 1.10)
implies the existence of a unique fixed point x ∈ C([0, T ], IRd). Using (3.3)
we extend y to [−τ, T ]. The function y is also right-continuous in 0, since it
holds that

|x(t)−ξ0| ≤ |x(t)−(Gny0)(t)|+|(Gny0)(t)−(Gny0)(0)|+|(Gny0)(0)−ξ0| → 0.

�

4 Representation of Solutions

We first introduce the notions of the fundamental solution and the charac-
teristic function which play a significant role in the theory of DDEs.

Definition 4.1. A function R : IR→ IRd×d is called fundamental solution
of (3.3) and (3.4) if its ith column Ri, i = 1, . . . , d, satisfies

Ri(t) =


0, t < 0,
ei, t = 0,
ei + 1

Γ(α)

∫ t
0 (t− s)α−1

∫ 0
−τ R

i(u+ s)A( du) ds, t > 0,
(4.1)

where {e1, . . . ed} denotes the standard basis of IRd.
The characteristic function associated with equation (3.3) and (3.4) is de-
fined by

χA(z) = z

(
Ed − z−α

∫ 0

−τ
ezuA( du)

)
=
zαEd −

∫ 0
−τ e

zuA( du)
zα−1

, z ∈ C\{0},

where Ed denotes the identity matrix for IRd× IRd.

Remark 4.1. To define the Laplace transform uniquely, we take the fol-
lowing branch of the function zα:

zα :=
{
|z|αeiα arg z, −π < arg z < ϕ0

|z|αeiα arg z−2πiα, ϕ0 < arg z ≤ π (4.2)
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for ϕ0 ∈ (−π, π), |ϕ0| ≥ π/2. The proof of the theorem 5.1 and remark
5.1 will give the justification for taking this particular branch instead of the
principle branch of zα.

Lemma 4.1. For a finite signed Borel measure A the fundamental solution
R exists and is unique. Its Laplace transform is defined for z ∈ C, with
Re z > ‖A‖1/α and is given by

L[R](z) = (χA(z))−1.

Proof. On the Banach space C([0, T ], IRd×d) we define the norm

‖f‖ = sup
t∈[0,T ]

sup
‖x‖=1

‖f(t)x‖.

The generalization of Theorem 3.1 to matrix-valued functions f is immedi-
ate. Existence and the form of the Laplace transform follows from the next
result. �

Theorem 4.1. Let y be a solution of (3.3) with initial condition (3.4). Its
Laplace transform exists for all z with Re z > ‖A‖1/α and is given by

L[y](z) =
[
ξ0z

α−1 +
∫ 0

−τ
ezu
(∫ 0

u
e−ztξ(t) dt

)
A( du)

] [
zαEd −

∫ 0

−τ
e−zuA( du)

]−1

.

Proof. With c = ‖ξ‖∞ + |ξ0| it holds that:

sup
0≤w≤t

|y(w)| ≤ c+
1

Γ(α)
sup

0≤w≤t

∫ w

0
(w − s)α−1

∣∣∣∣∫ 0

−τ
y(u+ s)A( du)

∣∣∣∣ ds
≤ c+

‖A‖
Γ(α)

sup
0≤w≤t

∫ w

0
(w − s)α−1 sup

−τ≤u≤s
|y(u)| ds.

Moreover, sup−τ≤w≤0 |y(w)| = c and we obtain

sup
−τ≤w≤t

|y(w)| ≤ c+
‖A‖
Γ(α)

sup
0≤w≤t

∫ w

0
(w − s)α−1 sup

−τ≤u≤s
|y(u)| ds︸ ︷︷ ︸

increasing in w

= c+
‖A‖
Γ(α)

∫ t

0
(t− s)α−1 sup

−τ≤u≤s
|y(u)| ds.

We shall use a Gronwall-type result (Lemma 4.3 in [2]) to obtain a bound
for y:

sup
−τ≤w≤t

|y(w)| ≤ cEα(‖A‖tα). (4.3)
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Here, Eα(z) denotes the Mittag-Leffler function

Eα(z) :=
∞∑
k=0

zk

Γ(αk + 1)
.

The Mittag-Leffler function has the following asymptotic properties for 0 <
α < 2, see e.g. [4], Chapter 18.1, (10):

Eα(x) ∼ 1
α

exp
{
x1/α

}
+O(x−1), for x→∞. (4.4)

Hence,

Eα(‖A‖xα) ∼ exp
{
‖A‖1/αx

}
+O(x−α), for x→∞. (4.5)

We obtain from (4.3) and (4.5)

sup
−τ≤w≤t

|y(w)| ≤ cEα(‖A‖tα) ≤ c̃ exp{‖A‖1/αt}. (4.6)

In particular, the solution y and its integral with respect to the measure A
are exponentially bounded: for all t ≥ 0 it holds that

exp{−‖A‖1/αt}|y(t)| ≤M, (4.7)

exp{−‖A‖1/αt}
∣∣∣∣∫ 0

−τ
y(u+ t)A( du)

∣∣∣∣
≤ ‖A‖ exp{−‖A‖1/αt} sup

−τ≤s≤t
|y(s)| ≤M ′ (4.8)

for some constants M,M ′. Hence, the Laplace transform of y and the inte-
gral exist for all z with Re z > ‖A‖1/α. It holds that

L

[∫ 0

−τ
y(u+ •)A( du)

]
(z) =

∫ ∞
0

e−zt
∫ 0

−τ
y(u+ t)A( du) dt (4.9)

=
∫ 0

−τ

∫ ∞
0

e−zty(u+ t) dtA( du) (Fubini theorem)

=
∫ 0

−τ

∫ ∞
u

e−z(t−u)y(t) dtA( du)

=
∫ 0

−τ
ezu
(∫ 0

u
e−ztξ(t) dt+

∫ ∞
0

e−zty(t) dt
)
A( du)

=
∫ 0

−τ
ezu
(∫ 0

u
e−ztξ(t) dt+ L[y](z)

)
A( du). (4.10)

Let g : IR+ → IR be the function defined by g(x) := xα−1

Γ(α) . For z with
Re z > 0 its Laplace transform is given by L[g](z) = 1

zα . Applying the
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Fubini theorem we obtain:

L[y](z) =
ξ0

z
+

1
Γ(α)

∫ ∞
0

e−zt
∫ t

0
(t− s)α−1

∫ 0

−τ
y(s+ u)A( du) ds︸ ︷︷ ︸

convolution of g and ∫ 0
−τ y(u+x)A( du)

dt

=
ξ0

z
+

1
zα
L

[∫ 0

−τ
y(u+ •)A( du)

]
(z)

(4.10)
=

ξ0

z
+

1
zα

(∫ 0

−τ
ezu
(∫ 0

u
e−ztξ(t) dt+ L[y](z)

)
A( du)

)
and therefore

L[y](z)
(
Ed −

1
zα

∫ 0

−τ
ezuA( du)

)
=
ξ0

z
+

1
zα

(∫ 0

−τ
ezu
(∫ 0

u
e−ztξ(t) dt

)
A( du)

)
.

Hence,

L[y](z) =
[
ξ0

z
+

1
zα

(∫ 0

−τ
ezu
(∫ 0

u
e−ztξ(t) dt

)
A( du)

)][
Ed −

1
zα

∫ 0

−τ
ezuA( du)

]−1

=
[
ξ0z

α−1 +
(∫ 0

−τ
ezu
(∫ 0

u
e−ztξ(t) dt

)
A( du)

)][
zαEd −

∫ 0

−τ
ezuA( du)

]−1

=
[
ξ0 + z1−α

(∫ 0

−τ
ezu
(∫ 0

u
e−ztξ(t) dt

)
A( du)

)][
z

(
Ed − z1−α

∫ 0

−τ
ezuA( du)

)]−1

.

�

Remark 4.2. The Laplace transform of the fundamental solution R exists
for all z with Re z > ‖A‖1/α and is given by

χA(z) := z

(
Ed − z−α

∫ 0

−τ
ezuA( du)

)
=
zαEd −

∫ 0
−τ e

zuA( du)
zα−1

.

Proof. Again, the steps of the Theorem 4.1 can be extended to matrix-valued
functions. �

Lemma 4.2. The solution of y of (3.3) and (3.4) can be represented in
terms of the fundamental solution R and the initial condition (ξ, ξ0):

y(t) = ξ0R(t)+
d

dt

∫ 0

−τ

(∫ 0

u

1
Γ(α)

∫ t

0
(t− s)α−1R(s+ u− v) dsξ(v) dv

)
A( du)

(4.11)

= ξ0R(t) +D1−α
c

∫ 0

−τ

(∫ 0

u
R(t+ u− v)ξ(v) dv

)
A( du). (4.12)
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Proof. We show that the Laplace transforms of the left and the right hand
side of (4.11) coincide.

L[y](z)− ξ(0)L[R](z)

= L[R](z)
(
z1−α

∫ 0

−τ
ezu
∫ 0

u
e−ztξ(t) dtA( du)

)
= z1−αL[R](z)

∫ 0

−τ

∫ 0

u
e−z(−u+t)ξ(t) dtA( du)

= z1−α
∫ 0

−τ

∫ 0

u

∫ ∞
0

e−z(x−u+t)R(x) dxξ(t) dtA( du)

= z1−α
∫ 0

−τ

∫ 0

u

∫ ∞
t−u

e−zxR(x+ u− t) dxξ(t) dtA( du)

(it holds that R(x+ u− t) = 0 for x ∈ [0, t− u))

= z1−α
∫ 0

−τ

∫ 0

u

∫ ∞
0

e−zxR(x+ u− t) dxξ(t) dtA( du)

(Laplace transform of the convolution of 1
Γ(α)x

α−1 and R(•+ u− t))

= z

∫ 0

−τ

∫ 0

u

∫ ∞
0

e−zx
∫ x

0

(x− s)α−1

Γ(α)
R(s+ u− t) ds dxξ(t) dtA( du).

This is the Laplace transform of the right hand side, since the Laplace
transform of a derivative of a function is given by L[ d

dxf ](z) = zL[f ](z) −
f(0). �

5 Asymptotic Properties of the Solution

We show that the inverse Laplace transform of χ−1
A can be expressed in terms

of generalised exponentials by the residue theorem of complex analysis. This
representation allows us to study the asymptotic properties of the fractional
delay differential equations. We first investigate the set of zeros of the
characteristic function. Let

NA = {z ∈ C \ {0} : detχA(z) = 0},
v0 = max{Re(z) : z ∈ NA},
vn = max{Re(z) : z ∈ NA, Re z < vn−1},
Nn = NA ∩ {z ∈ C : Re z ≥ vn}.

Lemma 5.1. The set NA has no accumulation points in C. Moreover, for
all z ∈ NA it holds that:

|z| ≤ ‖A‖1/α or |z|eτ Re z/α ≤ ‖A‖1/α. (5.1)

The last inequality guarantees that there exist at most finitely many
z ∈ NA with Re z ≥ ρ for any ρ ∈ IR. In particular, the above quantities are
well-defined.
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Proof. The function χA is holomorphic on C \ (IR− ∪{0}), hence there are
no accumulation points of NA in this set.
Suppose that 0 is an accumulation point of NA. Then there exists a sequence
(zn)n∈IN, |zn| > 0, zn → 0, such that det χ̃A(zn) = 0, where

χ̃A(z) := zαEd −
∫ 0

−τ
ezuA( du).

We apply the Taylor series expansion to the integral. Since A is a finite
measure and the function ezu is uniformly bounded for |z| ≤ 1 on [−τ, 0], it
holds that∫ 0

−τ
ezuA( du) =

∞∑
k=0

zk
∫ 0

−τ

uk

k!
A( du), |z| < 1.

Hence, applying the Leibniz formula for the determinant, we obtain

detχ̃A(zn) = (−1)d
(

(−1)dzdαn + z(d−1)α
∞∑
k=0

zknf
d−1
k + . . .+

∞∑
k=0

zknf
0
k

)
,

where
∞∑
l=0

zlnf
i
l =

∑
π∈Sd

{j:π(j)=j}=i

sgn (π)(−1)i
∏

{j:π(j)6=j}

∞∑
l=0

zl
∫ 0

−τ

ul

l!
Ajπ(j)( du)

+
∑

K⊆{1,...,n}
|K|=d−i

(−1)i
∏
j∈K

∞∑
l=0

zl
∫ 0

−τ

ul

l!
Ajj( du), 0 < i < d,

and

∞∑
l=0

zlnf
0
l = det

( ∞∑
k=0

zk
∫ 0

−τ

uk

k!
A( du)

)
.

The series
∑∞

l=0 z
l
nf

i
l is absolutely convergent, since it is a finite sum of

Cauchy products of absolutely convergent series. Hence, detχA(zn) is also
absolutely convergent. Let fβ0z

β0 be the term in the expansion of χA(zn)
satisfying β0 = min{β ∈ IR+ ∪{0} : fβz

β
n 6= 0}. Then

|det χ̃A(zn)| ≥ 1
2
|fβ0z

β0
n | 6= 0 for all n sufficiently large.

We obtain a contradiction. Since we are considering only one branch of zα,
the function χA(z) is discontinuous on I = {z ∈ C : z = reiϕ0 , 0 < r <
δ/ cosϕ0}, but NA has also no accumulation points there. Let

f(z) :=
{
|z|αeiα arg z, −π < arg z < ϕ1,
|z|αeiα arg z−2πiα, ϕ1 < arg z ≤ π,
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for a ϕ1 < ϕ0. f(z) is holomorphic on I and f(z) ≡ zα for ϕ0 < arg z ≤
π. Hence there exists no sequence zn → z0 ∈ I with (zn)n∈IN ⊆ NA and
arg zn ↓ ϕ0. Similarly one can show the same result for a sequence zn with
arg zn ↑ ϕ0.

In order to show the bounds in (5.1), we use the Neumann series argu-
ment. It yields that

Ed −
1
zα

∫ 0

−τ
ezuA( du)

is invertible if ‖ 1
zα

∫ 0
−τ e

zuA( du)‖ < 1, i.e.,

|z|α ≤
∥∥∥∥∫ 0

−τ
ezuA( du)

∥∥∥∥ ≤ ‖A‖(1 ∨ e−τ Re z). (5.2)

Therefore, for all z ∈ NA it holds that |z|α ≤ ‖A‖(1 ∨ e−τ Re z). If there
were infinitely many zeros with Re z ≥ ρ for a ρ ∈ IR, then this would imply
Re z →∞ or | Im z| → ∞ and hence |z|eτ Re z →∞. �

Theorem 5.1. Let A be a IRd× IRd-valued matrix of finite signed Borel-
measures satisfying one of the following two conditions:

(C1) A[−τ, 0] 6= 0 and detA[−τ, 0] 6= 0,

(C2) A[−τ, 0] = 0.

For all n ∈ IN and any δ ∈ (vn+1, vn) the fundamental solution can be
represented as the following sum:

R(t) =
∑
λ∈Nn

Resλ=z(
1

χA(λ)
eλt) + g(t),

where the function g satisfies

g(t) =


O(eδt), if δ > 0,
O(t−α), if δ < 0 and A satisfies (C1),
Ed +O(t−k0+α), if δ < 0 and A satisfies (C2),

where

k0 = min{k ∈ IN :
∫ 0

−τ
uk/k!A( du) 6= 0}. (5.3)

Proof. Case 1: δ < 0.
We integrate the function χ−1

λ (z)ezt along the keyhole contour γ = γ1∪ . . .∪
γ8, as shown in Figure 1, with vertices (ρ,K), (ρ,−K), (δ,−K) and (δ,K),
where ρ > ‖A‖1/α. Due to the bounds in (5.1) and the fact that there are
no accumulation points of NA on C there are only finitely many zeros of

13



detχA inside the contour, independent of how large K and how small ε are
chosen. We can also a find a ϕ0 ∈ (−π, π], |ϕ0| ≥ π/2 such that

{z = eiϕ : (ϕ0 − η < ϕ < ϕ0 or − 2π + (ϕ0 + η) < ϕ < −2π + ϕ0),
r cosϕ ≥ δ, r > 0} ∩NA = ∅ (5.4)

for all η sufficiently small. We consider the function zα with branch cut at
ϕ = ϕ0.
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γ1

γ2

γ3

γ6

γ4

γ7

γ8

γ5

ε

v0
Re z

Im z

(ρ,K)

(ρ,−K)

(δ,K)

(δ,−K)

Figure 1: Contour integration of χ−1
λ (z)ezt.
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The residue theorem yields for every fixed t

1
2πi

∫
γ
(χA(z))−1ezt dz =

∑
s∈Nn

Resz=s(χA(z))−1ezt).

Since we chose ρ to satisfy ρ > ‖A‖1/α, the integral along γ1 tends to the
fundamental solution as K →∞:

R(t) =
1

2πi
lim
K→∞

∫
γ1

(χA(z))−1ezt dz.

We show that the path integrals over γ2 and γ8 vanish as K → ∞, the
limits of the integrals over γ3 and γ7 are decaying exponentially for t→∞,
the limits of the path integrals over γ6 and γ4 decay polynomially in t for
η → 0 and ε→ 0. The integral over γ5 depends on wherever A satisfies the
condition (C1) or (C2). In the first case, it vanishes, in the latter case it
converges polynomially in t to the identity matrix.

Path integrals over γ2 and γ8

Let us consider the integral along γ8.

I8 :=
1

2πi

∫
γ8

χA(z)−1ezt dz.

From the inequality (5.2) we know that χA is invertible for Kα > (1 ∨
e−τδ)‖A‖. The Neumann series argument yields the following bound of the
inverse function if we choose K large enough:

‖χA(z)−1‖ =

∥∥∥∥∥z−1

(
Ed − z−α

∫ 0

−τ
ezuA( du)

)−1
∥∥∥∥∥

≤ |z|−1 1

1−
∥∥∥z−α ∫ 0

−τ e
zuA( du)

∥∥∥
≤ |z|α−1

|z|α − (1 ∨ e−τδ)‖A‖

≤ Kα−1

Kα − (1 ∨ e−τδ)‖A‖

Therefore,

‖I8‖ ≤
∫ ρ

δ

∥∥∥(χA(x− iK))−1
∥∥∥ ext dx ≤ Kα−1

Kα − (1 ∨ e−τδ)‖A‖

∫ ρ

δ
ext dx

=
Kα−1

Kα − (1 ∨ e−τδ)‖A‖
eρt − eδt

t
→ 0 for K →∞.

The same arguments hold for the integral along γ2.
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Integral along γ5

Let z = εeiϑ, then dz = iεeiϑ dϑ = iz dϑ.

I5 :=
1

2πi

∫
γ5

1
z

(
Ed − z−α

∫ 0

−τ
ezuA( du)

)−1

ezt dz

=
1

2πi

∫ −π
π

(
Ed − z−α

∫ 0

−τ
ezuA( du)

)−1

ezti dϑ

We distinguish two cases. Let A[−τ, 0] 6= 0 and det A[−τ, 0] 6= 0. Then
zαEd −

∫ 0
−τ e

zuA( du) → −A[−τ, 0] for ε → 0. The dominated convergence
theorem yields for every fixed t

‖I5‖ =

∥∥∥∥∥ 1
2πi

∫ −π
π

zα
(
zαEd −

∫ 0

−τ
ezuA( du)

)−1

ezti dϑ

∥∥∥∥∥
≤ cεα‖(A[−τ, 0])−1‖eε cos t → 0 for ε→ 0

with a constant c independent of t. Let A[−τ, 0] = 0. The first term
in the Taylor series expansion of the integral vanishes and it holds that∫ 0
−τ e

zuA( du) =
∑∞

k=1 z
k
∫ 0
−τ

uk

k! A( du) and

Ed − z−α
∫ 0

−τ
ezuA( du)→ Ed for ε→ 0. (5.5)

Applying again the dominated convergence theorem we obtain

I5 →
1

2πi

∫ −π
π

Edi dϑ = −Ed.

Integrals along the paths γ3 and γ7

Let z = δ + iy. with y1 = δ tan(ϕ0 − η), y2 = δ tan(ϕ0 + η) it holds that

I3,7 =
1

2πi

∫
γ3∪γ7

χ−1
A (z)ezt dz

=
1

2π

∫ y1

K
χ−1
A (z)ezt dy +

1
2π

∫ −K
y2

χ−1
A (z)ezt dy

=
1

2π

∫ y1

K

(
χ−1
A (z)− (z − vn+1)−1Ed

)
ezt dy

+
1

2π

∫ −K
y2

(
χ−1
A (z)− (z − vn+1)−1Ed

)
ezt dy

+
1

2π

∫ y1

K
(z − vn+1)−1Ede

zt dy +
1

2π

∫ −K
y2

(z − vn+1)−1Ede
zt dy

17



It holds that

lim
K→∞

lim
η→0

(
1

2π

∫ y1

K
(z − vn+1)−1ezt dy +

1
2π

∫ −K
y2

(vn+1 − z)−1ezt dy

)
Ed

=
(
− 1

2π

∫ ∞
−∞

(z − vn+1)−1ezt dy

)
Ed = −evn+1tEd.

The last equality holds due to the fact that the Laplace transform of x 7→ eax

is equal to 1
z−a .

Let us now consider the first term in the representation of I3,7:

1
2π

∫ y1

K

(
χ−1
A (z)− (z − vn+1)−1Ed

)
ezt dy

=
1

2π

∫ y1

K

(
χ−1
A (z)(z − vn+1)−1Ed

)
ezt ((z − vn+1)Ed − χA(z)) dy.

Let

x = min{|δ − Re z| : z ∈ NA}.

Then |δ + iy − z| ≥ x > 0 for all z ∈ NA and all y ∈ IR+. Hence there
exists a constant c > 0 such that ‖χA(δ + iy)‖ ≥ c for all y ≥ δ tanϕ0.
The integral

∫ 0
−τ e

(δ+iy)uA( du) is bounded along the path γ3 and hence
‖χA(δ+ iy)‖‖(vn+1−δ− iy)Ed‖ behaves asymptotically like y2 for y → +∞:

‖χA(δ + iy)‖‖(δ + iy)− vn+1‖ ≥ c1(1 + y2)

with a constant c1 independent of t. On the other hand

‖(z−vn+1)Ed−χA(z)‖ ≤ |vn+1|+ |z|1−α‖
∫ 0

−τ
ezuA( du)‖ ≤ c2(1+y1−α).

Hence

e−δt
∥∥∥∥ 1

2π

∫ y1

K

(
χ−1
A (z)− (z − vn+1)−1Ed

)
ezt dy

∥∥∥∥
≤ e−δt

∫ ∞
0

c2(1 + y1−α)
c1(1 + y2)

eδt dy ≤
∫ ∞

0
c3

1
1 + y1+α

dy <∞.

The second term in the representation of I3,7 is treated analogously. Thus,
supt>0 e

−δt|I3,7| <∞, since e(vn+1−δ)t is bounded for all t.

Integrals along the paths γ4 and γ6

We investigate the asymptotic properties of

I4,6 :=
1

2πi

∫
γ4∪γ6

χ−1
A (z)ezt dz

as η and ε tend to zero simultaneously. We will need η to converge to zero
quicker than ε and choose therefore η = εn, n > k0, where k0 is defined as
in (5.3). We show
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A satisfies (C1): supt>0 limε→0 t
αI4,6 <∞.

A satisfies (C2): supt>0 limε→0 t
k0−αI4,6 <∞.

On γ4 and γ6 we set

z = rei(ϕ0−η), ε ≤ r ≤ δ/ cos(ϕ0−η), z̃ = rei(ϕ0+η), ε ≤ r ≤ δ/ cos(ϕ0+η),

zα = |z|αei arg zα = rαei(ϕ0−η)α, z̃α = |z̃|αei arg z̃α−2πiα = rαei(ϕ0+η)α−2πiα,

and write

I4,6 =
1

2πi

∫ ε

δ/ cos(ϕ0−η)

1
z

(Ed − z−α
∫ 0

−τ
ezuA( du))−1eztei(ϕ0−η) dr

+
1

2πi

∫ δ/ cos(ϕ0+η)

ε

1
z̃

(Ed − z̃−α
∫ 0

−τ
ez̃uA( du))−1ez̃tei(ϕ0+η) dr.

We study the behaviour of the integrated functions in the neighbourhood of
zero and on the interval I± = [ε0, δ/ cos(ϕ0 ± η)] separately: I4,6 = I>ε0 +
I<ε0 , where

I>ε0 = − 1
2πi

∫
I−

χ−1
A (z)eztei(ϕ0−η) dr +

1
2πi

∫
I+

χ−1
A (z̃)ez̃tei(ϕ0+η) dr,

I<ε0 = − 1
2πi

∫ ε0

ε
χ−1
A (z)eztei(ϕ0−η) dr +

1
2πi

∫ ε0

ε
χ−1
A (z̃)ez̃tei(ϕ0+η) dr.

For any fixed ε0 > 0 the norms of the inverse matrices are bounded for
z ∈ I±. Moreover, applying the dominated convergence theorem we obtain

‖I>ε0‖ ≤ c
∫ δ/ cosϕ0

ε
ert cosϕ0 dr = c

eδt − eεt cosϕ0

t cosϕ0
, (5.6)

where c depends only on ε0. So, ‖I>ε0‖ decays to zero at exponential rate
for t→∞.

Remark 5.1. Let α = 1/2, τ = log 3
2 and

A =
(

1{−τ} −2 · 1{0}
2 · 1{0} −1{−τ}

)
.

It holds that

detχA(z) = z1−α (4− 3z − z) and detχA(−1) = 0,

hence the norms of the inverse matrices χA(z), χA(z̃) would be not necessary
bounded in the limit if we chose the negative real line segment for the path
integrals γ4 and γ6. A ϕ0 satisfying (5.4) guarantees the bound in (5.6).
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Let us now consider the behaviour of the integrand for ε0 small enough.
Let A satisfy (C1). For ε0 sufficiently small it holds that

‖zαEd −
∫ 0

−τ
ezuA( du)‖ → ‖A[−τ, 0]‖.

Hence, ‖χA(z)−1‖ behaves like rα−1 for r ≤ ε0. There exists a constant
c > 0, independent of t and ε0 such that

‖I<ε0‖ ≤
∫ ε0

0
crα−1er cosϕ0t dr

= c(− cosϕ0)−αt−α(Γ(α)− Γ(α,−tε0 cosϕ0)) ≤ ct−α,

where Γ(α, y) is given by

Γ(α, y) :=
∫ ∞
y

xα−1e−x dx, i.e.,

Γ(α)− Γ(α,−tδ) =
∫ −tδ

0
xα−1e−x dx → Γ(α), t→∞.

Hence, supt>0 limε→0 t
α(‖I<ε0‖+ ‖I>ε0‖) is finite.

More interesting is the case when A[−τ, 0] = 0. In this case the norms of
the integrals along γ4 and γ6 tend to infinity, but they cancel. This is due
to the fact that the only terms which include fractional powers of z tend to
zero as ε0 and η tend to zero, so the integrals cancel due to the opposite
sign. Let us first consider the integrated function along γ4.
From (5.5) we have for all r ≤ ε0, where ε0 is chosen to be sufficiently small,

∥∥(Ed − z−α ∫ 0

−τ
ezuA( du)

)
︸ ︷︷ ︸

A1(z)

−Ed(1− c1z
k0−α)︸ ︷︷ ︸

B1(z)

∥∥ ≤ c2r
k0+1−α.

The constants c1 and c2 are independent of r and ε. Hence,∥∥∥∥A−1(z)
z

− B−1(z)
z

∥∥∥∥ ≤ ‖A−1(z)‖‖B−1(z)‖c2r
k0−α ≤ c3r

k0−α,

since A−1(z), B−1(z) converge to the identity matrix as z → 0. Same results
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hold also on γ6 with constants c̃1, c̃2, c̃3. Moreover,∥∥∥∥B−1(z)
z

− B−1(z̃)
z̃

∥∥∥∥ =
∥∥∥∥Ed( 1

z(1− c1zk0−α)
− 1
z̃(1− c̃1z̃k0−α)

)∥∥∥∥
≤

∣∣∣∣∣ei(ϕ0+η) − ei(ϕ0−η)

r

∣∣∣∣∣+ c4r
k0−α−1

=
∣∣∣∣eiϕ0(eiη − e−iη)

r

∣∣∣∣+ c4r
k0−α−1∣∣∣∣2eiϕ0 sin η

r

∣∣∣∣+ c4r
k0−α−1

≤ c5r
n−1 + c4r

k0−α−1 ≤ c6r
k0−α−1.

We obtain

‖I<ε0‖ ≤
∫ ε0

ε

∥∥∥∥A−1(z)
z

− A−1(z̃)
z̃

∥∥∥∥ er cosϕ0t dr

≤
∫ ε0

ε

(∥∥∥∥A−1(z)
z

− B−1(z)
z

∥∥∥∥+
∥∥∥∥A−1(z̃)

z̃
− B−1(z̃)

z̃

∥∥∥∥
+
∥∥∥∥B−1(z)

z
− B−1(z̃)

z̃

∥∥∥∥) er cosϕ0t dr

≤
∫ ε0

ε
((c3 + c̃3)rk0−α + c6r

k0−α−1)er cosϕ0t dr

ε→0−→ c7(−t cosϕ0)α−k0(Γ(k0 − α)− Γ(k0 − α,−ε0t cosϕ)).

Case 2: δ > 0.
For δ > 0 we only need to consider the rectangle contour with vertices with
(ρ,K), (ρ,−K), (δ,−K) and (δ,K). Again, the integrals along γ2 and γ8

vanish as K → ∞, where the path integral over (δ,K) → (δ,−K) grows
asymptotically at exponential rate eδt. �

Example 5.1. The case where A[−τ, 0] 6= 0, but det A[−τ, 0] = 0 is more
complicated. Let us consider the following example. Let d = 2 and

A =
(

1{−τ} −1{−τ1}
1{−τ1} −1{−τ}

)
,

where 0 < τ1 < τ . It holds that detA[−τ, 0] = −1 + 1 = 0.

B(z) := zαEd −
∫ 0

−τ
ezuA( du) =

(
zα − e−τz e−τ1z

−e−τ1z zα + e−τz

)
and

det B(z) = z2α − det
∫ 0

−τ
ezuA( du) = z2α −

∞∑
k=1

akz
k
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with some ak ∈ IR.

B−1(z) =
1

det B(z)
adj B(z) =

1
z2α −

∑∞
k=1 akz

k

(
zα + e−τz −e−τ1z

+e−τ1z zα − e−τz
)
.

The adjugate of B(z) converges to a constant non-zero matrix for z → 0
and zα−1 1

det B(z)
behaves like zβ, where β < −1. Hence, the path integrals

over γ5, γ4 and γ6 diverge, whereas the other integrals tend to zero.
Let us now consider

A =
(

1{−τ} 1{−τ1}
1{−τ1} 1{−τ}

)
,

Then

det B(z) = z2α − zα(e−τz + e−τz) + det
∫ 0

−τ
ezuA( du).

The adjugate of B(z) again converges to a constant non-zero matrix for
z → 0 and zα−1 1

det B(z)
behaves like z−1. Hence, the path integral over γ5

converges to the identity matrix and the path integrals γ4 and γ6 cancel.

6 Conclusions

In the present paper, we study the asymptotic properties of the fundamental
solution fractional delay differential equations. First, the results on existence
and uniqueness of solutions of FDDEs are proved. Based on the character-
istic function and characteristic equation, several interesting properties of
the solution are obtained. We are able to present a complete picture of the
asymptotic behaviour in a very general setting, which includes many cases
studied in literature.
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