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Abstract

This paper proposes a numerical approach for computing bounds for the arbitrage-free
prices of an option when some options are available for trading. Convex duality reveals
a close relationship with recently proposed calibration techniques and implied trees. Our
approach is intimately related to the uncertain volatility model of Avellaneda, Levy and
Parés, but it is more general in that it is not based on any particular form of the asset price
process and does not require the seller’s price of an option to be a differentiable function of
the cash-flows of the option. Numerical tests on S&P 500 options demonstrate the accuracy

and robustness of the proposed method.

1 Introduction

In incomplete but arbitrage-free markets, the price of an option should lie somewhere between the
least cost of super-replication (seller’s price) and the greatest amount a hypothetical buyer of the
option could pay for it without facing the risk of negative terminal wealth (buyer’s price). When
frictionless trading is possible, these bounds can be expressed as the supremum and infimum
values over the set of all pricing measures of the discounted expected future cash-flows of the
option. Ritchken and Kuo [26] proposed to compute such bounds numerically by solving two
optimization problems over the set of martingale measures for a discrete market model. The
numerical results in [26] were based on the trinomial tree of Cox and Rubinstein [7], and their
bounds converged near the Black-Scholes value of the option as the number of trading stages
was increased. However, it is well known that the true value of an option can be far from the

BS-value and it may very well fall outside of the RK-bounds obtained with a trinomial tree. The
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basic problem with RK-bounds is that they are completely determined by the set of possible
scenarios in the market model, so these scenarios should contain all the information that might
affect the claim’s price. In practice, such models are hard to come up with.

This problem is avoided to a large extent in the approach developed in Avellaneda, Levy and
Parés [2] and Avellaneda and Paréas [3], where market-traded options may be used in the trading
strategies of the seller and the buyer. The market prices of the claims are then a natural input
to the model since they reflect the current market expectations. Much like the RK-bounds, the
bounds of [3] can be expressed as the supremum and infimum values of the expected discounted
cash-flows over a set of pricing measures of the discounted expected cash-flows. The essential
difference is that now the pricing measures are required to be consistent with the observed market
prices.

This view of the method of Avellaneda and Paras [3] shows its close relationship with calibra-
tion techniques which try to specify a single pricing measure that is optimal in some sense among
those measures that are consistent with the observed market prices (see the survey of Jackw-
erth [15]). The approach of [2, 3] has the advantage that it does not attempt to select a single
measure, so it is free of possible misspecifications in the optimization criterion. Instead, it gives
for each option separately a “calibrated” interval where its price is bound to be. Accordingly, it
seems reasonable to call the resulting bounds calibrated option bounds.

The bounds of [2, 3] are based on an uncertain volatility model, where the volatility process is
assumed to stay within a given volatility band that is input to the model. The pricing measures
that were considered in the definition of the bounds were the ones that correspond to volatility
processes varying within this band. The proposed algorithm is a two-stage procedure where
a quasi-Newton algorithm is used to minimize a function whose evaluation is done through a
solution of a nonlinear partial differential equation. A requirement of this approach is that
the seller’s and buyer’s prices of a contingent claim be differentiable functions of the cash-flows.
Unfortunately, this is a strong condition on the underlying market model, and it fails, for example,
in discrete incomplete market models; see Section 3.

The main contribution of this paper is a new approach for computing calibrated option
bounds. It is based on the use of fully discrete market models, which are well adapted to
numerical computations and allow for simplified derivations of various duality relations as in
King [20]. The method is more general than that of Avellaneda and Paras [3] in the sense that
it requires no assumptions on the particular form of the security price processes, nor do the
writer’s and buyer’s prices need to be differentiable functions of the cash-flows of a claim. Also,
the claims are allowed to be contingent on multiple securities. Numerical tests on S&P 500
options demonstrate that the method is fast, accurate and robust with respect to changes in the

underlying market model.



The next section introduces the notation and the basic structures that will be used in the rest
of this paper. Section 3 reviews the convex duality approach of King [20] in studying the relations
between hedging and martingale measures in incomplete markets. This serves as an introduction
to Section 4 where we incorporate market-traded options into the model and show how they give
rise to the calibrated option bounds. Section 5 outlines the computational advantages of our

approach, and Section 6 presents results of our experimentation on S&P500 options.

2 Discrete market models

We start by describing the finite-dimensional market model that the computational framework
will be based on. There are many treatments of discrete market models in the literature ([13,
11, 21, 10, 24], etc). Our notation follows King [20].

The market consists of J + 1 tradable securities with prices S; = (S?,...,5/), and it is
assumed that investors have no influence on these prices. The probability space is that of a finite
set of scenarios (price paths) taken by S; over discrete points in time ¢ = 0,...,T. The path
histories of the security prices up to time ¢ correspond one-to-one with a subset N; of the nodes
N of a scenario tree. The initial state at time ¢t = 0 corresponds to the root node which will be
denoted by 0. We do not assume that the tree is recombining, so for each n € N \ {0} there
is a unique node denoted by a(n) preceding n at time ¢ — 1. This assumption is essential in
incomplete markets where trading strategies are in general path dependent; see the discussion in
[11, Section IITA]. The set of nodes that can be reached from n at time ¢+ 1 is denoted by C(n).
The price vector at node n will be denoted by S,,.

A probability measure P attaches a weight p,, > 0 to each leaf node n € N with Ene N Pn =

1, and weights p, = > ) Pm tO each intermediate node n € N for t =T —1,...,0. The

méeC(n

expected value of S under P at time ¢ is
EPSt = Z SnDn-
neN;

A probability measure Q = {g,}nen is called a martingale measure for S if the value of S at

every node n is equal to its one-step ahead conditional expectation under @), or equivalently,

‘Insn: Z QmSm-

meC(n)
It is worth emphasizing that we do not assume any particular form for P. In particular, the price
process S could be non-Markovian, it could have stochastic volatility or arbitrary large jumps,
etc. This generality is one of the advantages of our computational approach.
These models can be viewed as discretizations of more realistic market models, where the

securities take values in a continuum of real numbers. Convergence of such discretizations has



been studied in Pennanen and Koivu [23]. The next section describes a weakly convergent (see

Billingsley [4]) discretization of discrete-time geometric Brownian motion.

2.1 An example: Gauss-Hermite processes

Consider an asset whose price S; follows a continuous time geometric Brownian motion with

daily drift d and volatility o. For t = 1,...,T its logarithm & = In S; satisfies
(2.1) § =61 +di+e, e~ N(0,0),

where

d;=lLd and oy =+/lio,

and I; is the length of period ¢ in days.
Given the parameters of (2.1) and the initial value &, we generate a scenario tree using the

approach described in Omberg [22] and [23]. We use the Gauss-Hermite quadrature to obtain a

7

sample (eil)h:1 of size v; of e; with associated probabilities (W{l);fle C (0,00). This gives an

approximation of the possible values of the logarithmic index at time ¢ = 1:
f1:§0+d1+e‘f i1=1,...,11.

We then generate a sample (e3)?2, of the second period innovations ey, and the possible values

of the logarithmic index at time ¢ = 2 are
£;l’i2= {1+d1+€§2 i1=1,...,v1, d2=1,...,vs.

Proceeding this way for ¢ = 2,...,T, we obtain a scenario tree whose nodes N; at time t are

labeled by the t-tuples (iy,...,4;). Defining

(2.2) N =MNU...UNT,

(2.3) aliv, ... i) = (i1,- .. it—1),

(2.4) Clir,---yit) = {(i1, - -y its1) € Nega | ieg1 € {1, ., v }},
(2.5) S, =exp(&) VneN,

(2.6) Plin o) = T ==

puts us in the discrete setting described in the previous section. Omberg [22] called such dis-
crete processes Gauss-Hermite processes. As the number of branches increases, the GH process
converges weakly to the discrete time geometric Brownian motion; see [23, Proposition 5|.

As noted in [22], if the periods are of equal length and we choose vy =2 forallt =1,...,T,
then we obtain the binomial tree of Jarrow and Rudd [17]. Note that the probabilities in

the Gauss-Hermite processes do not depend on the parameters u, o or the step lenght l;. In



particular, they cannot become negative like in some of the better known trinomial trees for
large values of l;. For v > 3, the v-nomial Gauss-Hermite trees are not recombining since then
the jumps are not integer multiples of each other. However, in our approach, the recombination
property is not of interest.

An attractive feature of Gauss-Hermite processes is that the discretized one-step conditional
probabilities of the logarithmic index match a maximum number of moments of the normal
distribution. More precisely, with v branches, the GH quadrature matches 2v — 1 moments; see
for example Stoer and Bulirsch [30, Section 3.6]. In particular, the trinomial Gauss-Hermite tree

has the first five moments of the normal distribution (not just the expectation and volatility).

3 Option bounds of Ritchken and Kuo

By a European-style contingent claim we will mean a stochastic cash-flow F with pay-outs
{Fn}nen that depend on the prices of the underlying securities S. The existence of investors
who may trade the securities S without restrictions or transaction costs leads naturally to the
Ritchken-Kuo bounds for the price of F'. The portfolio of securities held by an investor in state

n € N is denoted 6, = (62,...,67), and its value is
J . .
3=0

A portfolio process {6,} is said to super-replicate the claim’s cash-flows if all trades are self-
financing and the portfolio always has non-negative value. The writer’s price of the claim is
the smallest amount of current cash required to begin a super-replication process. In a discrete

market model, this is the optimum value of the optimization problem

miny,g \%
subject to  Sp - 09 =V
(W)
Sn'(en_ea(n)) = —-F, (ne-/\/t; tZI)
Sn - On, > 0 (n € N7).

The optimal solution 6 is the corresponding super-replication strategy or the writer’s hedge.
We will follow King [20] and analyze the problem (W) through convex programming duality;
see Appendix. To derive the dual problem of (W), we write the Lagrangian in the form

T
l(V503$ay) =V +y0[SO ) 00 - V] + Z Z yn[sn ) (en - ea(n)) + Fn] - Z ann . gn
t=1 neN; nENy

=3 3 uFut Y 90— @alSu-0a

t=1 neN; neNr

+ [1 - yO]V + i Z [ynsn - Z ymSm] . Hn

t=0 neN; meC(n)



(here it is understood that I(V, 0; z,y) takes the value —oo if z  0). The minimum of [(V,0;z, y)
with respect to (V,0) gives the objective to be maximized in the dual. If S,, # 0 for all n € N,
the dual of (W) becomes (after clearing x),

T
maximize E E YnFn
Y

t=1 neN;
subject to yn >0 n € N,
Yo =1,
Z YmSm =YnSn nEN;, t=0,...,T—1.
méeC(n)

This is essentially problem (P3) of Ritchken and Kuo [26]. If one of the assets, say S°, is strictly
positive in every node, we can use 8, = SJ/S° as a discount-factor, and then the last set of

constraints in the above dual problem shows that the numbers

Qszn/Bn neN

define a martingale measure for the discounted asset price process (3,55 )nen- We will denote

the set of martingale measures by M.

Theorem 3.1. If SO is always strictly positive, then the writer’s price of F' can be expressed as

T
(W,) sup EQ ﬂtFt-
LAY

In particular, the writer’s price is finite if and only if M # 0.

Proof. According to the above observations, the dual problem of (W) can be expressed as (W’).
Since Sy is always strictly positive, F' can be super-replicated (take, for example, V' large enough
and invest everything in S°). Thus, the optimum value in (W) is either finite or —co. In both

cases, the result follows from Theorem 6.1 in the Appendix. O

Note that the writer’s price is a nonlinear function of F', except in the exceptional case where
the set M is a singleton, i.e. the market model is complete. An infinite-dimensional version of the
above result with general probability spaces can be found in Delbaen, Kabanov and Valkeila [§].

The buyer’s price of F' is the maximum amount one could pay for it without the risk of having

negative terminal wealth. In our setting, this is the optimum value in

mazrimizey V

subject to Sy - g = -V
(B)
Sn[gn_aa(n)] = F, (”ENt,tZU
Sn - 6n > 0 (n € N7).



The optimal solution 8 is the corresponding buyer’s hedge. The derivation of the dual problem
in this case shows that the buyer’s price equals

T
B’ inf E¢ F,,
( ) ngM ;ﬂt t

which is the same as (W’) except that sup has been replaced by inf. The bounds (W’) and (B’)
were introduced by Ritchken and Kuo [26]. The interval between the buyer’s and seller’s prices
describes the possible range of arbitrage-free valuations of the claim in an incomplete market.

The above bounds depend on the measure P only through its support, i.e. the finite number of
scenarios in the market model. Since these scenarios are the only input to the option bounds, they
should contain all the relevant information that might affect the claims price. The numerical
results of [26] were based on the trinomial tree of Cox and Rubinstein [7], and the resulting
bounds converged near the Black-Scholes option value as the number of stages T" was increased.
However, it is well known that the true value of an option can be far from the BS-price and it
may very well fall outside of the RK-bounds obtained with a trinomial tree.

In order to get more reasonable bounds with the RK-approach (or any other approach that
is based only on modeling the underlying), one could try to use market models that better
capture market expectations. There are, of course, many advances in this direction such as the
jump-diffusion and stochastic volatility models.

Another possibility is to deduce market expectations from the prices of other market-traded

securities. This is the idea behind model calibration techniques.

4 Calibrated option bounds

When there are options (other than F') available for trading, it is natural to try to use them
as parts of a hedging strategy. If everything else remains unchanged, this can only improve the
investors’ situation. In particular, it can make the writer’s price lower and buyer’s price higher
thus narrowing down the arbitrage interval.

Let G*, k = 1,..., K be contingent claims with bid-ask prices CF < C¥ and payoffs GX.
Allowing the writer to apply buy-and-hold strategies on these options leads to the following
modification of (W).

minyge eV

subject to Sg -0+ Cy -4 —Ch-€_ =V

(WC) Sn'(on_oa(n)) :Gn'(§+_§—)_Fn (’I’LE./Vt, tZI)a
SanZO (nENT)v
f—i—af* ZOJ



where ¢ and & are the amounts bought and shorted of G* at time ¢ = 0. Choosing {1 = ¢ =0
reduces problem (WC) to (W), so its optimal value is at most that of (W). In general, the optimal
hedge will be a mixture of a dynamic hedge in S and a buy-and-hold hedge in G.

Much like in Section 3, we will derive an expression for the optimal value of (WC) in terms of
martingale measures. Again, we do this by deriving the dual problem. Writing the Lagrangian

for (WC) as

l(V507£+7§*;$3y) = V+y0[50 '00 +Ca '§+ _Cb 'E* _V] - Z $nsn0n

neENrT

T
+3 ) nlSn- (On = ba(n) — Fu+ G - (&4 —£)]

t=1 nEN;

=33 yFat S [yn —2nlSn-bn

t=1 neN; neENr

T-1
t=0 neN; meC(n)
T

+[CG_Z Z ynGn]'€+_[Cb_Z Z ynGn]'g—;

t=1 neN; t=1 neN;

we get the following dual

T
maximize E E YnFn
Y

t=1 neN;

subject to Yn >0 n € N,
yO:]-a
Z ym‘sm:ynsn nEM,tzl,...,T—l,

mec(n)
T

D ynGn <G,

t=1 neN;
T
> 4G > o
t=1 neN;
Note that this is exactly the same as the dual of (W) except for the two sets of additional
constraints. Again, if S° is always strictly positive, we can write the dual in terms of martingale

measures and we can apply Theorem 6.1 of Appendix to get the following.

Theorem 4.1. If S° is always strictly positive, then the writer’s price of F' in the presence of

the contingent claims G can be expressed as

T
(WC,) sup EQ BtFtJ
QEMc tZ:;



where

T
Me={QeM|C,<E?Y BiG; < Ca}.

t=1

In particular, the writer’s price is finite if and only if Mg # 0.

The set M can be thought of as a set of martingale measures that have been calibrated to
the observed market prices. Theorem 4.1 corresponds to Avellanedas and Paras [3, Proposition
2], where the set of martingale measures M was replaced by a set of measures corresponding
to different volatility processes varying within a given band. In a sense, the above result is a
nonparametric version of [3, Proposition 2] since it applies to arbitrary (but finite) asset price
processes.

Much like above, the buyer’s problem in the presence of market-traded claims becomes

maxvge, eV

subject to Sp -0+ Cy-&f —Cp-€_ ==V

(BC) S"'(an_aa(n)):Gn'(£+_§f)+Fn (TLE./\/t, t21),
Sp-0,>0 (nENT),
€+7£— 207

and its dual can be written as

T
BC’ inf  E€ F,
(BC) ot ; BeFy

Thus, when the claims G are available for trading, the arbitrage free-prices of a claim F' are
bounded by the optimal values of (BC’) and (WC’). These problems are the same as (B’) and
(W’) except that now the martingale measures are restricted by the constraints that require
that they price the benchmark claims G consistently with their observed values. The additional
constraints reduce the set of possible pricing measures, so the bounds obtained from (BC’) and
(WC’) are never wider than the bounds of Ritchken and Kuo.

We will call the the minimum and maximum values in (BC’) and (WC’), respectively, cal-
ibrated option bounds. This terminology is consistent with the literature on implied trees and
various calibration techniques. The methods proposed in Rubinstein [29], Avellaneda et.al. [1],
King et.al. [18], and Borwein et.al. [6] are designed to find a single measure that optimizes
some criterion among all the measures that are consistent with the observed market prices.
For instance, Jackwerth and Rubinstein [16] look for the consistent measure that maximizes
the smoothness of its density function, and [1, 18, 6] try to find the one that minimizes the
Kullback-Leibler entropy relative to a user-selected prior.

The calibrated option bounds (BC’) and (WC’) do not depend on any user specified inputs

other than the discrete support for the security price process. Moreover, these bounds give



for each option separately an interval where its price is bound to be. When applying pricing
measures obtained by optimization of some user-specified criterion, as in [16, 1, 18, 6], it may
be hard to tell how much the resulting valuations depend on the choice of the criterion. The
calibrated option bounds could be used as an independent set of error bounds in that case. The
numerical tests in Section 6 demonstrate that these bounds can be made quite tight by the
available market information, and moreover do not depend strongly on the choice of support for
the security price process. Another interesting feature of the calibrated option bounds is that
their computation also yields hedging strategies for the option being priced.

Our approach to obtaining the calibrated option bounds can be shown to be strongly related to
the Lagrangian Uncertain Volatility Model of Avellaneda and Paréas [3] (see also Levy, Avellaneda
and Parés [2]), which studies pricing and hedging of contingent claims under stochastic volatility
when the volatility is assumed to stay within prespecified levels. To compare our approach with

that of [3], let us write (WC) as a two-phase minimization problem

(4.1) mim'mige Co & —Cp- &+ f(€4,8),

E+.6-2>

where f(£4,£_) is the writer’s price of the residual cash-flow F' — G - ({4 — &_). It is easy to
check that a vector (£1,&_,8) solves (WC) if and only if (£;,£_) solves (4.1) and @ is the writer’s

hedge for F — G - (£ — ). Using Theorem 3.1 we can write (4.1) as
T
4.2 minimize C,-&, — Cy-&_ + maz E° Fy — Gy - —&)].
(4.2) unimize  Cy- & = Cy-& + mag ;ﬂt[t e (6 =€)
This is similar to problem (10) of [3], but there M is replaced by the set of probability measures
corresponding volatility processes varying within given bounds. Our approach does not depend

on the form of the asset price process and it can take into account multiple underlying securities.

5 Computational issues

The algorithm proposed in [3] is based on a quasi-Newton method that iteratively minimizes
(over the option holdings) the writer’s price of the residual cash-flow (function f in (4.1)). Quasi-
Newton methods are a class of algorithms for solving unconstrained minimization problems with
differentiable objective functions. They proceed by evaluating the objective and its gradient
along the iterates; see for example Polak [25]. In [3], the evaluation of the objective (writer’s
price) was done through numerical solution of a nonlinear PDE. This can be a hard problem
in itself, but a more serious problem is the computation of the gradient vectors. In general,
in incomplete markets, there is no reason to assume that the writer’s price is a differentiable
function of the cash-flows. In such a case the gradient may not be everywhere defined, and
quasi-Newton methods may fail to converge. For example, in a discrete probability space the

writer’s price is a piecewise linear function.
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One could modify the approach of [3] by replacing the quasi-Newton algorithm with an
algorithm for nondifferentiable convex minimization [14]. The writer’s price is the pointwise
supremum of linear functions of the cash-flow so it is convex. The subgradient vectors used by
such algorithms would be the measures ) € M attaining the maximum in the writer’s price [28,
Theorem 24(b)].

Our derivation of the calibrated option bounds suggests another approach: instead of a two-
stage procedure for solving (4.2) we will solve problem (WC) all at once. This will not only
give us the writer’s price but also the optimal hedge in terms of the options and the underlying
securities. Problem (WC) is a linear program, although it can be a very large one: it has
|IV|(2K + J + 1) variables and |[NV|(J + 1) + |[N7| constraints, where [N is the number of nodes in
the scenario tree and [Nr| is the number of leaf nodes. If the size of the scenario tree increases,
these numbers can become very large (recall that we are not working with recombining trees).
However, today’s generation of solvers and computers can solve linear programs with 1000’s of
variables in a matter of seconds.

The main problem in setting up and solving the model is the generation of scenario trees and
communicating them and the optimization model into a solver. We have written a C-program
that produces scenario trees with user specified features. The program takes as input a time series
model to be discretized and produces a tree with given given period and branching structures.
The tree can be incorporated into an optimization model which is then sent to an appropriate
solver. Instead of the problems (BC’) and (WC’) we will set up and solve the corresponding
primal problems (WC) and (BC). These turn out to be easier to set up and they are more
natural from the point of view of hedging. From the optimal solution of the primal (the hedge)
one can readily obtain the solution of the dual (the pricing measure). Moreover, the approach of
numerically solving problems (WC) and (BC) allows various generalizations in the model. For
example, portfolio constraints can be incorporated simply by restricting the variables (£4,£_,0),
and transactions costs by including bid-ask spreads on the underlying. Such modifications do not
add much to the numerical complexity of the problem. But but they do affect the interpretation
of solutions of the dual problem, which may no longer be martingale measures (cf. King [20]).

The above approach where one solves numerically a discrete version of a stochastic sequen-
tial decision making problem (hedging in our case) is known as stochastic programming in the
optimization literature. There are many efficient computational approaches for that purpose (cf.
[19], [5]). Other applications of stochastic programming to finance can be found in Gondzio,

Kouwenberg and Vorst [12], Dempster and Thompson [9] and Edirisinghe, Naik and Uppal [11].
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6 Numerical tests with S&P500 options

Table 1 displays the bid and ask closing prices of 48 European call and put options on the S&P500
index on September 10, 2002. The columns labeled ST R and M AT give the strike prices and
maturities, respectively.

Table 1: Options data

Call options Put options
STR MAT Ch Coq STR MAT Ch Ca
890 17 31.5 33.5 750 17 0.4 0.6
900 17 244 264 790 17 1 1.3
905 17 21.2 23.2 800 17 1.3 1.65
910 17 18.5 20.1 825 17 2.5 2.85
915 17 15.8 17.4 830 17 2.6 3.1
925 17 11.2 12,6 840 17 3.4 3.8
935 17 7.6 8.6 850 17 3.9 4.7
950 17 3.8 4.6 860 17 5.5 5.8
955 17 3 3.7 875 17 7.2 7.8
975 17 0.95 1.45 885 17 9.4 10.4
980 17 0.65 1.15 750 37 5.5 5.9
900 37 42.3 44.3 775 37 6.9 7.7
925 37 28.2 29.6 800 37 9.3 10
950 37 17.5 19 850 37 16.7 18.3
875 100 77.1 79.1 875 37 23 24.3
900 100 61.6 63.6 900 37 31 33
950 100 35.8 37.8 925 37 41.8  43.8
975 100 26 28 975 37 73 75
995 100 19.9 21.5 995 37 88.9  90.9
1025 100 12.6 14.2 650 100 5.7 6.7
1100 100 3.4 3.8 700 100 9.2 10.2
750 100 14.7 15.8
775 100 17.6  19.2
800 100 21.7  23.7
850 100 33.3  35.3
875 100 40.9  42.9
900 100 50.3  52.3

We will compute calibrated bounds for each of the 48 options one at a time by using the
remaining 47 options as the calibrating claims. In other words, we will solve problems (BC)
and (WC) 48 times by letting F' run over the 48 options and each time using the remaining 47
options as our “market-traded” claims G. The resulting values can then be compared with the

actual market prices in Table 1.

6.1 A three-stage model

We let S* be the S&P500 index, and use S = (1, S') as the dynamically traded securities. The
period structure in the model is chosen according to the maturities of the options. That is, we
assume that trading occurs at 0, 17, 37, and 100 days. A scenario tree is built by approximating

the development of S' by the Gauss-Hermite process of Section 2.1. We choose the branching
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structure (50,10,10), or in the notation

results in 5000 scenarios; see Figure 1.

4250,
4000+
3750+
3500+
3250+
3000
2750
2500+
22504
2000+
1750
15004
12504
10004

750

5001

250+

of Section 2.1, v; = 50, v» = 10 and v3 = 10.

17

100

Figure 1: Scenario tree with branching structure (50, 10, 10).

This

We generated the optimization model with AMPL modeling language, and used CPLEX

for the numerical solution. It took approximately 7 minutes for an Intel Pentium 4, 2.2 GHz

processor with 512 RAM to set up and solve all the 96 problems (two for each option) as described

in Section 5. The resulting calibrated bounds are given in Table 2.

Table 2: Calibrated bounds with a 3-period model

Call options

Put options

STR  MAT Cb Ca BP WP STR  MAT Cb Ca BP WP
890 17 31.5 33.5 30.98 32.00 750 17 0.4 0.6 0.00 1.15
900 17 24.4 26.4 24.67 26.05 790 17 1 1.3 0.87 1.44
905 17 21.2  23.2 21.79 23.08 800 17 1.3 1.65 1.16 1.74
910 17 18.5 20.1 18.93  20.30 825 17 2.5 2.85 2.18 2.86
915 17 15.8 17.4 16.08 17.51 830 17 2.6 3.1 2.74 3.15
925 17 11.2 12.6 10.43 12.77 840 17 3.4 3.8 3.20 3.90
935 17 7.6 8.6 7.68 9.09 850 17 3.9 4.7 4.40 4.80
950 17 3.8 4.6 3.39 4.79 860 17 5.5 5.8 4.61 5.94
955 17 3 3.7 2.99 3.89 875 17 7.2 7.8 6.80 7.98
975 17 0.95 1.45 0.65 1.66 885 17 9.4 10.4 9.97 10.78
980 17 0.65 1.15 0.66 1.44 750 37 5.5 5.9 3.80 6.64
900 37 42.3 44.3  40.58  42.58 775 37 6.9 7.7 6.33 7.95
925 37 28.2 29.6 26.38 28.38 800 37 9.3 10 7.90 11.23
950 37 17.5 19 13.82 18.98 850 37 16.7 18.3 13.49 19.53
875 100 771 79.1 7548  77.48 875 37 23 24.3  21.7T7  25.65
900 100 61.6 63.6 59.88 61.88 900 37 31 33 32.72  34.05
950 100 35.8 37.8 3227  39.29 925 37 41.8  43.8 43.62  45.02
975 100 26 28 23.71 28.74 975 37 73 75 72,24 7691
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995 100 19.9 21.5 17.73  22.48 995 37 88.9 90.9 87.09 94.08
1025 100 12.6 14.2 8.02 16.44 650 100 5.7 6.7 2.60 8.58
1100 100 3.4 3.8 0.00 12.80 700 100 9.2 10.2 6.65 11.25
750 100 14.7 15.8 11.80 16.20
775 100 17.6 19.2  16.95 19.75
800 100 21.7 23.7 20.07 24.57
850 100 33.3 35.3 32.74 36.50
875 100 40.9 42,9 42,52 43.80
900 100 50.3 52.3 52.02 54.02

Figure 2 plots these values along with the true bid/ask prices of Table 1. Except for some
cases (most notably, some deep out of the money options) the calibrated bounds are close to the
true bid/ask values. In some instances, one or both of the bounds even fall strictly between the
true spread. In general, good bounds seem to result when there are many benchmark options
with strikes close to the strike of the option we are trying to price. This seems rather natural
in view of the fact that the bounds are obtained by trying to hedge the cash-flows of a given
option using market-traded options. Good hedges are easier to come up when there are available

options that are similar to the one being hedged.

6.2 Sensitivity analysis

Finite scenario trees only approximate the true asset price process. It is thus natural to ask to
what extent the bounds depend on the choice of a tree. This can be studied by changing the
tree and recomputing the bounds.

Table 3 displays the bounds obtained with trees that have the same period structure as
above but with branching structures (60, 10, 10) and (70, 10, 10), respectively. For most options
the resulting bounds are almost identical to those in Table 2.

The next experiment consists of adding one more trading period to the model. In addition to
days 0, 17, 37 and 100, we now allow trading also in day 8, thus obtaining a four-period model.
The branching structure is set at (20, 10,10,10). The results are shown in Table 4. Again, for

most options the changes are very small.
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Figure 2: Calibrated bounds (e) and the true bid/ask prices (—).

Table 3: Bounds obtained with larger trees. The subscript 60 (resp. 70) refers to the tree with
the branching structure (60, 10, 10) (resp. (70,10, 10))
Call options Put options

STR MAT BCgo WCso BCro WCrq STR MAT BCsgo WCsgo BCro WCro
890 17 30.79 31.91 30.79 31.73 750 17 0.00 1.16 0.00 1.17

900 17 25.10 26.01 25.32 25.91 790 17 0.70 1.44 0.81 1.44
905 17 22.03 23.05 22.23 23.01 800 17 1.10 1.74 1.14 1.74
910 17 18.99 20.30 19.14 20.27 825 17 2.09 2.86 2.25 2.86
915 17 15.96 17.57 16.04 17.60 830 17 2.80 3.17 2.67 3.17
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925 17 10.71 12.72 11.09 12.72 840 17 3.01 3.90 3.33 3.90
935 17 7.22 9.25 6.74 9.40 850 17 4.31 4.77 4.13 4.77
950 17 3.52 4.89 3.80 4.88 860 17 4.35 5.94 4.35 5.71
955 17 2.67 3.97 2.20 3.97 875 17 7.42 8.25 7.65 8.46
975 17 0.72 1.66 0.88 1.60 885 17 9.77 10.29 9.77 10.06
980 17 0.42 1.44 0.45 1.34 750 37 3.80 6.65 3.80 6.65
900 37 40.58  42.58  40.58  42.58 775 37 6.32 7.95 6.31 7.95
925 37 26.68 28.38 26.85  28.38 800 37 7.90 11.23 7.90 11.23
950 37 13.85 18.98 13.96 18.95 850 37 13.58 19.53 13.73 19.53
875 100 75.48 77.48 75.48 T7.48 875 37 21.99  25.65 22.26  25.65
900 100 59.88 61.88 59.88  61.88 900 37 32.72  34.05 32.72  34.05
950 100 31.96 39.29 32.18 39.29 925 37 43.62  45.02  43.62  45.02
975 100 23.83 28.74 24.19 28.74 975 37 72.53 76.91 72.80 76.91
995 100 17.73 22.48 18.06 22.48 995 37 86.87 94.08 87.31 94.08
1025 100 7.97 16.44 7.97 16.44 650 100 2.60 8.58 2.60 8.58
1100 100 0.00 12.82 0.00 12.87 700 100 6.65 11.25 6.65 11.25
750 100 11.83 16.20 11.87 16.20
775 100 16.95 19.75 16.95 19.75
800 100  20.07 24.57 20.07  24.57
850 100 32.74 36.50 32.74  36.50
875 100 42.52 43.80 42.52  43.80
900 100 52.02 54.02 52.02  54.02

Table 4: Bounds obtained with a four period model with branching structure (20,10, 10, 10)

Call options Put options
STR  MAT BC WC STR MAT BC wcC
890 17 30.10 32.00 750 17 0.00 1.07
900 17 24.59  26.05 790 17 0.74 1.44
905 17 21.06 23.08 800 17 1.10 1.74
910 17 18.46  20.30 825 17 2.08 2.86
915 17 1520 17.60 830 17 2.68 3.17
925 17 10.70  13.00 840 17 3.07 3.90
935 17 6.73 9.40 850 17 3.97 4.80
950 17 3.53 4.93 860 17 4.37 5.94
955 17 2.47 3.97 875 17 7.17 8.35
975 17 0.66 1.66 885 17 9.77 11.32
980 17 0.41 1.43 750 37 3.80 6.64
900 37 40.58  42.58 775 37 6.33 7.95
925 37 26.38 28.38 800 37 7.90 11.23
950 37 13.82 18.98 850 37 13.25  19.53
875 100 75.48 77.48 875 37 21.71  25.65
900 100 59.88 61.88 900 37 32.72  34.05
950 100 31.97 39.29 925 37 43.62  45.02
975 100 23.71  28.74 975 37 72.27  76.91
995 100 17.50 22.48 995 37 86.49  94.08

1025 100 7.97 16.44 650 100 2.60 8.58
1100 100 0.00 12.90 700 100 6.65 11.25
750 100 11.74 16.20
775 100 16.95 19.75
800 100 20.07  24.57
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850 100 32.74  36.50
875 100  42.52  43.80
900 100 52.02  54.02

Appendix

Let f;, 2 =1,...,m be convex functions from R" to R, and consider the optimization problem
minimize;  fo(x)

(P) subject to  fi(z) <0 i=1,...,r

filz)=0 1=r+1,...,m.

Define the Lagrangian

folz) + X0 yifi(x) ify; >0fori=1,...,r,
l(m,y) =

—00 otherwise,
and consider the dual problem
(D) maximize g(y),
y

where the function g is defined by
9(y) = infi(z,y).

Combining Corollaries 28.3.1 and 27.3.2 of [27] we get the following.

Theorem 6.1. The optimal value in (P) is greater than or equal to the optimal value in (D).
If all the functions f; are of the form f;(xz) = a; - © — b;, then the following are equivalent and
imply that the optimum values of (P) and (D) are equal

1. (P) has a solution,
2. the optimum value of (P) is finite,
3. (D) has a solution,

4. the optimum value of (D) is finite.
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