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Abstract

In this paper we discuss the application of a certain class of Monte Carlo methods to

stochastic optimization problems. Particularly, we study variable-sample techniques, in

which the objective function is replaced, at each iteration, by a sample average approx-

imation. We first provide general results on the schedule of sample sizes, under which

variable-sample methods yield consistent estimators as well as bounds on the estimation

error. Because the convergence analysis is performed sample-path wise, we are able to

obtain our results in a flexible setting, which includes the possibility of using different

sampling distributions along the algorithm, without making strong assumptions on the

underlying distributions. In particular, we allow the distributions to depend on the

decision variables x. We illustrate these ideas by studying a modification of the well-

known simulated annealing method, adapting it to the variable-sample scheme, and

show conditions for convergence of the algorithm.
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1 Introduction

In the past twenty years a great deal of attention has been devoted to theoretical and

practical aspects of optimization of systems under uncertainty. Many practical problems

involve some type of randomness, which can originate from a variety of sources such as

unknown demand or failures of machines, to name a few examples.

Perhaps the most common way to obtain a model that captures the existing randomness

is by defining a random function of the underlying parameters on a proper probability space

and then optimizing the expected value of such function with respect to the decision variables.

More formally, we have a probability space (Ω,F , P ), a subset X ⊂ IRm, a (measurable)

function G : X × Ω → IR and we want to solve

min
x∈X

{
g(x) := IE [G(x)] =

∫

Ω
G(x, ω)P (dω)

}
. (1.1)

Typically, the expected value in problem (1.1) cannot be computed exactly, so approx-

imation methods are required. One such approach is to resort to Monte Carlo methods:

in its basic form, the idea is to replace the expected value function with its corresponding

Monte Carlo approximation

ĝN (x) =
1

N

N∑

i=1

G(x, ωi),

(where ω1, . . . , ωN form an i.i.d. sample) and then solve the resulting deterministic problem.

This type of algorithm (sometimes called “sample path optimization”, or “sample average

approximation”) has been well studied, see for instance [23, 27, 29]. One advantage of

such method is its nice convergence properties; indeed, it is possible to show convergence

of optimal solutions and optimal values under fairly general assumptions (see, e.g., [12, 31,

34, 35]). In some cases, the solution of the approximating problem converges exponentially

fast on the sample size N to a solution of the original problem. This type of phenomenon

was observed by Shapiro and Homem-de-Mello [37] in the context of piecewise linear convex

stochastic programs, and studied by Kleywegt, Shapiro and Homem-de-Mello [23] in the

context of discrete optimization.

The basic idea in the Monte Carlo method yields several possible variations. For ex-

ample, suppose we have at hand an iterative method to solve the deterministic problem.

Instead of fixing a sample from the beginning and then minimizing the resulting determin-

istic function, one may consider using different samples along the algorithm. That is, the

idea is to use, at iteration k, the approximating function

ĝk(x) :=
G(x, ωk

1 ) + . . . + G(x, ωk
Nk

)

Nk
,
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where ωk
1 , . . . , ωk

Nk
is a sample from some distribution Pk close to P . Notice that we use a

new sample at every iteration (hence the term “variable-sample method” used throughout

the paper) as opposed to fixing a large sample at the beginning and then optimizing the

resulting deterministic function.

One apparent advantage of a variable-sample scheme over the basic Monte Carlo method

is that, since we generate independent estimates of the objective function at different iter-

ations, we avoid getting “trapped” in a single sample-path. For example, as the results in

[37, 23] show, some problems have the property that, for almost all ω, there exists a number

N0 = N(ω) such that the solution x∗N0
of the approximating problem min ĝN0(x) coincides

with the solution x∗ of the original problem (1.1). Such N0, however, is difficult to deter-

mine in practice, so for a given sample size N there may be a positive probability that x∗N

is actually far away from x∗ — which in turn implies the existence of “bad” sample-paths.

This effect tends to be minimized once we generate independent estimates of the objective

function.

Another advantage of a variable-sample scheme is that the sample sizes can increase

along the algorithm, so that sampling effort is not wasted at the initial iterations of the

algorithm. Also, because the estimates at different iterations are independent, one can

perform statistical tests to compare those estimates, which in turn can lead to stopping

criteria for the algorithm. Indeed, this type of approach has been successfully used in some

gradient-based methods for continuous stochastic optimization; see, for instance, [20, 36].

The price to pay for the flexibility provided by a variable-sample scheme, of course, is

that the function being optimized changes at every iteration. Therefore, the convergence

results developed for the sample average approximation described above are no longer valid.

For example, it is important to ensure that ĝk(x) → g(x) with probability one (w.p.1) —

i.e., it is desirable that ĝk(x) be a consistent estimator of g(x). Perhaps surprisingly, it

turns out that, for such property to hold, it is not enough that the sequence of sample sizes

{Nk} be increasing; as we show in section 2, Nk must grow at a certain rate.

In fact, we need more than consistency of estimators: in order to obtain convergence

of a method adapted to the variable-sample scheme, we must ensure that the error from

the deterministic algorithm dominates the stochastic error |ĝk(x) − g(x)|, so that the con-

vergence properties of the deterministic algorithm are preserved. While this assertion is

quite intuitive, showing that such property holds for a given algorithm can be a difficult

task. This can be made easier by imposing a proper schedule of sample sizes, so that we

can bound the stochastic error |ĝk(x)− g(x)|.
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In this paper we address these issues. We propose a framework to analyze methods

that use the variable-sample scheme. In particular, we focus on algorithms that use func-

tion evaluations only. We provide general results on consistency of estimators as well as

bounds on |ĝk(x) − g(x)| under the variable-sample scheme. These goals are accomplished

by exploiting the fact the estimates ĝk(x) of the objective function g(x) are obtained via

averaging, which allows us to use some classical results from probability theory. We obtain

generic bounds on the deviation |ĝk(x)−g(x)|, which can then be used to show convergence

of a specific method. Such conditions translate directly to the choice of sample size Nk

used to compute the average at each iteration. An important aspect of our study is that

the analysis is completely performed in terms of sample paths. This is why it is necessary

to resort to tools such as the law of the iterated logarithm instead of the more commonly

used Central Limit Theorem. By doing so, we do not need to assume any distribution for

the error |ĝk(x)− g(x)|.
Another feature of our analysis is that we allow the use of different sampling distributions

Pk at each iteration to obtain the estimate ĝk. This feature can be exploited in several ways,

for example by using sampling methods that yield variance reduction for the resulting

estimators. Notice that the sampling distributions Pk can even yield biased estimators of

g(x), as long as the bias goes to zero at a specific rate. An important particular case occurs

when the underlying distributions depend on the decision variables x; in that case, we have

Pk = Pxk
, where xk is the point obtained in the kth iteration.

As an application of the general framework described above, we consider a method for

discrete stochastic optimization problems. This class of models of the form (1.1) consists

of problems where the feasibility set X is finite but typically very large, so that explicit

enumeration is not feasible. We focus on problems of the form (1.1) in which the exact

evaluation of g(x) for a given x is difficult or even impossible. Such difficulty appears for

example when the integral in (1.1) cannot be computed exactly (e.g. multidimensional

integration), or when G lacks a closed form and can only be evaluated through a “black

box” whose inputs are x and ω. In the latter case one cannot make use of methods that

exploit the structure of the problem, so it is necessary to resort to general techniques.

Several methods have proposed in the literature to handle the above type of prob-

lems. Here we can mention general random search procedures such as the ones discussed

in Yan and Mukai [42], Gong, Ho and Zhai [16], Andradóttir [3, 4] and Alreafaei and An-

dradóttir [6]. Another approach is the ordinal optimization, proposed by Ho, Sreenivas and

Vakili [19], where the order of the function values are estimated, rather than the function
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values themselves. Yakowitz, L’Ecuyer and Vásquez-Abad [41] discuss a method where

quasi-Monte Carlo techniques are used to select low-dispersion points in the feasibility set.

An adaptation of the classical branch-and-bound method to the context of stochastic opti-

mization is studied by Norkin, Pflug and Ruszczynski [28]. Boesel and Nelson [7] present

an alternative procedure based on the combination of genetic algorithms with ranking and

selection techniques. In the particular case where the function G(·, ω) is the optimal value of

a linear programming problem and the set X is polyhedral, stochastic integer programming

techniques can be applied; see for instance the bibliography on stochastic programming

compiled by Maarten Van der Vlerk [39].

The basic Monte Carlo approach described above has also been applied to discrete

stochastic optimization problems. As seen earlier, in that case the expected value function is

replaced by its corresponding sample average approximation, and the resulting deterministic

problem is solved by some discrete optimization method. Morton and Wood [27] use this

approach to derive upper and lower bounds to the optimal value, and show that the gap

decreases with the sample size. Kleywegt, Shapiro and Homem-de-Mello [23] show some

theoretical properties of the method. Besides showing convergence of optimal values, they

resort to large deviations techniques to show that the solution of the approximating problem

converges exponentially fast on the sample size N to a solution of the original problem.

On the implementation side, they propose solving a sample average approximation of the

problem a few times and then using ranking and selection procedures as a second step. We

refer to [23] for details.

In this paper we study the use of the variable-sample framework described above to

adapt the simulated annealing (SA) method for discrete stochastic optimization. The SA

method originates in the work of Metropolis et al. [25] in the fifties to simulate the physical

process of annealing, but it was not until the eighties that its use as an optimization tool for

deterministic problems was proposed by Kirkpatrick, Gelatt and Vecchi [22]. Since then,

a large volume of research has been devoted to the study of theoretical properties as well

as implementation aspects of the method. There are also quite a few papers reporting

successful use of SA techniques in applications. The book by Van Laarhoven and Aarts [40]

describes the SA method in detail as well as many applications of this technique; for a more

recent review, we refer to Aarts, Korst and Van Laarhoven [1].

The basic mechanism of SA algorithms is the following: let xk denote the (feasible)

point visited on iteration k. Then, choose a neighbor of xk, say y, with probability R(xk, y),

and compare the value of the objective function g at xk and y. If g(y) ≤ g(xk) (i.e. y is a
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better point), then visit point y; otherwise, visit y with a probability that depends on the

“temperature” control Tk, and which goes to zero as k goes to infinity. The idea is to allow

“uphill” moves to escape local minima, but to decrease more and more the probability of

moving to a worse point. The sequence of states visited at each iteration forms a Markov

Chain, and it is possible to show that if Tk goes to zero at a specific rate, then the stationary

distribution of this Markov Chain is concentrated on the set of optimal solutions. Variations

of this basic mechanism have been proposed in the literature, we refer again to [1] for details.

Most of the literature on simulated annealing, however, focuses on deterministic opti-

mization problems where the objective function can be evaluated exactly. Few papers have

been devoted to the study of the case when such objective is the expected value of a random

function and thus must be approximated. Perhaps the first work to touch this subject was

the paper by Gelfand and Mitter [15]. They analyze the case where the objective function

g(x) can only be computed with “noise” Wk, so that the estimator g(x) + Wk is used at

iteration k. By assuming that the noise Wk is normally distributed with mean zero and

variance σ2
k (which is independent of x), Gelfand and Mitter impose conditions on σ2

k to

ensure convergence of the method. A similar approach is taken by Gutjahr and Pflug [17],

who are able to weaken the normality assumption by considering distributions which are

“more peaked around zero” than the normal distribution. Again, conditions are imposed

on the variances σ2
k.

Another type of analysis is done by Fox and Heine [14]. They do not make any nor-

mality assumptions; however, they assume that there exist consistent estimators gk(x) of

the objective function g such that the estimators gk(x) coincide with g after a finite (al-

most surely) time N . Fox and Heine suggest that one way to enforce this assumption is by

considering only computer-representable numbers as the range of the functions.

Finally, another approach to the problem is studied by Alrefaei and Andradóttir [5].

Their idea is to use a variant of SA where the temperature Tk is kept constant. Of course,

in such case the Markov Chain defined by the states visited at each iteration does not

converge at all to the set of optimal solutions; the idea in [5] is then to consider the sequence

of points defined by “points with best estimated objective function so far”, and then show

that, w.p.1, all accumulation points of such sequence belong to the set of optimal solutions.

Our work differs from those existing approaches. We incorporate a variable-sample

method into the standard simulated annealing algorithm, and prove its convergence by

applying the general techniques developed for that framework. In particular, we derive a

schedule of sample sizes that ensures that the error from the simulated annealing algorithm
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dominates the error |ĝk(x)− g(x)|, so that the convergence properties of SA are preserved.

Our setting allows for some degrees of flexibility. As mentioned above, the results we

obtain do not assume any particular distribution. Moreover, we allow the use of different

sampling distributions Pk at each iteration to obtain the estimate ĝk. Also, we consider

the possibility of changing the selection distributions R(x, y) — i.e. the probability of

selecting the point y for comparison with the current point x — along the iterations, as

long as those distributions converge at some specific rate. Some possible ways to take

advantage of this flexibility are by using dynamic neighborhoods or setting R(x, y) according

to previous estimates of g. Both features are mentioned by Fox [13] as essential to obtain

a fast implementation of SA.

We must emphasize here that it is not the aim of this paper to provide a new algorithm

for discrete stochastic optimization problems; rather, our goal is to establish some general

results that can be used by someone who wishes to show convergence of a variable-sample

method. In that sense, the SA algorithm is presented here for illustration purposes only

— which explains the lack of definitive algorithmic statements as well as the absence of

numerical results in the text. Nevertheless, to the best of our knowledge the proof of

convergence of a “simulation-based SA” in a general setting, as detailed in section 3, is new

and therefore constitutes an additional contribution in itself.

The remaining of this paper is organized as follows: in section 2 we formally introduce

variable-sample methods. We provide general conditions under which those methods pro-

duce consistent estimates as well as pathwise bounds on the estimation error |ĝk(x)− g(x)|.
The analysis in these sections is general, in that it does not depend on the particular

algorithm being used for optimization. Then, in section 3 we present a variable-sample

modification of the SA algorithm, and show that the modification preserves the conver-

gence properties of SA for deterministic problems, as long as the sample sizes Nk grow at

a specific rate. Finally, in section 4 we present some concluding remarks.

2 Variable-sample methods

In this section we establish a framework to analyze simulation-based methods that utilize

different samples along the iterations. The framework presented is general in that we do

not assume any particular structure for the problem, which could be either discrete or

continuous.

We start with a few definitions. Let N1, N2, . . . be an increasing sequence of integer
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numbers representing the size of the sample used at each iteration. We will call {Nk}
the schedule of sample sizes associated with the algorithm under scrutiny. We assume

that the sample used at any given iteration is i.i.d., and that this sample is independent

of previous samples. Notice that the i.i.d. assumption regards only the sample at a given

iteration — that is, samples at different iterations can be drawn from different distributions.

With that setting, let ΩNk denote the Nk-fold cartesian product of the sample space Ω,

and let Pk be a probability measure on ΩNk . Also, let Ω̃ = ΩN1 × ΩN2 × . . ., and let P̃

denote the corresponding probability distribution on Ω̃ generated by the Pks. Notice that

such construction is valid because of the assumption of independence between samples at

different iterations. In particular, it implies that P̃ (Ak) = Pk(Ak), where Ak is any event

in the σ-algebra corresponding to iteration k.

It is worth observing here that, in case the original problem is discrete, we can also allow

the original distribution P to depend on the decision variables x, i.e., we can have

g(x) =

∫

Ω
G(x, ω)Px(dω).

This, is turn, yields considerable flexibility to the model, since in that case we can have

Pk = Pxk
, i.e. Pk may depend on the point selected at iteration k. It is important to notice

that such setting is valid with a finite set X, which means that there is actually only a

finite number of distinct Pk’s. In continuous problems, the dependence of P on x imposes

some difficulties, especially if some derivative-based method is to be used. In that case,

one needs to resort to techniques such as likelihood ratio (see e.g. [32]) in order to compute

derivatives. In the discrete case, however, the dependence on x can be easily implemented

in a variable-sample context, the only condition being that we must be able to generate

samples from the different distributions Px, x ∈ X, using any stream of uniform random

numbers. Such condition is imposed in order to guarantee that all random variables G(x, ω)

are defined on a common probability space. It is clear that this condition imposes hardly

any constraint on the distributions.

Notice that a point ω = (ω1
1 , . . . , ω

1
N1

, ω2
1 , . . . , ω

2
N2

, . . .) ∈ Ω̃ represents a sample-path

followed along the iterations of the algorithm. Define now the following random variables

on (Ω̃, P̃ ):

Gk
i (x, ω) := G(x, ωk

i ), k = 1, 2, . . . , i = 1, . . . , Nk.

Now, for each ω ∈ Ω̃, define the approximating functions

ĝk(x) :=
Gk

1(x, ω) + . . . + Gk
Nk

(x, ω)

Nk
, k = 1, 2, . . . (2.1)
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(we omit the dependence of ĝk(x) on ω for brevity). The function ĝk(x) is the approximation

to the original function g(x) that is used in the kth iteration. Notice that, conditionally on

x, the estimates {ĝk(x)}, k = 1, 2, . . . , are all independent of each other.

2.1 Consistency of estimators

One approach to show convergence of a variable-sample simulation-based method is to show

that the algorithm converges for P̃ -almost all ω ∈ Ω̃. It is natural to think that, in order to

have convergence for almost all sample paths, we must have that that the estimators used

at each iteration are consistent, i.e., for all x ∈ X and P̃ -almost all ω ∈ Ω̃ we must have

that

lim
k→∞

ĝk(x) = g(x). (2.2)

It is interesting to notice that, although condition (2.2) may seem a direct consequence

of the law of large numbers, this is not the case. Two factors contribute to that: first,

we do not impose that IEĝk(x) = g(x), i.e., the estimator ĝk(x) is allowed to be biased.

Second, even when this is not the case — for example, when all measures Pk are identical

— it could happen that, in principle, ĝk(x, ω) does not get close to g(x) with a sample of

size Nk. To illustrate the latter point, consider the function G(x, z) = z, where z is 0 or

1 with probability 1/2 each, and a sequence ω formed by 2` ones followed by 2` + 1 zeros,

` = 0, 1, 2, . . . . That is, ω = (0, 1, 1, 0, 0, 0, 1, 1, 1, 1, . . .). Suppose that Nk = k, k = 1, 2, . . ..

Then, after a little algebra we see that

`(n)

2`(n) + 1
≤

∑n
j=1 ωj

n
≤ `(n) + 1

2`(n) + 1
, (2.3)

where `(n) is the smallest nonnegative integer ` such that n ≤ (` + 1)(2` + 1). The above

inequalities imply that

lim
n→∞

∑n
j=1 ωj

n
=

1

2
= IEω,

so this sample path satisfies the law of large numbers for the overall sequence. However, we

have that ωk
i = uk, i = 1, . . . , Nk, where uk = 0 if k is odd and uk = 1 otherwise. Hence,

we have that (ωk
1 + . . . + ωk

Nk
)/Nk = uk and thus the limit in (2.2) does not exist.

Our task is therefore to show that pathological cases such as the one described above

happen only on a set of P̃ -probability zero. Moreover, we must impose conditions on the

bias IEĝk(x) − g(x). Then, we will be able conclude that (2.2) holds. We start with the

following assumptions:
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Assumption A1: For each x ∈ X, there exists a positive constant M = M(x) > 0 such

that supk,i G
k
i (x) ≤ M w.p.1.

Assumption A2: For each x ∈ X, we have that limk→∞ IEĝk(x) = g(x).

A few words about the above assumptions. Assumption A1 says that all random vari-

ables are uniformly bounded w.p.1. As we shall see below, this assumption can be relaxed,

at a certain expense. Assumption A2 says that the estimators ĝk(x) are asymptotically un-

biased, and obviously holds in case all ĝk(x) are unbiased estimators of g(x). We must also

notice that the term “constant” in assumption A1 refers to ω rather than x, i.e. constant

means “non-random quantity”. This terminology is used throughout the paper.

We consider now the following alternative assumptions A1’ and A2’. Assumption A1’

is clearly weaker than assumption A1; assumption A2’, on the other hand, deals with the

special case when all probability measures Pk are identical.

Assumption A1’: For each x ∈ X, there exists a positive constant M = M(x) > 0 such

that supk Var[Gk
1(x)] ≤ M .

Assumption A2’: All probability measures Pk are identical and the estimator ĝk(x) is

unbiased.

Before proceeding with the results, let us recall some basic facts from large deviations

theory. Let Y1, Y2, . . . be a sequence of i.i.d. random variables with finite expectation µ,

and for all N ≥ 1 define ȲN =
∑N

i=1 Yi/N ; then, the weak law of large numbers says that,

for any δ > 0,

lim
N→∞

P
(|ȲN − µ| ≥ δ

)
= 0, (2.4)

and the large deviation theory asserts that the above probability converges to zero expo-

nentially fast. Indeed, for any N ≥ 1, Chernoff’s bound yields

P
(
ȲN − µ ≥ δ

) ≤ e−NI(µ+δ). (2.5)

Here, I(·) is the so-called rate function corresponding to the distribution of Y1, which is

defined by I(z) := supt∈IR{tz− log M(t)}, where M(t) := IE[etY1 ] is the moment generating

function of Y1 (which is assumed to be finite in a neighborhood of zero). It is possible to

show that I(·) is non-negative, strictly convex and attains it minimum at µ, so that the
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exponent in the right-hand side of (2.5) is strictly negative. Next, by applying inequality

(2.5) to the process {−Yi}, we have that

P
(
ȲN − µ ≤ −δ

) ≤ e−NI(µ−δ),

whence

P
(|ȲN − µ| ≥ δ

) ≤ 2e−Nγ(δ), (2.6)

where γ(δ) := min(I(µ + δ), I(µ − δ)). This implies (2.4). It is possible to show that the

exponential bound in the above inequality is asymptotically sharp, in the sense that

P
(|ȲN − µ| > δ

)
= e−Nγ(δ)+o(N) . (2.7)

The literature on large deviations theory is quite ample; we refer the reader to the books

by Dembo and Zeitouni [11] and Shwartz and Weiss [38], for example, for comprehensive

discussions. For our purposes, the results in (2.6) and (2.7) will suffice.

The above results, while very important from a qualitative point of view, are difficult to

use directly since typically it is very hard to compute the rate function I(·). Thus, estimates

for I(·) are needed. A useful one can be derived when the corresponding random variables

are uniformly bounded, i.e., |Yi| ≤ M w.p.1. In that case, we have that

I(z) ≥ (z − µ)2

2M2
for all z ∈ IR (2.8)

(see for example Shapiro and Homem-de-Mello [37] for a proof). A similar result can be

derived under the weaker assumption that the corresponding random variables have finite

variance σ2. Then, there exists a neighborhood N of µ such that

I(z) ≥ (z − µ)2

3σ2
for all z ∈ N . (2.9)

This follows directly from the Taylor expansion of the function I; see for example Kleywegt

et al. [23] for a proof.

Another estimate of the deviation probability P (|Ȳ − µ| > δ) can be obtained by a

variant of the Central Limit Theorem. In that case, δ goes to zero with n, so that the

deviations are never very large. In Chung [8, Thm. 7.1.3], the following result is proved:

suppose the i.i.d. sequence {Yi} has finite variance σ2 and finite third central moment

γ3 := IE(|Y1−µ|3). Let an be a sequence of real numbers increasing to infinity, and subject

to the following growth condition:

lim
n→∞

log
nγ3

(nσ2)3/2
+

a2
n

2
(1 + ε) = −∞ for some ε > 0. (2.10)
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Then, for this ε, there exists N such that for all n ≥ N we have

e−a2
n(1+ε)/2 ≤ P

(
Ȳ − µ ≥ anσ√

n

)
≤ e−a2

n(1−ε)/2. (2.11)

We can now state the results:

Proposition 2.1 Suppose that assumptions A1 and A2 hold. Suppose also that the schedule

{Nk} satisfies the following property:

∞∑

k=1

αNk < ∞ for all α ∈ (0, 1). (2.12)

Then, ĝk(x) → g(x) for P̃ -almost all ω ∈ Ω̃.

Proof: Fix x ∈ X, let k ≥ 1 and δ > 0. To simplify the notation, let gk := IEĝk(x). Then,

by inequality (2.6) above, we have that

Pk (|ĝk(x)− gk| ≥ δ) ≤ 2e−Nkγk(δ), (2.13)

where γk(δ) := min(Ik(gk + δ), Ik(gk − δ)), and Ik is the rate function of Gk
i (x). By as-

sumption A1, we have that Gk
i (x) ≤ M w.p.1 for all k and i and thus, from (2.8), we

have

γk(δ) ≥ δ2

2M2

and hence

P̃ (|ĝk(x)− gk| ≥ δ) = Pk (|ĝk(x)− gk| ≥ δ) ≤ 2e−Nkδ2/(2M2), (2.14)

It follows that
∞∑

k=1

P̃ (|ĝk(x)− gk| ≥ δ) ≤
∞∑

k=1

2
(
e−δ2/(2M2)

)Nk

. (2.15)

Notice that, if condition (2.12) holds, then the expression on the right hand side of the

above inequality is finite for all δ > 0. By the Borel-Cantelli lemma (see, e.g., Chung [8,

Thm. 4.2.1]), we then have that

P̃ (|ĝk(x)− gk| ≥ δ infinitely often) = 0 ∀δ > 0.

Finally, assumption A2 implies that, given δ > 0, |gk − g(x)| < δ/2 for k large enough. It

follows that

P̃ (|ĝk(x)− g(x)| ≥ δ/2 infinitely often) = 0 ∀δ > 0 (2.16)
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and therefore ĝk(x) → g(x) for P̃ -almost all ω ∈ Ω̃.

The above result can be strengthened in case the measures Pk are identical. As the

proposition below shows, in that case condition (2.12) is also necessary for convergence of

ĝk(x) to g(x).

Proposition 2.2 Suppose that assumptions A1’ and A2’ hold. Then, a sufficient condition

to have ĝk(x) → g(x) for P̃ -almost all ω ∈ Ω̃ is that the schedule {Nk} satisfies condition

(2.12). If, in addition, Var[G1
1(x)] > 0, then condition (2.12) is also necessary.

Proof: Fix x ∈ X, let k ≥ 1 and δ > 0. Then, (2.6) and (2.7), together with assumption

A2’, imply that there exists a sequence {ck} such that ck → 0 and

Pk (|ĝk(x)− g(x)| ≥ δ) ≤ 2e−Nk(γ(δ) (2.17)

Pk (|ĝk(x)− g(x)| > δ) ≥ e−Nk(γ(δ)+ck), (2.18)

where γ(δ) := min(I(g(x)+ δ), I(g(x)− δ)), and I is the rate function of Gk
i (x). Now, from

(2.9) and assumption A1’ we have that there exists a neighborhood N of zero such that

γ(δ) ≥ δ2

3M2
for all δ ∈ N

and thus, for δ small enough and all k,

P̃ (|ĝk(x)− g(x)| ≥ δ) = Pk (|ĝk(x)− g(x)| ≥ δ) ≤ 2e−Nkδ2/(3M2). (2.19)

On the other hand, since the random variables Gk
i (x) are assumed to have positive variance,

it follows that the rate function I is finite in a neighborhood of g(x), i.e., γ(δ) < ∞ for δ

small enough. Moreover, since the sequence {ck} goes to zero, we have from (2.18) that,

for k large enough,

P̃ (|ĝk(x)− g(x)| > δ) = Pk (|ĝk(x)− g(x)| > δ) ≥ e−NkC (2.20)

for some C > 0.

Together, (2.19) and (2.20) imply that
∑∞

k=1 P̃ (|ĝk(x)− gk| > δ) is finite for all δ suf-

ficiently small if and only if condition (2.12) holds. By applying the full statement of the

Borel-Cantelli lemma (see, e.g., Chung [8, Thms. 4.2.1 and 4.2.4]), we conclude that, under

assumption A1’, we have

condition (2.12) holds =⇒ P̃ (|ĝk(x)− g(x)| > δ infinitely often) = 0

condition (2.12) does not hold =⇒ P̃ (|ĝk(x)− g(x)| > δ infinitely often) = 1.

12



It follows from the above implications that a necessary and sufficient condition to have

ĝk(x) → g(x) for P̃ -almost all ω ∈ Ω̃ is that condition (2.12) holds.

Some remarks about the above results are now in order. First, notice that condition

(2.12) imposes a mild constraint on the schedule of sample sizes. Indeed, it is evident that

such condition holds if Nk ≥ ck, where c is any positive constant. Even a sublinear growth

such as Nk =
√

k satisfies (2.12). Notice however not all increasing schedules satisfy (2.12):

for example, with Nk = log k we have, for any α > 0,

∞∑

k=1

αlog k =
∞∑

k=1

elog k log α =
∞∑

k=1

klog α

which converges if and only if α < 1/e. Therefore, condition (2.12) does not hold in that

case. A somewhat surprising consequence of Proposition 2.2 is that, when the measures

Pk are identical and Nk = log k, ĝk(x) does not converge to g(x) for P̃ -almost all ω ∈ Ω̃.

The proof of Proposition 2.2 shows why this happens — for any given δ, the deviation

|ĝk(x)− g(x)| is larger than δ infinitely often w.p.1. In that case, we can only conclude that

there exists a subsequence of {ĝk(x)} converging to g(x).

Another remark concerns the necessity of condition (2.12) in Proposition 2.2. Observe

the importance of the assumption of positive variance in that proposition, since otherwise

Gk
i (x) ≡ g(x) and thus (2.12) would not be necessary. Moreover, condition (2.12) is not

necessary under the conditions of Proposition 2.1. Indeed, suppose for example that Gk
i (x)

has distribution with mean g(x) and variance σ2
k = 1/k; clearly, Gk

i (x) approaches the

constant g(x) w.p.1 as k grows and therefore any nondecreasing schedule {Nk} (for example,

Nk = 1 for all k) guarantees that ĝk(x) converges to g(x) w.p.1.

We conclude this subsection by proposing yet another alternative to Propositions 2.1

and 2.2. It requires a stronger assumption on the schedule {Nk} but it requires weaker

assumptions on the underlying random variables. A related result was derived by Cooper,

Henderson and Lewis [9] in a different context.

Proposition 2.3 Suppose that assumptions A1’ and A2 hold. Suppose also that the sched-

ule {Nk} satisfies the following property:

∞∑

k=1

1

Nk
< ∞. (2.21)

Then, ĝk(x) → g(x) for P̃ -almost all ω ∈ Ω̃.

13



Proof: Fix x ∈ X, let k ≥ 1 and δ > 0. We apply Chebyshev’s inequality to obtain

Pk (|ĝk(x)− IEĝk(x)| ≥ δ) ≤ Var[ĝk(x)]

δ2
=

Var[Gk
1(x)]/δ2

Nk
≤ M/δ2

Nk
. (2.22)

Thus,
∑∞

k=1 P̃ (|ĝk(x)− IEĝk(x)| ≥ δ) converges if and only if (2.21) holds. The remainder

of the proof is identical to that of Proposition 2.1 and therefore is omitted.

2.2 Sample-path bounds

The results in the previous subsection ensure consistency of the estimators used at each

iteration. Intuitively, this guarantees that, if k (and therefore Nk) is large enough, then

ĝk(x) is close to g(x) and so, in principle, when k is large a variable-sample method should

not behave too differently from a hypothetical method that could solve the original problem

(1.1). Notice however that the basic argument for using a variable-sample method is to

update the sample sizes as the algorithm progresses; therefore, we need stronger results than

just consistency. In particular, we need to derive bounds on the deviation |ĝk(x)− g(x)|.
The theorem below provides such bound. Notice that the result is not stated in terms

of distributions, but rather for each sample path ω. In a sense, it corresponds to the law of

the iterated logarithm in the standard i.i.d. case. Observe that conditions imposed on the

schedule {Nk} are stronger than before. We shall also impose the following assumption:

Assumption A3: For each x ∈ X, there exist a positive constant M1 = M1(x) such that

supk IE[|Gk
1(x)− IEĝk(x)|3]/(Var[Gk

1(x)])3/2 ≤ M1.

Assumption A3 holds, for example, if the random variables Gk
1(x) have uniformly

bounded third moment (for all k) and their variances are uniformly bounded away from

zero.

Theorem 2.1 Suppose that assumption A3 holds. Suppose also that the schedule {Nk}
satisfies the following property:

Nk ≥ ckρ for some c > 0 and some ρ > 0. (2.23)

If ρ > 2, then for P̃ -almost all ω ∈ Ω̃ there exists K = K(ω) > 0 such that

|ĝk(x)− g(x)| ≤ σk(x)

√
log Nk

Nk
+ |IEĝk(x)− g(x)| (2.24)

for all k > K, where σ2
k(x) := Var[Gk

1(x)].
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Proof: Fix x ∈ X and let k ≥ 1. Our goal is to apply inequalities (2.11) to estimate

the deviation probabilities of ĝk(x) − IEĝk(x). Let σ2
k := Var[Gk

i (x)] and γ3
k := IE[|Gk

i (x) −
IEĝk(x)|3]. Let δ > 0 be arbitrarily chosen, and define ak :=

√
1

(1+δ) log Nk. Clearly,

ak →∞. Moreover, the sequence {ak} satisfies the growth condition (2.10), since

lim sup
k→∞

log
Nkγ

3
k

(Nkσ
2
k)

3/2
+

a2
k

2
(1 + ε) = lim sup

k→∞
log

γ3
k

σ3
k

+ log N
−1/2
k +

1 + ε

2(1 + δ)
log Nk

≤ log M1 + lim sup
k→∞

(
1 + ε

2(1 + δ)
− 1

2

)
log Nk

= −∞ for ε < δ.

Therefore, the conditions for (2.11) are satisfied when ε < δ. Fix now an ε < δ/(1 + 2δ).

Thus, from (2.11) we have

2e
− 1+ε

2(1+δ)
log Nk ≤ Pk

(
|ĝk(x)− IEĝk(x)| ≥ σk√

1 + δ

√
log Nk

Nk

)
≤ 2e

− 1−ε
2(1+δ)

log Nk ,

that is,

2N
− 1+ε

2(1+δ)

k ≤ P̃

(
|ĝk(x)− IEĝk(x)| ≥ σk√

1 + δ

√
log Nk

Nk

)
≤ 2N

− 1−ε
2(1+δ)

k

for k large enough, say k ≥ K.

Suppose now that the schedule {Nk} satisfies (2.23). By summing over k in the above

inequalities, we obtain

∞∑

k=K

C1k
−

(1+ε)ρ
2(1+δ) ≤

∞∑

k=1

P̃

(
|ĝk(x)− IEĝk(x)| ≥ σk√

1 + δ

√
log Nk

Nk

)
(2.25)

≤
∞∑

k=K

C2k
−

(1−ε)ρ
2(1+δ) (2.26)

where C1 and C2 are positive constants. Next, recall that ε was fixed above to be smaller

than δ. It follows from (2.25) that

∞∑

k=K

C1k
−ρ/2 ≤

∞∑

k=K

P̃

(
|ĝk(x)− IEĝk(x)| ≥ σk√

1 + δ

√
log Nk

Nk

)

and so the series on the right-hand side of the above inequality diverges if ρ ≤ 2.

Assume now that ρ > 2. Then, let δ ≤ (ρ− 2)/4 > 0. We have ρ ≥ 2(1 + 2δ) and thus

in (2.26) we obtain

∞∑

k=K

P̃

(
|ĝk(x)− IEĝk(x)| ≥ σk√

1 + δ

√
log Nk

Nk

)
≤

∞∑

k=K

C1k
−

(1−ε)(1+2δ)
1+δ . (2.27)

15



The expression on the right hand side of the above inequality is finite if and only if the

exponent of k is less than -1, i.e. if and only if ε < δ/(1 + 2δ). Since ε was fixed above to

satisfy such condition, it follows that the expression on the left hand side of (2.27) is finite

when ρ > 2.

The above conclusions, together with the Borel-Cantelli lemma, imply that

P̃

(
|ĝk(x)− IEĝk(x)| ≥ σk√

1 + δ

√
log Nk

Nk
infinitely often

)
= 0 if ρ > 2

P̃

(
|ĝk(x)− IEĝk(x)| ≥ σk√

1 + δ

√
log Nk

Nk
infinitely often

)
= 1 if ρ ≤ 2.

The first equation holds for all 0 < δ ≤ (ρ− 2)/4, whereas the second holds for any δ > 0.

Therefore, the assertion of the theorem follows.

Remark: The proof of the theorem shows that, in a sense, ρ > 2 is the weakest requirement

on ρ that yields a bound of order
√

log Nk/Nk. Indeed, if ρ ≤ 2 then for any δ > 0 and

P̃ -almost all ω ∈ Ω̃ there does not exist K = K(ω) > 0 such that

|ĝk(x)− IEĝk(x)| ≤ σk√
1 + δ

√
log Nk

Nk

for all k > K.

Notice that the right-hand side in (2.24) has a component due to the bias IE[Gk
1(x)] −

g(x). If this bias dominates the term
√

log Nk/Nk, then of course the error |ĝk(x)− g(x)|
will be the order of the bias. Under assumption A2” below, Theorem 2.1 yields a direct

consequence.

Assumption A2”: For each x ∈ X, there exists a positive constant D = D(x) such that

∣∣∣IE
[
Gk

i (x)
]
− g(x)

∣∣∣ ≤ D

√
log Nk

Nk
for all k ≥ 1. (2.28)

Corollary 2.1 Suppose that assumptions A1’,A2” and A3 hold. Suppose also that the

schedule {Nk} satisfies the following property:

Nk ≥ ck2+δ for some c > 0 and some δ > 0. (2.29)

Then, there exists a constant C = C(x) > 0 such that, for P̃ -almost all ω ∈ Ω̃, there exists

K = K(ω) > 0 such that

|ĝk(x)− g(x)| ≤ C

√
log Nk

Nk
(2.30)

for all k > K.
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The above results provide the desired bound on the deviation |ĝk(x)− g(x)|. Note that

no assumptions were made on the distribution of Gk
i (x), other than some boundedness

assumptions on the first three moments. This underscores the generality of the results.

Another remark is that, clearly, (2.30) implies that ĝk(x) → g(x) w.p.1, which was the

conclusion of Propositions 2.1-2.3. Those propositions, however, use weaker assumptions

on the schedule {Nk}, so we stated them for the sake of completeness even though we shall

assume in the next section that the conditions for validity of Corollary 2.1 hold.

2.3 Cumulative samples

The results in the previous sections focus on a certain sampling structure — namely, it is

assumed that samples used at different iterations are independent. It is natural to think of

an alternative scheme, where at each iteration a new sample is appended to the previous one.

In other words, using the notation defined earlier, if the sample used at the first iteration

is ω1
1, . . . , ω

1
N1

, then the sample used at the second iteration is ω1
1 , . . . , ω

1
N1

, ω2
1 , . . . , ω

2
N2

and

so on. Thus, the estimator ḡk(x) used at iteration k is defined as

ḡk(x) :=
G1

1(x, ω) + . . . + Gk
Nk

(x, ω)

N1 + . . . + Nk
, k = 1, 2, . . . (2.31)

for each ω ∈ Ω̃.

It is clear that, under such scheme, consistency follows immediately from the strong law

of large numbers when the measures Pk are identical. If the measures Pk are not identical,

then we need extra conditions on the bias |IE[Gk
i (x)]−g(x)], as the proposition below shows:

Proposition 2.4 Suppose that assumptions A1’ and A2” hold. Then, for all x ∈ X,

lim
k→∞

ḡk(x) = g(x) (2.32)

for P̃ -almost all ω ∈ Ω̃, provided that limk→∞N1 + . . . + Nk = ∞.

Proof: Fix x ∈ X, and let Y k
i = Gk

i (x) − IE[Gk
i (x)], k = 1, 2, . . ., i = 1, . . . , Nk. Then,

IE[Y k
i ] = 0 and, by assumption A1’, IE|Y k

i |2 ≤ M . It follows from a classical result in

Probability that limk→∞(Y 1
1 + . . . + Y k

Nk
)/(N1 + . . . + Nk) = 0 w.p.1 (see e.g. Chung[8,

p.125]) and hence, by assumption A2”, we have that

lim
k→∞

G1
1(x) + . . . + Gk

Nk
(x)

N1 + . . . + Nk
= lim

k→∞

IE
[
G1

1(x)
]
+ . . . + IE

[
Gk

Nk
(x)
]

N1 + . . . + Nk

≤ lim
k→∞

N1

(
g(x) + D

√
log N1

N1

)
+ . . . + Nk

(
g(x) + D

√
log Nk

Nk

)

N1 + . . . + Nk
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≤ g(x) + lim
k→∞

(
√

N1 log N1 + . . . +
√

Nk log Nk)D

N1 + . . . + Nk

= g(x)

for P̃ -almost all ω ∈ Ω̃. Similarly, one can show that limk→∞(G1
1(x) + . . . +Gk

Nk
(x))/(N1 +

. . . + Nk) ≥ g(x), so the assertion of the proposition follows.

A bound similar to the one given by Theorem 2.1 can also be derived in this case. It

is a direct consequence of the law of the iterated logarithm — which can be seen from the

“log log” term on the bound.

Proposition 2.5 Suppose that any of the conditions below is satisfied:

i. Assumption A2’ holds;

ii. Assumption A1 holds;

iii. There exist constants A > 0 and 0 < ε < 1 such that

Γk

Σ3
k

≤ A

(log Σk)1+ε
,

where Σ2
k :=

∑k
i=1 Niσ

2
i , σ2

i := Var[Gi
1(x)], Γk =

∑k
i=1 Niγ

3
i , and also γ3

i := IE
[∣∣Gi

1(x)− IE[Gi
1(x)]

∣∣3
]
.

Suppose also that assumption A1’ holds and that IE[Gk
1(x)] = g(x) for all x ∈ X and all

k = 1, 2, . . .. Then, for P̃ -almost all ω ∈ Ω̃ there exist positive constants C and K = K(ω)

such that

|ḡk(x)− g(x)| ≤ C

√
log log(N1 + . . . + Nk)

N1 + . . . + Nk
∀ k ≥ K, (2.33)

provided that limk→∞N1 + . . . + Nk = ∞.

Proof: Fix x ∈ X. Then, conditions (i)-(iii) above, together with independence of the

variables Gk
i (x), imply that we can use the law of the iterated logarithm for the sequence

G1
1(x), . . . , Gk

Nk
(x), so that, w.p.1,

lim sup
k→∞

(G1
1(x)− IE[G1

1(x)]) + . . . + (Gk
Nk

(x)− IE[Gk
Nk

(x)])
√

2Σ2
k log log Σk

= 1 (2.34)

lim inf
k→∞

(G1
1(x)− IE[G1

1(x)]) + . . . + (Gk
Nk

(x)− IE[Gk
Nk

(x)])
√

2Σ2
k log log Σk

= −1 (2.35)

(see, for instance, Chung [8] and Rao [30]). Since IE[Gk
1(x)] = g(x) for all k and Σ2

k =
∑k

i=1 Niσ
2
i ≤ M

∑k
i=1 Ni, it follows from the above inequalities that, given δ > 0, there

exists K = K(ω) such that

∣∣∣(G1
1(x)− g(x)) + . . . + (Gk

Nk
(x)− g(x))

∣∣∣ ≤ (1 + δ)
√

2Σ2
k log log Σk ∀ k ≥ K
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and thus

∣∣∣∣∣
G1

1(x) + . . . + Gk
Nk

(x)

N1 + . . . + Nk
− g(x)

∣∣∣∣∣ ≤ (1 + δ)

√
2M log log

√
M(N1 + . . . + Nk)

N1 + . . . + Nk

≤ C

√
log log(N1 + . . . + Nk)

N1 + . . . + Nk

for some C > 0 and k large enough.

The task of showing convergence of a variable-sample simulation-based method is fa-

cilitated by the above results. Such proof depends of course on the specific deterministic

algorithm being used, but all is needed now is a proof that the convergence properties of

the deterministic algorithm are kept when, at each iteration k, one replaces the original

function g(x) by an approximating function ĝk(x) such that ĝk(x) → g(x) w.p.1 as k goes

to infinity.

The main task is to show that, in some sense, the deterministic error dominates the

stochastic error resulting from approximating g(x) by ĝk(x). In that sense, Theorem 2.1

and Proposition 2.5 are crucial, as they provide upper bounds on the error |ĝk(x) − g(x)|.
An important aspect of those bounds is that they are distribution-free, which allows for

applicability of those results in fairly general contexts. Moreover, because those bounds

are derived for sample paths, one can analyze the underlying algorithm for each individual

sample path, which typically leads to stronger “w.p.1” results. Finally, we emphasize that

the properties derived in the previous section hold both when new samples are drawn at

each iteration as well as when samples are accumulated from one iteration to the next.

Therefore, the convergence results will be valid under either sampling scheme.

In the next section we will see an example of analysis of a specific algorithm, a modified

version of simulated annealing.

3 Simulated Annealing

In this section we describe a variable-sample modification of the basic SA method to adapt

it to discrete stochastic optimization problems. We then proceed to prove its convergence.

Throughout this section, we will call this modified SA “stochastic simulated annealing”,

as opposed to “deterministic simulated annealing”, which is understood as SA applied to

deterministic optimization.
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3.1 Description of the algorithm

The basic stochastic simulated annealing algorithm takes the form below. Here, {Nk} is

the sequence of sample sizes used at each iteration, {Tk} is the sequence of values for the

“temperature” control, and V (x) denotes the set of the neighbors of x. We assume that the

neighborhood structure is symmetric, i.e., if y ∈ V (x) then x ∈ V (y).

Algorithm

x0 := initial state;

N0 := initial sample size;

k := 0;

Repeat

Choose a state y from V (xk) according to the selection distribution Rxk,·(k);

Generate a sample ωk
1 , . . . , ωk

Nk
from a distribution Pk;

Compute ĝk(xk), ĝk(y) according to (2.1) or (2.31);

If ĝk(y) ≤ ĝk(xk)

then xk+1 := y

else generate a uniform random number U between 0 and 1;

if U < exp([ĝk(xk)− ĝk(y)]/Tk)

then xk+1 := y;

Update Tk, Nk;

k := k + 1;

Until {stopping criterion is satisfied}.

The above description is of course very loose, since it does not specify how to perform

some of the steps. We discuss now some of these issues.

The choice of a state y in the neighborhood structure of the current point xk is made

randomly, according to some pre-specified distribution Rxk,·(k), which we will call the selec-

tion distribution. That is, point y ∈ V (xk) is chosen with probability Rxk,y(k). A common

choice for the selection distribution is Rxy(k) = 1/|V (x)|, i.e. all neighbors of a point x are

equally likely. In general, however, different neighbors may be assigned different probabili-

ties. Notice that, unlike the usual description of simulated annealing, we allow the selection

distribution to vary with k (as we shall see later, such variation is allowed as long as the

selection distributions R(k) converge at a certain rate). This feature yields another degree

of flexibility, and in particular allows the implementation of dynamic neighborhoods, so that
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the neighborhood structure changes with k, since by setting Rxk,y(k) = 0 (and therefore

Ry,xk
(k) = 0) we prevent y to be chosen. This can be potentially used to enhance the speed

of convergence (cf. Fox [13]).

The next issue is the generation of a sample ωk
1 , . . . , ωk

Nk
. This is an i.i.d. sample which

is also independent of previous samples. As remarked in section 2, the idea is to “reset” the

estimates so that the behavior of the algorithm is not influenced by a particular sample.

Notice that we also allow for the use of cumulative samples, as discussed in section 2.3. In

some cases, it may be useful to drop the i.i.d. assumption, especially if one is implementing

some type of variance reduction techniques. Using non-i.i.d. samples does not affect the

validity of the theoretical convergence results, as long as it is possible to guarantee that the

estimators ĝk(x) converge pointwise to g(x) at a rate satisfying (2.30).

Once the value of the approximating function ĝk is compared at the points xk and

a chosen neighbor y, the algorithm moves from xk to y with “probability one” if ĝk(y) <

ĝk(xk), and with “probability exp((ĝk(xk)− ĝk(y))/Tk)” otherwise. Notice the use of quotes,

since the probability depends on ĝk and thus is a random measure. In summary, the Markov

chain {Zk} generated by the algorithm has the (random) transition probability matrix

Pij(k) = Rij(k) exp(−[ĝk(j)− ĝk(i)]
+/Tk), (3.1)

where [a]+ = max(a, 0).

The issue of how to update Nk and Tk is discussed below. As we shall see, it is necessary

to impose some growth conditions on Nk and Tk, as well as on the rate of convergence of the

selection distributions R(k), in order to guarantee convergence of the overall algorithm. Our

goal is then to show that, under those conditions and when (2.30) holds (as well as additional

assumptions), the simulated annealing algorithm converges to an optimal solution w.p.1.

Here “w.p.1” refers to the probability measure P̃ corresponding to the sample space Ω̃,

which in turn represents the set of possible sample paths to be followed along the algorithm

(see section 2).

We now discuss briefly the issue of choosing a stopping criterion. In the deterministic

context, a criterion commonly used is Tk < ε, where ε is a pre-specified constant; here, we

suggest comparing the values of the objective function estimates at the current iteration

with values at previous iterations, and stop if no improvement has been obtained for some

time. Notice that we can perform a t-test to compare the estimates used at two differ-

ent iterations, or more generally, we can perform an analysis of variance to compare the

estimates corresponding to several iterations. This type of idea was used by Shapiro and

Homem-de-Mello [36] in the context of continuous stochastic optimization.
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A final remark about the above algorithm: in the way it is stated, a new sample is

generated and the parameters Nk and Tk are updated every iteration. In practice, however,

we can “freeze” those values for a few iterations, so that the algorithm uses the same

sample and same temperature for a few iterations before being updated again. The benefit

of such approach is to take advantage of the fact that, once the sample is fixed, the resulting

approximating function is deterministic and hence the algorithm behaves as its deterministic

version during those iterations.

3.2 Convergence of the algorithm

We proceed now to show convergence of the algorithm. The main result is formalized

in Theorem 3.1 below. Before that, however, we need to establish a few definitions and

preliminary results.

We follow the approach in Mitra, Romeo and Sangiovanni-Vicentelli [26]. The idea is to

show that the stochastic process consisting of the feasible points visited on each iteration

forms a time-inhomogeneous Markov Chain, and then to show that this chain is strongly

ergodic and converges to the points in the solution set.

In what follows, we shall assume that the sampling scheme employed is that of generating

new samples at each iteration, i.e. estimator (2.1) is used. This is done just for simplicity,

and the same results can be easily derived for the cumulative sampling scheme.

We shall impose the following assumption:

Assumption B1: The selection distributions R(k) are reversible, that is, for each k =

0, 1, . . . there exists a probability distribution w(k) such that

wi(k)Rij(k) = wj(k)Rji(k) for all i, j ∈ X. (3.2)

Notice that, in particular, the uniform selection distribution Rij(k) = 1/|V (i)| for j ∈
V (i) satisfies assumption B1, since if we define w(k) by wi(k) = |V (i)|/∑`∈X |V (`)|, then

w(k) satisfies (3.2). Since we assume that the feasible set X is finite, without loss of

generality we shall write X = {1, . . . , S}. Define now, for i = 1, . . . , S,

πi(k) =
wi(k) exp(−ĝk(i)/Tk)

Γ(k)
(3.3)

where Γ(k) =
∑S

i=1 wi(k) exp(−ĝk(i)/Tk) is a normalizing function to ensure that ‖π(k)‖ =
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1, where π(k) = (πi(k), . . . , πS(k)) and

‖π(k)‖ :=
S∑

i=1

πi(k). (3.4)

It is important to observe that all quantities defined above depend on the sample path

ω ∈ Ω̃. Recall that our goal is to prove convergence of the algorithm for P̃ -almost all

ω; thus, we shall fix from now on some ω ∈ Ω̃ for which (2.30) holds, and show that the

algorithm converges for that ω. In this setting, we can then omit the dependence on ω to

ease the notation.

The following lemma illustrates a property of the probability distribution π(k) defined

in (3.3). It shows that π(k) is a left-eigenvector of the matrix P (k). Such property is called

quasi-stationarity and will play an important role in showing convergence of the algorithm.

Lemma 3.1 Suppose that assumption B1 holds. Then, we have

π(k)T P (k) = π(k)T , k = 0, 1, . . . .

Proof: The proof is similar to that of Mitra et al. [26, Proposition 3.1]. We have that, for

any i, j ∈ X and any k ≥ 0,

Pij(k)

Pji(k)
=

Rij(k) exp(−[ĝk(j)− ĝk(i)]
+/Tk)

Rji(k) exp(−[ĝk(i)− ĝk(j)]+/Tk)

=
Rij(k)

Rji(k)
exp((ĝk(i)− ĝk(j))/Tk) (3.5)

=
wj(k) exp(−ĝk(j)/Tk)

wi(k) exp(−ĝk(i)/Tk)
=

πj(k)

πi(k)
,

where the equality in (3.5) follows from the fact that [a− b]+− [b− a]+ = a− b for any a, b.

Thus, we have that πi(k)Pij(k) = πj(k)Pji(k), whence the assertion of the lemma follows.

The next result shows that the quasi-stationary probability vector π(k) converges, as k

goes to infinity, to a distribution supported on the set X ∗ of optimal solutions. Unlike the

deterministic result in Mitra et al. [26, Proposition 3.2], however, here we need to impose

conditions on the schedule {Nk}. We shall also need the following assumption:

Assumption B2: The selection distribution matrices R(k) converge (as k → ∞) to a

matrix R such that R defines an irreducible Markov chain.
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Notice that, because of the symmetry of the neighborhood structure, it is natural to im-

pose the irreducibility assumption. Indeed, if R is not irreducible then it must be composed

of disconnected classes — which means that the feasible set X is partitioned into “clusters”

that do not communicate with each other. Assumption B2 prevents such situation from

happening.

We recall some notation. For two sequences {ak} and {bk} of positive numbers, we

use the “asymptotic lower bound” notation ak = ω(bk) and ak = Ω(bk), meaning respec-

tively that limk→∞ ak/bk = ∞ and lim infk→∞ ak/bk ≥ c for some c ≥ 0. We use the

“asymptotic upper bound” notation ak = o(bk) and ak = O(bk), meaning respectively that

limk→∞ ak/bk = 0 and lim supk→∞ ak/bk ≤ c for some c ≥ 0. Finally, we use the “asymp-

totically tight bound” notation ak = Θ(bk), meaning that there exist positive constants

c1, c2 and K such that c1 ≤ ak/bk ≤ c2 for all k ≥ K. See e.g. Cormen, Leiserson and

Rivest [10] for further discussion on this topic.

Lemma 3.2 Suppose that: i) assumptions B1 and B2 hold, ii) the control sequence {Tk}
converges to zero, and iii) the schedule {Nk} satisfies Nk = Ω((1/Tk)2+δ) for some constant

δ > 0. Suppose also that (2.30) holds. Then, for all i = 1, . . . , S we have that

lim
k→∞

πi(k) = π∗i :=

{ wi∑
j∈X∗

wj
if i ∈ X∗

0 otherwise,
(3.6)

where w = limk→∞w(k).

Proof: Notice initially that (3.2) implies that w(k) = w(k)T R(k) for all k. By taking limits

on both sides we obtain that

lim
k→∞

w(k) = ( lim
k→∞

w(k))T R

and hence, since R is irreducible with finite number of states, it follows that R is positive

recurrent and thus limk→∞w(k) = w, where w is the unique probability vector that satisfies

w = wT R. Next, notice that

1

πi(k)
=

∑S
j=1 wj(k) exp(−ĝk(j)/Tk)

wi(k) exp(−ĝk(i)/Tk)

=
S∑

j=1

wj(k)

wi(k)
exp([ĝk(i)− ĝk(j)]/Tk). (3.7)

The latter sum can be broken into three pieces, namely, A< = {j : g(i) < g(j)}, A> = {j :

g(i) > g(j)} and A= = {j : g(i) = g(j)}. By assumption, we have that ĝk(j) → g(j) for all
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j and hence there exists constants c,K > 0 such that, for all k > K,

ĝk(i)− ĝk(j) < −c when j ∈ A<

ĝk(i)− ĝk(j) > c when j ∈ A>.

This in turn implies that

lim
k→∞

exp([ĝk(i)− ĝk(j)]/Tk) = 0 for j ∈ A< (3.8)

lim
k→∞

exp([ĝk(i)− ĝk(j)]/Tk) = ∞ for j ∈ A>. (3.9)

Now, observe that when j ∈ A= we have g(i) − g(j) = 0 and hence it follows from (2.30)

that ĝk(i) − ĝk(j) = O(
√

log Nk/Nk). By assumption, Nk = Ω((1/Tk)2+δ), so we have that

NkT
2
k = Ω

(
1/T δ

k

)
. Therefore, NkT

2
k →∞ and hence

0 = lim
k→∞

log(NkT
2
k )

NkT
2
k

= lim
k→∞

log Nk

NkT
2
k

+
log T 2

k

NkT
2
k

= lim
k→∞

log Nk

NkT
2
k

, (3.10)

where the last equality follows from the fact that

log T 2
k

NkT 2
k

= O

(
log Tk

1/T δ
k

)
= o(1).

From (3.10) we conclude that log Nk/Nk = o(T 2
k ) and thus ĝk(i)− ĝk(j) = o(Tk). Hence,

lim
k→∞

exp([ĝk(i)− ĝk(j)]/Tk) = 1 for j ∈ A=. (3.11)

Finally, as seen earlier we have that limk→∞w(k) = w and hence limk→∞wj(k)/wi(k) =

wj/wi. From (3.7)-(3.11) we conclude that

lim
k→∞

1

πi(k)
=

{∞ if A> 6= ∅
∑

j∈A=
wj/wi otherwise

and thus

lim
k→∞

πi(k) =






0 if ∃ j : g(j) < g(i)

wi∑
j∈X∗

wj
otherwise

as asserted by the lemma.

The above result, although useful, is not sufficient to prove convergence of the simulated

annealing algorithm. The reason is that the vector π(k), which was shown in Lemma 3.2 to

converge to a distribution supported on the set X ∗ of optimal solutions, does not correspond
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to the probabilities P (Zk = i), i = 1, . . . , S (recall that {Zk} is the Markov chain represent-

ing the states visited at each iteration). As seen in Lemma 3.1, π(k) is a quasi-stationary

distribution corresponding to the transition probabilities P (k).

What is necessary here is the concept of ergodicity for time-inhomogeneous Markov

chains. This topic has been largely studied in the literature on Markov chains (see e.g.

Iosifescu [21], Madsen and Isaacson [24] and Seneta [33]), and its use as a tool to show

convergence of simulated annealing in the deterministic context was proposed in Mitra et

al. [26].

Let p(k) = (p1(k), . . . , pS(k)) denote the state probability vector after k transitions,

i.e. pi(k) = P (Zk = i). Also, let P (n, k) denote the k-step transition probability matrix

starting at step n, i.e. P (n, k) =
∏k−1

i=0 P (n + i). We need now the following definitions:

Definition: A time-inhomogeneous Markov chain is weakly ergodic if, for all i, j, r and n,

lim
k→∞

|Pir(n, k)− Pjr(n, k)| = 0. (3.12)

The chain is strongly ergodic if there exists a vector ν = (ν1, . . . , νS) such that ν ≥ 0,

‖ν‖ = 1 and, for all i, r and n,

lim
k→∞

|Pir(n, k)− νr| = 0. (3.13)

Thus, in a weakly ergodic chain the matrix P (n, k) tends (as k → ∞) to have all rows

identical, although those rows depend on k. In a strongly ergodic chain, all rows converge

to vector ν. In the latter case we have, for all n and j,

lim
k→∞

pj(n + k) = lim
k→∞

S∑

i=1

Pij(n, k)pi(n) =
S∑

i=1

νjpi(n) = νj , (3.14)

so ν is actually the limiting probability distribution of the chain.

We consider initially weak ergodicity. It is well known (see e.g. Iosifescu [21, Theorem

1]) that a necessary and sufficient condition for a time-inhomogeneous Markov chain to be

weakly ergodic is the existence of an increasing sequence of numbers {ni}, i = 0, 1, . . . such

that
∞∑

i=0

α(P (ni, ni+1 − ni)) = ∞, (3.15)

where α(Q) is the coefficient of ergodicity of the matrix Q, which is defined as

α(Q) = min
i,j∈{1,...,S}

S∑

`=1

min(Qi`, Qj`) (3.16)

26



= 1− 1

2
max

i,j∈{1,...,S}

S∑

`=1

|Qi` −Qj`|.

Notice that 1−α(Q) measures the maximum difference (in L1-norm) between any two rows

of Q.

We proceed now as in Mitra et al [26]. The idea is to show that there exists a number r

and a node ` such that ` can be reached from any other node in r steps. Thus, the matrix

P (n, r) has only positive entries in the `th column. It is possible to show that, for n large

enough,

Pi`(n, r) ≥ κr exp(−rL/Tn+r−1), (3.17)

where κ := mini minj∈V (i) Rij − ε and L = maxi maxj∈V (i) |g(j)− g(i)|+ ε, for some ε > 0.

The proof of the validity of the above inequality follows similar steps as in [26], with two

additional observations. The first one is that, by assumption B2, we have that mini minj∈V (i) Rij >

0 and thus, since Rk → R, it follows that there exists ε > 0 such that mini minj∈V (i) Rij(k) ≥
mini minj∈V (i) Rij − ε > 0 for k large enough. The second observation is that, since

ĝk(i) → g(i) for all i, we have that |ĝk(j) − ĝk(i)| ≤ L for k large enough. Therefore,

Pij(k) ≥ κ exp(−L/Tk) for all i, j such that j ∈ V (i) and all sufficiently large k.

From (3.17) it follows that, if

Tk =
Λ

log(k + k0)
, k = 0, 1, 2, . . . , (3.18)

where Λ ≥ rL and k0 ≥ 1, then the Markov chain defined by the simulated annealing

algorithm is weakly ergodic. We refer again to [26] for details. Notice that the logarith-

mic schedule defined by (3.18) appears often in the literature on deterministic simulated

annealing, and has been shown to suffice for convergence of the algorithm in that context

(see e.g. Hajek[18]).

It remains to show strong ergodicity. As shown below, this is again guaranteed by im-

posing appropriate conditions on the schedule {Nk}. Also, as seen earlier, strong ergodicity

implies existence of the limiting probabilities P (Zk = i). Together with Lemma 3.2, this

shows that the stochastic simulated annealing algorithm does converge to the set optimal

solutions. The theorem below states precisely this result:

Theorem 3.1 Suppose that the control sequence {Tk} satisfies (3.18), whereas the schedule

{Nk} satisfies

Nk = Ω
(
k2(1+δ)

)
, (3.19)

27



for some constant δ > 0. Suppose also that assumptions B1 and B2 hold, and that the

convergence of R(k) to R occurs at a rate of at least 1/k1+δ. Finally, assume that assump-

tions A1’,A2” and A3 hold. Then, the Markov chain defined by the stochastic simulated

annealing algorithm is strongly ergodic and we have, for P̃ -almost all ω ∈ Ω̃,

lim
k→∞

P (Zk = i) =

{
wi∑

j∈X∗
wj

if i ∈ X∗

0 otherwise.
(3.20)

Proof: We shall prove that

∞∑

k=1

‖π(k + 1)− π(k)‖ < ∞, (3.21)

where π(k) and ‖π(k)‖ are defined respectively in (3.3) and (3.4). Since the chain is weakly

ergodic under the assumptions of the theorem, strong ergodicity follows from (3.21) — a

result due to Madsen and Isaacson [24].

In order to show (3.21), consider the Markov chain {Z d
n} defined by the deterministic

simulated annealing algorithm which uses the original function g rather than approximating

functions ĝk. Such algorithm is of course theoretical, since g cannot be evaluated exactly.

Let P d(k) denote the transition matrix of this chain at iteration k. Next, define the vector

πd
i (k) =

wi exp(−g(i)/Tk)

Γd(k)
, (3.22)

where w is the limit of w(k) and Γd(k) =
∑S

j=1 w(j) exp(−g(j)/Tk). Notice that πd(k) is a

deterministic function, whereas π(k) is defined in terms of the approximating functions ĝk

and thus depends on the sample path ω ∈ Ω̃. We can then apply the (deterministic) results

in Mitra et al [26] to conclude that:

πd(k)P d(k) = πd(k), k = 0, 1, . . .
∞∑

k=1

‖πd(k + 1)− πd(k)‖ < ∞. (3.23)

Now, since

‖π(k + 1)− π(k)‖ ≤ ‖π(k + 1)− πd(k + 1)‖ + ‖πd(k + 1)− πd(k)‖+ ‖πd(k)− π(k)‖,

it follows from (3.23) that, to show (3.21), it suffices to show that

∞∑

k=1

‖π(k) − πd(k)‖ < ∞. (3.24)

By the definition of π(k) and πd(k) we have that

‖π(k) − πd(k)‖ =
S∑

i=1

∣∣∣∣
wi(k) exp(−ĝk(i)/Tk)

Γ(k)
− wi exp(−g(i)/Tk)

Γd(k)

∣∣∣∣ . (3.25)
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Notice that, by assumption, we have that R(k) converges to R at the rate of at least

1/k1+δ and hence the same property holds for w(k). Thus, there exists a constant C such

that, for k large enough and each i ∈ X,

|wi(k)− wi| ≤ C/k1+δ.

Now, assumption B2 implies that wi > 0 for all i, since w is the stationary distribution of

a positive recurrent chain. Since w(k) → w, it follows that there exists α > 0 such that

wi ≥ α and wi(k) ≥ α for k large enough and all i. Hence, we have that, for sufficiently

large k,

wi(k)

wi
≤ 1 +

C

αk1+δ

wi

wi(k)
≤ 1 +

C

αk1+δ

which (since Tk → 0) in turn implies that

| log wi(k)− log wi| ≤ log

(
1 +

C

αk1+δ

)
≤ 1

Tk
log

(
1 +

C

αk1+δ

)
(3.26)

for k large enough, say k > K1.

Next, since the assumptions of Corollary 2.1 are satisfied, (2.30) holds and so |ĝk(i) −
g(i)| = O(

√
log Nk/Nk). Let γ = 1 + (δ/2) > 1. From (3.19) we obtain

Nk

log Nk
= Ω

(
k2(1+δ)

log k2(1+δ)

)
= Ω

(
k2γ kδ

2(1 + δ) log k

)
= ω(k2γ),

since kδ/ log k → ∞. Thus,
√

log Nk/Nk = o(1/kγ). Moreover, from the series expansion

log(1 + x) = x − x2/2 + x3/3 − x4/4 + . . . (for small x > 0), it follows that 1/kγ =

Θ(log(1 + 1/kγ)). Thus, we have |ĝk(i) − g(i)| = o(log(1 + 1/kγ)) and hence there is some

K2 > 0 such that
∣∣∣∣
ĝk(i)− g(i)

Tk

∣∣∣∣ <
1

Tk
log

(
1 +

1

kγ

)
∀ k ≥ K2. (3.27)

Inequalities (3.26) and (3.27) together imply that
∣∣∣∣log wi(k) − log wi −

ĝk(i) − g(i)

Tk

∣∣∣∣ < 2βk ∀ k ≥ K := max(K1,K2),

where βk = log(1 + µ/kγ)/Tk and µ = max(1, C/α). It follows that, when k ≥ K,

log wi −
g(i)

Tk
− 2βk < log wi(k)− ĝk(i)

Tk
< log wi −

g(i)

Tk
+ 2βk.

This in turn implies that

wie
−g(i)/Tke−2βk < wi(k)e−ĝk(i)/Tk < wie

−g(i)/Tke2βk (3.28)
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and thus

Γd(k)e−2βk < Γ(k) < Γd(k)e2βk . (3.29)

Inequalities (3.28) and (3.29) together imply that

πd
i (k)e−4βk < πi(k) < πd

i (k)e4βk .

Therefore,
∣∣∣πd

i (k)− πi(k)
∣∣∣ < πd

i (k)
[
e4βk − e−4βk

]

and hence

‖π(k)− πd(k)‖ < e4βk − e−4βk .

for all k > K.

We now show that the series
∑∞

k=1 e4βk − e−4βk converges. Indeed, from the series

expansion ex = 1 + x + x2/2! + x3/3! + . . . we have

e4βk − e−4βk = 8βk

(
1 +

(4βk)2

3!
+

(4βk)4

5!
+

(4βk)
6

7!
+ . . .

)
≤ 8βke

4βk .

From (3.18) and the fact that log(1 + µ/kγ) = Θ(1/kγ) we have that βk = Θ(log k/kγ).

Thus, βk → 0 and hence it follows that for k large enough we have

e4βk − e−4βk < 9βk.

Since
∑∞

k=1 log k/kγ < ∞, we have that
∑∞

k=1 e4βk−e−4βk < ∞. It follows that (3.24) holds

and consequently (3.21) holds.

Now, the aforementioned result by Madsen and Isaacson [24] implies that the chain is

strongly ergodic and, moreover, limk→∞ |Pir(n, k) − π∗i | = 0, where π∗ (defined in (3.6))

is the limit of π(k), which exists by the virtue of Lemma 3.2 (notice that the assumption

on the schedule {Nk} used in Lemma 3.2 is implied by (3.19)). From (3.14) we see that

limk→∞P (Zk = i) = π∗i , which completes the proof.

Some remarks about the above theorem. First, notice that, as mentioned before, Theo-

rem 3.1 states convergence in distribution with respect to the random measure corresponding

to the selected point ω̃ (for P̃ -almost all ω̃), i.e. the measure obtained conditionally on ω̃.

By unconditioning on ω̃ and applying a bounded convergence theorem, we can easily obtain

convergence in distribution with respect to the original measure P̃ . Moreover, if the original

problem has a unique optimal solution x∗ — i.e., if X∗ = {x∗} — then Theorem 3.1 implies

convergence in probability to x∗.
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Another remark is that, in terms of implementation, it is worth keeping not only the

current point xk but also the best solution obtained so far, say yk. Clearly, the Markov chain

defined by the yk’s will not “oscillate” as much the chain defined by the xk’s. However,

because of the stochastic error that is present when comparing two function evaluations,

with this procedure we still have only convergence in probability at best.

Finally, notice that Theorem 3.1 agrees with a result obtained by Gutjahr and Pflug [17],

which states that SA for functions with normal noise N(0, σ2
k) converges if σk = O(k−γ) for

some γ > 1. Indeed, if G(x, ω) has normal distribution N(g(x), σ2), then ĝk(x) − g(x) has

normal distribution N(0, σ2/Nk) and hence
√

σ2/Nk = O(k−γ) if and only if Nk = Ω(k2γ),

which is the condition (3.19). As pointed out earlier, however, Theorem 3.1 does not make

use of any normality assumptions.

4 Conclusions

We have presented a general framework to show convergence of a certain class of methods

to solve stochastic optimization problems, which we called variable-sample methods. Such

procedures essentially consist of incorporating sampling into deterministic algorithms that

use function evaluations only. Although a complete proof of convergence will depend on the

method under scrutiny, we have provided general results to aid in that task. In particular,

we have given conditions on the schedule of sample sizes {Nk} that ensure consistency of

the estimators and also guarantee some bounds on the deviation from true values. The

results provided are general, in that no particular distribution is assumed.

To illustrate the type of analysis made possible by this framework, we presented a mod-

ification of the simulated annealing algorithm that can be used to solve general discrete

stochastic optimization problems. Our results provide a schedule of sample sizes that guar-

antees convergence of the algorithm, without making strong assumptions on the underlying

distributions. They also allow some degree of flexibility in the choice of neighborhood struc-

tures and sampling distributions, which can vary along the algorithm and can also depend

on the feasible points.

Some questions of course remain open: on the theoretical side, the study of rates of

convergence is very important to provide some intuition on the behavior of the algorithm.

Unfortunately, however, the very definition of rate of convergence is not standard in the

stochastic optimization literature, so some further study is required. Perhaps an analysis

of finite time behavior of simulated annealing, which has been studied for SA applied to
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deterministic problems, can be the way to go.

On the practical side, the implementation of an algorithm based on the techniques

described in this paper would be of interest, as well as its behavior in a real application. In

that respect, it would be important to derive appropriate stopping criteria, perhaps using

analysis of variance techniques as discussed in section 3.1.
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