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Abstract We develop a decreasing sequence of upper bounds on the expectation of a convex

function. The n-th term in the sequence uses moments and cross-moments of up to degree n

from the underlying random vector. Our work has application to a class of two-stage stochastic

programs with recourse. The objective function of such a model can defy computation when:

(i) the underlying distribution is assumed to be known only through a limited number of

moments or (ii) the function is computationally intractable, even though the distribution is

known. A tractable approximating model arises by replacing the objective function by one of

our bounding elements. We justify this approach by showing that as n grows, solutions of the

order-n approximation solve the true stochastic program.

1 Introduction

In this paper we derive a new class of upper bounds on the expected value of a convex function

of a random vector. Computing one of our bounds requires knowledge of the moments and

cross-moments of the underlying random vector up to degree n. The bounds can be applied to

approximately solve an important class of two-stage stochastic programs. The need for such

approximations arises for two reasons. First, the “true” distribution of the stochastic program’s

random parameters may be unknown, but we may be willing to specify, or estimate, some of

the distribution’s moments. Second, the distribution may be (assumed) known, but because

the stochastic program’s objective function is a difficult multivariate expectation, we cannot

compute it exactly.

The development of first-order upper bounds on the expectation of a convex function

starts with Edmundson [19] in the univariate case. Madansky [31, 32] and Frauendorfer [20]

generalize this bound to the multivariate setting in the respective cases when the components

of the random vector are independent and dependent. Both [20] and [31, 32] assume the

support of the underlying distribution is contained in a multidimensional rectangle. These

are called “first-order” bounds because they only use the mean, and in the dependent case
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degree-one cross-moments, of the underlying random vector. Generalizations of the so-called

Edmundson-Madansky (EM) bound can be made to non-rectangular sets including simplices

and general polyhedral domains (see, e.g., [13, 21, 23]).

For first-order bounds, the advantage of using simplicial sets (relative to rectangular sets) is

that the required computational effort drops from exponential to linear in the dimension of the

random vector. So, we first develop our higher-order bounds on multidimensional rectangles

but then do so on simplices, too. We note that when the support of the random vector

is contained in a general polyhedron, a linear program must be solved in order to compute

the bound. In contrast, when using simplicial or rectangular sets the bound is available in

analytical form.

Dupačová [12] initiated the investigation of bounds derived when the underlying distribu-

tion is known only in limited manner (see also [13, 14]). In stochastic programming, these

bounds may be viewed as arising through “games against nature” in which we first select a

decision vector and then nature chooses the worst (or, more generally, an extreme) distribution

from a prespecified class, e.g., distributions with given first-order information.

When first-order bounds are too weak and the distribution is known, the bounds can

be sequentially improved by applying them in a conditional fashion on an iteratively refined

partition of the random vector’s support [4, 6, 21, 22, 25]. An alternative (or complement)

is to tighten the bounds by using higher-order moment information. Upper bounds using

second-order information are developed in [3, 10, 11, 12, 27]. Bounds based on convexity can

be extended to handle convex-concave saddle functions. For first-order bounds of this type

see [17, 18] and [21]. Edirisinghe [15] develops second-order bounds for expectations of such

saddle functions and employs these bounds in a sequential refinement scheme in [16].

Typically, bounds can be categorized as being based on distributional approximations or

functional approximations. Sometimes, both views are applicable. Distributional approxima-

tions replace the original distribution with another (usually discrete) distribution that eases

computing expectations. Functional approximations replace the original function with a sim-

pler (e.g., separable) function to facilitate computation of the bound. For bounds in the

literature motivated by functional approximations see, e.g., [5, 6, 7, 33, 34, 36].

The bounds we develop may be viewed from both the distributional- and functional-

approximation perspectives. Specifically, one can interpret our bounds as discrete distribu-

tional approximations derived using convexity. The weights in the resulting convex combi-

nation are probability weights because they are nonnegative and sum to one. On the other

hand, once we derive the bounding expressions, we recognize that they are actually the well-

known Bernstein polynomials from approximation theory [2]. Hence, our bounds can be seen

as expectations of these polynomial approximating functions.
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The focus in this paper is on upper bounds, but for completeness we note that there

has been much less work on finding lower bounds on the expectation of a convex function.

Apparently, convexity more easily allows a variety of majorizing schemes that yield upper

bounds rather than minorizing schemes that can be used to generate lower bounds. The

classic inequality of Jensen [26] provides a first-order lower bound on the expectation of a

convex function and a second-order lower bound is developed in [15]. In the case of hyper-

rectangular support and independent components, the bound of [15] is tightened in [9].

We call the higher-order upper bounds we derive Edmundson-Madansky-type upper bounds

because in the univariate case our first-order bound is simply the EM bound. In the multi-

variate case, our first-order bound on a hyper-rectangular domain is the upper bound of [20].

Our first-order bound on a simplicial domain is that of [13] and [23], when their domain sets

are restricted to be simplices.

This paper is organized as follows. In Section 2 we develop a class of higher-order upper

bounds on the expectation of a convex function in the univariate case. Section 3 interprets the

univariate bounds as both distributional- and functional-approximations, and examines the

geometry of the second-order bound. Section 4 generalizes the bounds to the multivariate case

for hyper-rectangular and simplicial support of the underlying distribution. Section 5 provides

a convergence result for the bounds when applied to stochastic programming problems and

the paper is summarized in Section 6.

2 The Univariate Case

The Edmundson-Madansky inequality [19] for a convex function f : [a, b]→ R of a univariate

random variable ξ with support contained in a bounded interval [a, b], a < b, can be derived

by expressing ξ as the following convex combination

ξ =
b− ξ
b− aa+

ξ − a
b− ab.

Hence, by convexity of f we have

f(ξ) ≤ b− ξ
b− af(a) +

ξ − a
b− af(b).

Taking the expectation of both sides and letting m1 = Eξ yields

Ef(ξ) ≤ b−m1

b− a f(a) +
m1 − a
b− a f(b) ≡ EM,

where we refer to EM as the Edmundson-Madansky bound. This three-step procedure can be

generalized to produce a tighter upper bound that uses higher-order moments for the random
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variable ξ. The binomial identity

n

(
ξ − a
b− a

)
=

n∑

i=0

(
n

i

)
(ξ − a)i(b− ξ)n−i

(b− a)n
i

can be rewritten

ξ =
n∑

i=0

(
n

i

)
(ξ − a)i(b− ξ)n−i

(b− a)n

(
a+

i

n
(b− a)

)
. (1)

This representation of ξ is a convex combination on the uniform grid of points a+(i/n)(b−a),

i = 0, 1, . . . , n, with corresponding weights
(
n
i

)
(ξ − a)i(b − ξ)n−i/(b − a)n, i = 0, 1, . . . , n.

Convexity of f implies

f(ξ) ≤
n∑

i=0

(
n

i

)
(ξ − a)i(b− ξ)n−i

(b− a)n
f

(
a+

i

n
(b− a)

)
≡ Bn(f ; ξ), (2)

where Bn(f ; ξ) is the n-th order Bernstein [2] polynomial. Taking the expectation of both

sides of (2) yields

Ef(ξ) ≤
n∑

i=0

(
n

i

)
E [(ξ − a)i(b− ξ)n−i]

(b− a)n
f

(
a+

i

n
(b− a)

)
≡ EMn, (3)

where computing E[(ξ − a)i(b− ξ)n−i] requires moments Eξi, i = 1, . . . , n. We refer to EMn

defined in (3) as the n-th order Edmundson-Madansky bound because it involves the first n

moments of the random variable ξ and EM1 = EM. In order to show that {EMn}∞n=1 is a

decreasing sequence it clearly suffices to prove Bn(f ; ξ) ≤ Bn−1(f ; ξ), n = 2, 3 . . . , and the

following lemma establishes this property provided f is convex.

Lemma 1 For a convex function f : [a, b] −→ R the Bernstein polynomials defined in (2)

form a decreasing sequence bounded below by f(ξ), i.e.,

f(ξ) ≤ Bn(f ; ξ) ≤ Bn−1(f ; ξ). (4)

Proof. We established f(ξ) ≤ Bn(f ; ξ), in (2). To verify the other inequality in (4) we express

a+ i(b− a)/n using the following convex combination

(n− i)a+ ib

n
=
i

n

(
(n− i)a+ (i− 1)b

n− 1

)
+
n− i
n

(
(n− 1− i)a+ ib

n− 1

)
.

Hence, convexity of f implies

f

(
a+

i

n
(b− a)

)
≤ i

n
f

(
(n− i)a+ (i− 1)b

n− 1

)
+
n− i
n

f

(
(n− 1− i)a+ ib

n− 1

)
. (5)
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Applying inequality (5) to the defining expression (2) of Bn(f ; ξ) we obtain

Bn(f ; ξ) ≤
n∑

i=1

(
n

i

)
(ξ − a)i(b− ξ)n−i

(b− a)n

(
i

n

)
f

(
a+

(i− 1) (b− a)

n− 1

)

+
n−1∑

i=0

(
n

i

)
(ξ − a)i(b− ξ)n−i

(b− a)n

(
n− i
n

)
f

(
a+

i(b− a)

n− 1

)
.

Changing the range of the first summation to i = 0, . . . , n− 1 and simplifying yields

Bn(f ; ξ) ≤
n−1∑

i=0

(
n− 1

i

)
(ξ − a)i+1(b− ξ)n−i−1

(b− a)n
f

(
a+

i(b− a)

n− 1

)

+
n−1∑

i=0

(
n− 1

i

)
(ξ − a)i(b− ξ)n−i

(b− a)n
f

(
a+

i(b− a)

n− 1

)

=

(
ξ − a
b− a +

b− ξ
b− a

) n−1∑

i=0

(
n− 1

i

)
(ξ − a)i(b− ξ)n−1−i

(b− a)n−1
f

(
a+

i

n− 1
(b− a)

)

= Bn−1(f ; ξ),

which completes the proof. ¥
Taking the expectation in (4) yields monotonicity of the upper bounds EMn, and we summarize

this in the following theorem.

Theorem 2 Let f : [a, b] −→ R be a convex function, and let ξ be a random variable with

moments Eξn, n = 1, 2, . . . , and support contained in [a, b]. Then

Ef(ξ) ≤ EMn ≤ EMn−1,

where EMn is defined in (3).

From Theorem 2 we can bound the expectation, Ef(ξ), of a convex function of a univariate

random variable by a decreasing sequence of upper bounds {EMn}∞n=1 . The bound EMn

requires knowing the moments Eξi, i = 1, 2, . . . , n, and requires n + 1 evaluations of f on a

uniform grid of points over [a, b].

3 Geometry and Interpretation of the Bounds

In this section we turn to a geometric view of EMn, interpret it as a functional- and a

distributional-approximation, and finally consider the sensitivity of EM2 with respect to its

defining parameters. We start with the well-known interpretation of the classical Edmundson-

Madansky bound EM1 (see, e.g., [28, Section 3.4.2]). In order to approximate Ef(ξ) we
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replace f(ξ) with B1(f ; ξ), the affine function defined by the pair of points (a, f(a)) and

(b, f(b)) as illustrated in Figure 1. The expectation of this approximating function is simply

EM1 = EB1(f ; ξ) and is given by the point (m1, B1(f ;m1)) in Figure 1. On the other hand,

from the definition of EM1 = b−m1

b−a f(a) + m1−a
b−a f(b) we can view the original, and possibly

continuous, distribution of ξ as being replaced with an approximating distribution that takes

values a and b with respective probabilities b−m1

b−a and m1−a
b−a .

More generally, that EMn is a distributional approximation is clear from (3). The discrete

approximating distribution takes values on the uniform grid of points a + (i/n)(b − a), i =

0, . . . , n, with respective probabilities
(
n
i

)
E[(ξ − a)i(b − ξ)n−i]/ (b− a)n , i = 0, . . . , n. The

functional approximation view of EMn follows from the fact that EMn = EBn(f ; ξ) and

Bn(f ; ξ) is a polynomial approximation of degree n majorizing f(ξ). In the remainder of this

section we focus on the geometric interpretation of EM2. We have the following two expressions

for the second-order upper bound EM2 and the second-order Bernstein polynomial B2(f ; ξ).

B2(f ; ξ) =

(
ξ − a+b

2

)
(ξ − b)(

a− a+b
2

)
(a− b)f(a) +

(ξ − a)
(
ξ − a+b

2

)

(b− a)
(
b− a+b

2

) f(b) (6)

+
(ξ − a) (ξ − b)(

a+b
2
− a
) (

a+b
2
− b
) 1

2

(
f(a) + f(b)

2
+ f

(
a+ b

2

))
,

and

EM2 =
B −m1

B − A

[
a+b

2
− A

a+b
2
− a f(a) +

A− a
a+b

2
− a

(
f
(
a+b

2

)
+ f(a)+f(b)

2

2

)]
(7)

+
m1 − A
B − A

[
b− B
b− a+b

2

(
f
(
a+b

2

)
+ f(a)+f(b)

2

2

)
+
B − a+b

2

b− a+b
2

f(b)

]
,

where A = m1 − σ2/(b −m1), B = m1 + σ2/(m1 − a), and σ2 = m2 −m2
1. In (6) we express

B2(f ; ξ) in the form of Lagrange’s interpolation formula (see, e.g., [8]). This shows B2(f ; ξ) is

a quadratic that passes through the points:

ξ : a a+b
2

b

f(ξ) : f(a) 1
2

(
f(a)+f(b)

2
+ f

(
a+b

2

))
f(b)

,

and, of course, from (2) we know B2(f ; ξ) majorizes f . From (7) we see that EM2 is a

convex combination with weights B−m1

B−A = b−m1

b−a and m1−A
B−A = m1−a

b−a of two expressions which

are themselves convex combinations of the points involved in the construction of B2(f ; ξ),

provided A ≤ a+b
2
≤ B.

Figure 1 illustrates f(ξ), B1(f ; ξ), B2(f ; ξ), the first- and second-order upper bounds EM1,

and EM2 and finally, for reference, the first- and second-order lower bounds of Jensen [26] and
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Edirisinghe [15]. Figure 1 is valid for EM2 provided A ≤ a+b
2
≤ B. Figures 2 and 3 illustrate

EM2 in the other two cases: (a+ b)/2 ≤ A and B ≤ (a+ b)/2, respectively.

As we discussed in the introduction, one of the motivations for studying bounds on Ef(ξ)

using only limited moment information on ξ is that the “true” distribution may be unknown.

Indeed, we may not even know these moments with certainty and so we close this section by

briefly discussing the sensitivity of EM2 with respect to m1 and σ2. To do so, it is convenient

to re-express EM2 as

EM2 =
1

(b− a)2

[
f(a) + f(b)− 2f

(
a+ b

2

)]
σ2 (8)

+

[(
b−m1

b− a

)2

f(a) +
2(m1 − a)(b−m1)

(b− a)2
f

(
a+ b

2

)
+

(
m1 − a
b− a

)2

f(b)

]
.

The coefficient of σ2 is nonnegative because f is convex and hence EM2 is increasing in σ2

assuming m1 is held constant. Holding σ2 constant and computing the second derivative of

EM2 in (8) with respect to m1 shows that EM2 is convex in m1. So, if m1 is fixed but σ2 is

only known to be in the interval [σ2, σ2] then we can conclude EM2 (σ2) is an upper bound

on Ef(ξ). Similarly, if σ2 is fixed but m1 ∈ [m1,m1] then max{EM2 (m1) , EM2 (m1)} is an

upper bound on Ef(ξ).

4 The Multivariate Case

In this section we extend EMn to handle multivariate distributions with support contained ei-

ther in a hyper-rectangle or in a simplex. In both cases the components of ξ = (ξ1, ξ2, . . . , ξd)
>

can have a general form of dependency.

4.1 Hyper-rectangular domain

We begin by assuming the support of ξ is contained in the hyper-rectangle ×dj=1[aj, bj], aj < bj,

j = 1, . . . , d, and that f : ×dj=1[aj, bj] → R is convex. Now we generalize the three-step

procedure ((1)→ (2)→ (3)) to this multivariate case. Each point ξ in the domain, ×dj=1[aj, bj],

can be represented as a convex combination formed from the uniform grid of (n + 1)d points

given by ×dj=1{aj + ij(bj − aj)/n : ij = 0, . . . , n} where n is a prespecified integer, and so

ξ =
n∑

i1=0

· · ·
n∑

id=0

d∏

j=1

(
n

ij

)(
ξj − aj
bj − aj

)ij ( bj − ξj
bj − aj

)n−ij



a1 + i1(b1−a1)
n

...

ad + id(bd−ad)
n


 .
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Because this representation of ξ is a convex combination we have

f(ξ) ≤
n∑

i1=0

· · ·
n∑

id=0

d∏

j=1

(
n

ij

)(
ξj − aj
bj − aj

)ij ( bj − ξj
bj − aj

)n−ij
f




a1 + i1(b1−a1)
n

...

ad + id(bd−ad)
n




≡ Brec
n,d(f ; ξ). (9)

Here, Brec
n,d(f ; ξ) is the n-th order Bernstein polynomial for a function f defined on a hyper-

rectangle ×dj=1[aj, bj] (see, e.g., [30]). By taking expectations in (9) we obtain

Ef(ξ) ≤
n∑

i1=0

· · ·
n∑

id=0

E

[
d∏

j=1

(
n

ij

)
(ξj − aj)ij (bj − ξj)n−ij

(bj − aj)n
]
f




a1 + i1(b1−a1)
n

...

ad + id(bd−ad)
n




≡ EM rec
n,d , (10)

where EM rec
n,d denotes the n-th order Edmundson-Madansky upper bound when the random

vector ξ has support contained in a d-dimensional rectangle. If the components of the random

vector ξ are dependent then EM rec
n,d can be computed provided we know all cross-moments

E[ξi11 ξ
i2
2 · · · ξidd ], ij = 0, . . . , n, j = 1, . . . , d. When ξ has independent components EM rec

n,d

simplifies to

EM rec
n,d =

n∑

i1=0

· · ·
n∑

id=0

d∏

j=1

(
n

ij

)
E

[
(ξj − aj)ij (bj − ξj)n−ij

(bj − aj)n
]
f




a1 + i1(b1−a1)
n

...

ad + id(bd−ad)
n


 .

To compute the bound in this case, we need to know the moments of each component,

i.e., Eξ1
j , . . . ,Eξ

n
j , j = 1, . . . , d. Monotonicity of EM rec

n,d in n is achieved in a similar way

to the univariate case treated in Lemma 1. In particular we apply (5) componentwise to

get Brec
n,d(f ; ξ) ≤ Brec

n−1,d(f ; ξ). Then, by taking the expectation, we conclude that EM rec
n,d =

EBrec
n,d(f ; ξ) ≤ EBrec

n−1,d(f ; ξ) = EM rec
n−1,d. We summarize this discussion in the following theo-

rem.

Theorem 3 Let f : ×dj=1[aj, bj]→ R be a convex function, and let ξ be a random vector with

support contained in ×dj=1[aj, bj] and with cross-moments E[ξi11 ξ
i2
2 · · · ξidd ], ij = 0, . . . , n, j =

1, . . . , d. Then

Ef(ξ) ≤ EM rec
n,d ≤ EM rec

n−1,d,

where EM rec
n,d is defined in (10).
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From the defining expression of EM rec
n,d in (10) we see that computing EM rec

n,d requires

(n + 1)d function evaluations of f. Frauendorfer [20] generalized the first-order Edmundson-

Madansky inequality to the multivariate setting; when n = 1 we recover Frauendorfer’s bound

as EM rec
1,d . The number of function evaluations required to compute EM rec

n,d increases at an

exponential rate in the dimension d and at a polynomial rate in the “order” parameter n.

Therefore, the upper bounds EM rec
n,d can only be applied for modest-sized values of these

parameters. As we will see in the next section, if the distribution’s support is instead contained

in a multidimensional simplex then the number of function evaluations for the corresponding

upper bound increases at polynomial rates in both n and d, so that it may be more attractive

for practical application.

4.2 Simplicial domain

We now consider the case when the support of the random d-vector ξ is contained in co{u1, u2, . . . ,

ud+1}, the convex hull of d + 1 points in general position. Each point in this simplex can be

expressed as a convex combination of the extreme points, u1, . . . , ud+1. The weights of such a

convex combination, say p1, . . . , pd+1, are uniquely specified by the following system of equa-

tions

p1u
1 + · · ·+ pd+1u

d+1 = ξ
p1 + p2 + · · ·+ pd+1 = 1.

(11)

Now we generalize the three-step procedure ((1) → (2) → (3)) to this simplicial case. Each

point ξ in the domain, co{u1, u2, . . . , ud+1}, can be represented as the following convex com-

bination

ξ =
∑

i∈In

(
n

i1, . . . , id+1

)(d+1∏

j=1

p
ij
j

)
i1u

1 + · · ·+ id+1u
d+1

n
(12)

where

In = {i = (i1, . . . , id+1) : i1 + · · ·+ id+1 = n, i1, . . . , id+1 ∈ Z+},

and the points

i1u
1 + · · ·+ id+1u

d+1

n
, i ∈ In, (13)

form a uniform grid over the simplex co{u1, u2, . . . , ud+1}. Here, Z+ denotes the set of nonneg-

ative integers. To verify the identity (12) let η = (η1, . . . , ηd+1) have a multinomial distribution

with parameters n, p1, . . . , pd+1. Then each ηk has a binomial marginal distribution with pa-

rameters n, pk. Hence, by changing the order of summation, the right-hand side of (12) may
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be written

1

n

d+1∑

k=1

uk

[∑

i∈In

(
n

i1, . . . , id+1

)(d+1∏

j=1

p
ij
j

)
ik

]
=

1

n

d+1∑

k=1

ukEηk

=
1

n

d+1∑

k=1

uknpk =
d+1∑

k=1

pku
k = ξ, (14)

where the last equality follows from (11). From the convexity of f and (12)

f(ξ) ≤
∑

i∈In

(
n

i1, . . . , id+1

)(d+1∏

j=1

p
ij
j

)
f

(
i1u

1 + · · ·+ id+1u
d+1

n

)

≡ Bsim
n,d (f ; ξ). (15)

Here, Bsim
n,d (f ; ξ) is the n-th order Bernstein polynomial for a function f defined on the simplex

co{u1, u2, . . . , ud+1} (see, e.g., [30]). By taking expectations in (15) we obtain

Ef(ξ) ≤
∑

i∈In

(
n

i1, . . . , id+1

)
E

[
d+1∏

j=1

p
ij
j

]
f

(
i1u

1 + · · ·+ id+1u
d+1

n

)

≡ EM sim
n,d , (16)

where EM sim
n,d denotes the n-th order Edmundson-Madansky upper bound when the ran-

dom vector ξ has support contained in a d-dimensional simplex. If the components of the

random vector ξ are dependent then EM sim
n,d can be computed provided we know all cross-

moments E[ξi11 ξ
i2
2 · · · ξidd ], i = (i1, . . . , id+1) ∈ In. Note that it is straight-forward to compute

E
[∏d+1

j=1 p
ij
j

]
, i ∈ In, by first expressing the pj’s as linear combinations of the ξi’s—using

the inverse of the matrix on the left-hand side of (11)—and then forming expectations of the

required expressions. When ξ has independent components, EM sim
n,d simplifies to

Ef(ξ) ≤
∑

i∈In

(
n

i1, . . . , id+1

)(d+1∏

j=1

E
[
p
ij
j

])
f

(
i1u

1 + · · ·+ id+1u
d+1

n

)
.

In this case we need to know the marginal moments, Eξ
ij
j , ij = 1, . . . , n, j = 1, . . . , d+ 1. The

next theorem states that the upper bounds EM sim
n,d defined in (16) decrease monotonically in

n.

Theorem 4 Let f : co(u1, u2, . . . , ud+1) → R be a convex function, and let ξ be a random

vector with support contained in co(u1, u2, . . . , ud+1) where the points u1, u2, . . . , ud+1 are in

general position in Rd. Then

Ef(ξ) ≤ EM sim
n,d ≤ EM sim

n−1,d,

where EM sim
n,d is defined in (16).
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Proof. First we express every point from the uniform grid, (13), defined by a prespecified

integer n, as a convex combination of the points forming the coarser uniform grid defined by

the integer n− 1, i.e., for i ∈ In

i1u
1 + · · ·+ id+1u

d+1

n
=

d+1∑

k=1

ik
n

(
i1u

1 + · · ·+ (ik − 1)uk + · · ·+ id+1u
d+1

n− 1

)
. (17)

To verify (17), note that the coefficient of uj on the right-hand side of (17),

ij
n

ij − 1

n− 1
+

(
d+1∑

k=1, k 6=j

ik
n

ij
n− 1

)
,

reduces to ij/n, the left-hand side coefficient of uj, by applying
∑d+1

k=1, k 6=j ik = n− ij. Because

f is convex, we obtain

f

(
i1u

1 + · · ·+ id+1u
d+1

n

)
≤

d+1∑

k=1

ik
n
f

(
i1u

1 + · · ·+ (ik − 1)uk + · · ·+ id+1u
d+1

n− 1

)
.

Combining this inequality with (15) yields

Bsim
n,d (f ; ξ) ≤

∑

i∈In

(
n

i1, . . . , id+1

)(d+1∏

j=1

p
ij
j

)
d+1∑

k=1

ik
n

· f
(
i1u

1 + · · ·+ (ik − 1)uk + · · ·+ id+1u
d+1

n− 1

)
.

We now change the order of summation to obtain

Bsim
n,d (f ; ξ) ≤

d+1∑

k=1

pk
∑

i1+···+(ik−1)+···+id+1=n−1

ij≥0 ∀j, ik−1≥0

(
n− 1

i1, . . . , ik − 1, . . . , id+1

)

· pi11 · · · pik−1
k · · · pid+1

d+1 f

(
i1u

1 + · · ·+ (ik − 1)uk + · · ·+ id+1u
d+1

n− 1

)

=
d+1∑

k=1

pkB
sim
n−1,d(f ; ξ) = Bsim

n−1,d(f ; ξ).

Taking expectations yields the monotonicity result

EM sim
n,d = EBsim

n,d (f ; ξ) ≤ EBsim
n−1,d(f ; ξ) = EM sim

n−1,d. ¥

First-order bounds whose computation requires optimization over a polyhedral set containing

ξ’s support are developed in [13, 23]. Our first-order bound, EM sim
1,d , is equivalent to their

bounds when their polyhedral set is restricted to be a simplex. The defining expression of

11



         

EM sim
n,d , (16), involves the sum across i ∈ In and function evaluations of f at the uniform

simplicial grid of points, (13). The number of evaluations of f required to compute EM sim
n,d is

therefore |In| =
(
n+d
n

)
.

In Section 4.1 we developed EM rec
n,d which requires (n+ 1)d function evaluations over a d-

dimensional hyper-rectangle, and in this section we developed EM sim
n,d which requires

(
n+d
n

)
≤

(n+ 1)d function evaluations over a d-dimensional simplex. The computational effort for both

EM rec
n,d and EM sim

n,d grows polynomially in the order n of the approximation. In contrast the

computational effort for EM rec
n,d grows exponentially in the dimension d while that for EM sim

n,d

is polynomial in d. For modest-sized values of n and d the effort required to compute EM sim
n,d

can be dramatically less than that of EM rec
n,d . For example, n = 5 and d = 5 yields

(
10
5

)
= 252

versus 65 = 7776 function evaluations.

5 A Convergence Result

In this section we apply the higher-order Edmundson-Madansky upper bounds EMn,d, derived

in the previous section, to stochastic programming. In particular, we show that in the limit,

as the order n grows, optimizing an n-th order approximation yields an optimal solution to

the original problem.

We consider a stochastic programming problem formulated as

(P ) z∗ = min
x∈X

Ef(x, ξ),

where X is a deterministic compact set, f(x, ·) is convex ∀x ∈ X, and we assume that (P ) has

a finite optimal solution. The support of ξ is contained in a hyper-rectangle or simplex which

we denote Ξ. An example of (P ) is a two-stage stochastic program with recourse in which

the recourse function f(x, ·) is defined as the optimal value of a linear program given x and

ξ = (T, h), i.e.,

f(x, ξ) = cx + min
y≥0

qy

s.t. Wy = Tx+ h.
(18)

Note that if the linear program in (18) has a finite optimal solution for all x ∈ X and ξ ∈ Ξ

then f(x, ·) is convex over domain Ξ, ∀x ∈ X. This holds because the randomness, ξ = (T, h),

only appears on the right-hand side of the linear program.

Often we cannot solve (P ) directly because computing the expectation Ef(x, ξ) is too

expensive or impossible. So, instead we will apply the upper bounds from Section 4.1 or 4.2

and solve

(Pn) z∗n = min
x∈X

EBn,d(f ; x, ξ).
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Here, Bn,d(f ; x, ξ) can be either the Bernstein polynomial Brec
n,d defined in (9) for a hyper-

rectangular domain, or the Bernstein polynomial Bsim
n,d defined in (15) for a simplicial domain,

where we have extended the notation to include the decision vector x. Similarly, we extend

the notation using EMn,d(f ; x) ≡ EBn,d(f ; x, ξ). When solving an approximating problem of

type (Pn), in place of (P ), we want its solution x∗n and solution value z∗n to have desirable

properties relative to (P ) as n grows large. Epi-convergence plays a key role in verifying

asymptotic optimality of such sequences (see, e.g., [35]). (A sequence of functions {gn} is

said to epi-convergence to g, written gn
epi−→ g, if the epi-graphs of gn, {(x, α) : α ≥ gn(x)},

converge to that of g.) So, in the following proposition we obtain an epi-convergence property

for approximations based on Bernstein polynomials.

Proposition 5 Let f : X × Ξ → R, where Ξ is a hyper-rectangle or simplex. Then, the

Bernstein polynomials Bn,d(f ; x, ξ) converge pointwise to f(x, ξ), ∀x ∈ X, ξ ∈ Ξ as n → ∞.

If, in addition, f is continuous on X × Ξ, and f(x, ·) is convex on Ξ for all x ∈ X then

Bn,d(f ; x, ξ)
epi−→ f(x, ξ) ∀ξ ∈ Ξ (19)

and

EBn,d(f ; x, ξ)
epi−→ Ef(x, ξ). (20)

Proof. Pointwise convergence of the Bernstein polynomials, Bn,d(f ; x, ξ) → f(x, ξ) as n →
∞, is provided by [24] for rectangular domain and [29] for simplicial domain. Next recall

the monotonicity properties, f(x, ξ) ≤ Bn+1,d(f ; x, ξ) ≤ Bn,d(f ; x, ξ), established enroute to

Theorems 3 and 4. From [1, Proposition 3.12] pointwise convergence and monotonicity, coupled

with (lower semi-) continuity of the limiting function, implies epi-convergence of the Bernstein

polynomials, i.e., (19). Note that the epi-convergence here is with respect to x and holds

separately for all ξ ∈ Ξ. Finally, (20) follows from (19) (see [6, Theorem 2.7]), provided f(x, ξ)

is measurable, finite with probability one and f(x, ξ) and B1,d(f ; x, ξ) have finite expectation.

These results are immediate from the continuity of f(x, ·) and the fact that the support of ξ

is contained in the compact set Ξ. ¥
The following theorem infers asymptotic optimality for solutions of (Pn) from the epi-convergence

results established in Proposition 5.

Theorem 6 Let the hypotheses of Proposition 5 on f and Ξ hold, and also assume that X is

compact. Let x∗n denote an optimal solution to (Pn). Then every accumulation point of {x∗n}∞n=1

solves (P ) and z∗n → zn.
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Proof. The theorem’s conclusion follows from [6, Corollary 2.5], provided we verify: (i)

EBn,d(f ; x, ξ)
epi−→ Ef(x, ξ) and (ii) the sequence of minimizing sets argminx∈XEMn,d(f ; x) is

contained in a bounded set. We established condition (i) in Proposition 5 and condition (ii)

is immediate from the hypothesis that X is compact. ¥
The convergence results in Theorem 6 justify solving (Pn) in place of (P ) when n is suf-

ficiently large. As we have indicated above, solving (Pn) instead of (P ), i.e., minimizing the

upper bound EMn,d(f ; x) ≡ EBn,d(f ; x, ξ) instead of minimizing Ef(x, ξ) might be helpful

when the latter function cannot be computed exactly because the underlying random vector

ξ has a continuous distribution, a discrete distribution with a large number of realizations, or

has an unknown distribution for which only the first few moments are estimated.

6 Summary

In this paper we developed two decreasing sequences of higher-order upper bounds on the

expectation of a convex function of a random vector whose support is contained in either a

hyper-rectangle (EM rec
n,d ) or a simplex (EM sim

n,d ). The first-order terms of these two sequences

reduce to bounds already available in the stochastic programming literature [13, 20, 23], and

the general order-n bounds have strong connections to the Bernstein [2] polynomials from

approximation theory. The EMn,d bounds allow the random d-dimensional vector ξ to have

dependent components and can incorporate n-th order moment information for general values

of n. The effort to compute EM rec
n,d grows exponentially as the dimension d grows. In contrast,

the effort to compute EM sim
n,d grows polynomially in d. In applying the EMn,d bounds to

a class of stochastic programs, we established a convergence result that allows solving the

approximating stochastic program (Pn) in place of the original program (P ) for sufficiently

large values of n.
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Figure 1: This figure illustrates the classical upper bound EM ≡ EM1 [19] and the second-
order upper bound EM2 which we derive in Section 2 as the second term of the decreasing
sequence of upper bounds {EMn}∞n=1. EM1 involves only the mean m1 while EM2 involves
both the mean and variance, m1 and σ2, of the underlying random variable ξ. In this figure
we show EM2 in the case when ξ has mean and variance such that A ≤ (a+ b)/2 ≤ B, where
A = m1− σ2/(b−m1) and B = m1 + σ2/(m1− a). The linear B1(f ; ξ) and quadratic B2(f ; ξ)
Bernstein [2] polynomials that majorize f(ξ) are shown. Finally, the lower bounds EB of
Edirisinghe [15] and JB of Jensen [26] are also indicated in the graph.
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Figure 2: The figure illustrates upper bounds EM1 and EM2 and lower bounds JB and EB
in the case when (a+ b)/2 ≤ A ≡ m1 − σ2/(b−m1).
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Figure 3: Similar to the previous two figures, here we illustrate upper bounds EM1 and EM2

and lower bounds JB and EB in the case when m1 + σ2/(m1 − a) ≡ B ≤ (a+ b)/2.
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