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Abstract

This paper describes a stochastic programming model that was de-
veloped for asset liability management of a Finnish pension company.
In many respects the model resembles those presented in the literature,
but it has some unique features stemming from the statutory restrictions
for Finnish pension companies. Particular attention is paid to modeling
the stochastic factors, implementation and to numerical testing. Out-
of-sample tests clearly favor the strategies suggested by our model over
fixed-mix strategies.

1 Introduction

Stochastic programming has proven to be an efficient tool in designing good
strategies in wealth- and asset liability management in practice. This is due to
its ability to cope with the dynamics and complex constraint structures usually
inherent in such problems. Stochastic programming is not tied to any particular
form of objective function or model of stochastic factors. Successful applications
of stochastic programming to asset liability management have been reported in
Nielsen and Zenios [16], Carifio and Ziemba [3], Carifio, Myers and Ziemba [2],
Hgyland [11], Consigli and Dempster [5], Kouwenberg [14], and Geyer, Herold,
Kontriner and Ziemba [10]. For a general introduction to stochastic program-



ming we refer the reader to the official (COSP) stochastic programming site:
www.stoprog.org.

This paper describes a stochastic programming model and its computer
implementation for asset liability management of a Finnish pension company.
Finnish pension companies are responsible for huge investment funds and, like
most pension companies in Europe, they are facing a large number of retiring
employees at around 2010-2020. Our model describes a long term dynamic in-
vestment problem where the aim is to cover the uncertain future liabilities with
dynamic investment strategies in an uncertain environment. The assets are
considered at the level of the larger investment classes of cash, bonds, stocks,
property and loans to policyholders. In addition to investment decisions, our
model looks for optimal bonus payments and it takes explicitly into account
various portfolio and transaction restrictions as well as some legal restrictions
coming from the complex pension system in Finland which is based on the so
called defined benefit rule. The legal restrictions form a unique part of the
model not present in earlier applications of stochastic programming.

We pay particular attention to describing the uncertain factors in the model
which include investment returns, cash-flows, and the so called technical reserves
used in the definition of the statutory restrictions. This is important since the
output of a stochastic programming model depends usually heavily on the un-
derlying model for the stochastic factors. Our approach consists of first building
a time series model, which is then discretized into scenario trees appropriate for
numerical solution of the optimization model. This is convenient for the user
who only needs to come up with an appropriate econometric description of the
stochastic factors. The discretization is fully automated and hidden from the
user.

The model was implemented and tested against fixed-mix strategies that are
simple (usually suboptimal) decision rules. We used the so called out-of-sample
testing procedure recommended e.g. by Dardis and Mueller [6] of Tillinghast-
Towers Perrin. In the tests, the strategies based on our stochastic programming
model clearly outperform the fixed-mix ones. Similar results have been obtained
by Fleten, Hgyland and Wallace [7] in the case of a Norwegian mutual life
insurance company.

The rest of the paper is organized as follows. A mathematical model of the
ALM problem is presented in Section 2. A model for the underlying stochastic
factors and its discretizations (scenario trees) are described in Section 3. Sec-
tion 4 outlines a computer implementation of our model and reports the results
of some numerical tests including an extensive out-of-sample simulation.

2 The optimization model

Our model is a multistage stochastic program where a sequence of decisions
(asset allocations etc.) is interlaced with a sequence of observations of random
variables (asset returns etc.). At each stage, decisions are made based on the
information revealed so far, so the decision variables at a stage are functions
of the random variables observed up to that stage. This is why the decision
variables in a stochastic program are sometimes called decision rules or recourse



functions. This kind of interdependent dynamics of information and decisions is
essential in sequential decision making under uncertainty, which is what ALM
and many other wealth management problems are; see for example Ziemba and
Mulvey [19] or Follmer and Schied [8].

The decision stages will be indexed by ¢t = 0,1,...,T, where t = 0 denotes
the present time, and the set of assets is indexed by j € J, with

J = {cash, bonds, stocks, property, loans to policyholders}.

The decision variables describe the asset management strategy as well as the
company’s solvency situation and the bonus strategy. Uncertainties result from
random future investment returns as well as from random cash flows and tech-
nical reserves described below. There are several constraints coming from the
regulations of the Finnish pension system. The objective is to optimize the de-
velopment of the company’s solvency situation as described by the Ministry of
Social Affairs and Health as well as the amount of bonuses paid to policyholders.

We will first describe the asset management model, followed by the model of
statutory restrictions and finally the objective. Decision variables are random
variables for all ¢ except for t = 0. For parameters, randomness will be indicated
explicitly.

2.1 Asset management

Asset management constitutes a central part of the model. The following formu-
lation is more or less standard in asset management applications of stochastic
programming.

Inventory constraints describe the dynamics of holdings in each asset
class:

—_ 1,0
ho.j = hj +po.j — s0,;

ht,j :Rt,jhtfl,j-l-pt,j—st,j t=1,....T—1, j€J,
where

h(]? = initial holdings in asset j,

R, ; = return on asset j over period [t — 1,¢] (random)
are parameters, and

pt,; = (nonnegative) purchases in asset j at time ¢,
st,; = (nonnegative) sales in asset j at time ¢,

hi,; = holdings in asset j in period [¢,¢ + 1]

are decision variables. As usual, we do not allow portfolio rebalancing at the
horizon, which is why the index ¢ goes only up to 7' — 1 in the inventory con-
straints. Also, the company does not have control over the loans since the
amount invested in them is determined by the policyholders. Holdings in loans
is stochastic and we will assume them to be proportional to the technical re-
serves; see Section 2.2.1 below.



Budget constraints guarantee that the total expenses do not exceed rev-

enues:

Z(l +cpoj+H-1 < Z(l — ¢})so0,j + Fo,

jeJ

Z(l + C;))pt,j +nHy 4 < Z(l — C;)Std' + Z Dt,jhtfl,j +F t=1,...

JjedJ

where

jeJ

jedJ jeJ

c;’ = transaction costs for buying asset j,

cj- = transaction costs for selling asset 7,

7¢ = length of period [t — 1,¢] in years,

D, ; = dividend paid on asset j over period [t — 1,¢t] (random),

F; = cash flows in period [t — 1,¢] (random)

are parameters and

H,; = transfers to the bonus reserve per year during period [t,t + 1]

7T_]-7

are decision variables. The net cash flow F; is the difference between pension
contributions and expenditure during period [t — 1,¢]. The company can pay
a proportion of its accumulated wealth as bonuses to its policyholders. These
bonuses are paid as reductions of the pension contributions. The amount of the
total bonuses is determined at the end of each year, and the sum is transferred
to the so called bonus reserve. The whole bonus reserve is then paid out during
the following year. For periods longer than one year, we assume that H; is kept
constant throughout the period, hence 7w H;_; gives the value of bonuses paid
to policyholders during period [t — 1,1].

Portfolio constraints give bounds for the allowed range of portfolio weights:

where

and

ljwtghwgujwt t=0,....,T—1, j€.J,

wy = Y hy j = total wealth at time t =0,...,7 -1,
JjeJ

l; = lower bound for the proportion of w; in asset j,

u; = upper bound for the proportion of w; in asset j

are parameters whose values are given in Table 1.

Table 1: Lower and upper bounds for investment proportions

J i | w
Cash | 0.01 | 1




Bonds 0] 1
Stocks 01|05
Property | 0 | 0.4

The upper bounds for stocks and property are statutory restrictions. The lower
bound for cash investments is set to guarantee sufficient liquidity.

Note that the total wealth w; at stage t = 0,...,7 — 1 is computed after
portfolio rebalancing. At the horizon, there is no rebalancing so we define it as

wr = Z(RT7j + DT7j)hT—17j + Fpr —mrHp_q.
jed
Transaction constraints bound the sales and purchases to a given fraction
of wy:
th'STtb?’LUt tZO,...,T—l, jEJ,
st7j§7'tb§wt tZO,...,T—l, jEJ,

where

b? = upper bound for purchases of asset j per year as a fraction of total wealth,

bj- = upper bound for sales of asset j per year as a fraction of total wealth

are parameters. The values of b;’ and b are displayed in Table 2. The tight re
balancing restrictions for property are set because of illiquidity of the Finnish
property markets. For other asset classes the yearly rebalancing is restricted to
be at most 20% of the total wealth. These restrictions model the policies of the
company as well as the requirement that the size of transactions should be kept
at levels that do not affect market prices.

Table 2: Upper bounds for transactions

J bi | b
Cash 0.2 0.2
Bonds 0.2 0.2
Stocks 0.2 0.2
Property | 0.01 | 0.01

2.2 Statutory restrictions

The statutory restrictions for Finnish pension companies are quite strict, and
they form a unique part of our stochastic programming model. Besides imposing
constraints on the decision variables, these rules form the basis for defining the
objective function in our model.

2.2.1 Solvency capital

The Finnish pension companies are obliged to comply with several restrictions
described in the legislation, government decrees or regulations given by the
Ministry of Social Affairs and Health. A fundamental restriction is that, the



assets of a company must always cover its technical reserves L;, which gives
the present value of future pension expenditure discounted with the so called
“technical interest rate”. The assets include, besides the total amount of invest-
ments w;, the transitory item of the net amount of other debts and credits in
the balance sheet. This relatively small amount is calculated approximately as
a fixed proportion ¢“ of the technical reserves. The difference

Ct = Wt +CGLt —Lt = Wt — (1 —CG)Lt

of assets and the technical reserves is called the solvency capital. If at any time,
C}; becomes negative, the company is declared bankrupt.

2.2.2 Solvency limits

Besides bankruptcy, C; = 0, there are several target levels that have been set to
characterize pension companies solvency situation. These levels form an early
warning system, so that the company and the supervising authorities can take
action before a bankruptcy actually happens. A fundamental concept in the
system is the solvency border By, defined in (1) below. If the solvency capital
C} falls below this limit, the financial position is considered to be at risk, and
the company is required to present to the authorities a plan for recovering a
safe position. In addition, the company is not allowed to give any bonuses to
its policyholders.

The target zone for the ratio Cj /Bt is [2,4]. In this zone, the financial
position of a company is considered to be quite good. There is still discussion
about how strictly the upper limit should be observed (in practice, no company
has yet exceeded the upper limit). Therefore, we will ignore the upper limit in
the model.

The concept of the solvency border corresponds to the solvency requirements
in the European Union (EU) insurance directives. There is, however, an essential
difference in the calculation method. The Finnish solvency border is based on
the investment portfolio of a company. The fluctuation of the solvency capital
is mainly caused by the investment market, and therefore the risk of going
bankrupt is strongly dependent of the company’s investment risk. The starting
point of the Finnish system is that the probability of ruin in one year at the
solvency border should be approximately 2.5%, and therefore the value of the
border is required to be dependent on the investment portfolio. In contrast,
the EU directives take no account of the company’s investments. It is widely
regarded that the EU regulations are insufficient, and in fact a project is now
established to renew the EU solvency requirements. The solvency border B, is
given by

- 0.9 (Lt + Hy)
Bi = 155 —1.082mjht,j +1.98 /‘Z 0 xhe ik = (1)
jeJ Jked



where the parameters

0.18 0.93 0.01 3.08 1.05 —-0.02
0.66 0.01 1147 1280 -3.62 11.19
m= [6.20, o= 3.08 1280 460.51 91.50 9.67
3.70 1.05 -3.62 91.50 176.55 —-1.31
0.72 -0.02 1119 967 -1.31 11.18

give the mean one-year return over the technical interest rate on asset j accord-
ing to the government decree and o 1, is the covariance between one-year excess
returns of assets j and k according to the government decree. For asset classes
like stocks, the parameter o; ; is substantially larger that for safer classes like
bonds. Note that Bt is a nonconvex function of the variables in the model.

2.2.3 Upper bound for bonuses

Finnish pension companies compete with each other by paying out bonuses to
their policyholders. Companies would like to maximize the amount of bonuses
to attract new customers, but because the pension system is statutory, the
government has aimed to restrict the amount of bonuses so that a sufficient
proportion of the assets is preserved in the system to guarantee future pensions.
Therefore, the Ministry of Social Affairs and Health has confirmed a formula for
the maximum amount of each year’s bonus transfers. The maximum depends
on the solvency capital C; and the solvency border By of the company according
to the formula

H™ = B(Cy/By) (Ct — By)

where 3(z) is a piecewise linear function which has the minimum value of 0
when z < 1 and the maximum value of 0.04 when z > 4. It follows that H{"®*
is also a nonconvex function of the variables in the model.

2.2.4 Convex approximations

In the optimization model, the nonconvex solvency border is replaced by

0.9
B = 155 —1.oszmjht7]- +1.98 /.Z oirheihik |,
jeJ 7,kedJ

which is convex in the variables. We have B; > B; since (Lt + He)Jwy < 1
unless the company is bankrupt. Replacing B; by By in the model, makes the
constraints in the model more restrictive, so we will always stay on the safe side.

We will also replace the nonconvex function fItmax by a convex approxima-

tion, namely,
H;nax =0.03 max{Ct - Bt,O}.

This is based on the fact that the historical average of 3(z) has been close to
0.03.



2.3 Objective function

There are many possibilities for measuring the performance of a company by an
objective function. Natural candidates would be expected utility from wealth or
solvency capital under various utility functions. Here, we will describe a utility
function that takes explicitly into account the unique features of the Finnish
pension system.

As described in Section 2.2.2, the Ministry of Social Affairs and Health mea-
sures pension companies’ solvency situation by the ratio Cy/ B, of the solvency
capital and the solvency border. The Ministry defines four zones according to
which companies’ solvency situation is classified:

Cy/By € [2,00) : target
Cy/By € [1,2) : below target
C4/B; €[0,1) : crisis

Ct/Bt € (—00,0) : bankrupt.

We replace B; throughout by its convex approximation B; given above, and we
define three shortfall variables:

SFt,122Bt—Ct t:].,...,T—].,
SFy0> B —Cy+ H; /003 t=1,...,T -1,
SF,5 > —C, t=1,...,T,

each of which gives the amount by which a zone is missed. These will be pe-
nalized in the objective function. The defining inequality for SF; > incorporates
the constraint

Ht S Htrnax

for bonus transfers. The penalty for SF}; » will be chosen large enough to guar-
antee that, at the optimum, the upper bound is satisfied.

For t = 0,...,T — 1, the state of the company will be evaluated by the
following utility function

3
u(Cy, By, Hy, Ly) = Cy /Ly — Zﬂz5Ft,z/Lt +ub(H; /L),

z=1

where 3, are positive parameters and u’ is a nondecreasing concave function
that will be specified according to the preferences of the company. At stage T',
the utility is measured by

ur(Cr,Lt) = Cr /Ly — B3SFr3/Lr.

The overall objective function in our model is the discounted expected utility

T-1
EP {Z dyu(Cy, By, Hy, Ly) + drur(Cr, LT)} )

t=1

where d; is the discount factor for stage t. The problem is to maximize this
expression over all the decision variables and subject to all the constraints de-
scribed above.



2.4 Problem summary

Deterministic parameters:

h(]? = initial holdings in asset j,

cg-’ = transaction costs for buying asset j,

¢} = transaction costs for selling asset j

l; = lower bound for wealth in asset j as a fraction of total wealth,

u; = upper bound for wealth in asset j as a fraction of total wealth,
b? = upper bound for purchases of asset j per year as a fraction of total wealth,

b; = upper bound for sales of asset j per year as a fraction of total wealth,

¢“ = the amount of the transitory item as a fraction of the technical reserves,

m; = mean yearly return on asset j according to the government decree,
ojr = covariance of one-year returns according to the government decree,
7¢ = length of period [t — 1,¢] in years,

(3. = parameters in the objective function,
Stochastic parameters:

R; ; = return on asset j over period [t — 1,1],

D, ; = dividend paid on asset j over period [t — 1,t],
F; = cash flows from period [t — 1,1],
L; = technical reserves at time t,

Decision variables:

ht,; = holdings in asset j from period ¢ to t + 1,
p¢,; = purchases in asset j at time ¢,

s¢,; = sales in asset j at time ¢,

w; = total wealth at time ¢,

H; = transfers to bonus reserve at time t,

C; = solvency capital at time £,

B; = solvency border at time ¢,

SF; . = shortfall from zone z at time ¢.



Our stochastic programming model is

maximize EP{ T dtu(C’t,Bt,Ht,Lt)+dTuT(C’T,LT)}

_ 10 3 3
ho,j = hj + po,j — 0.5,

htj = Ry jhu—1,j + pr,j — 5¢,5,

DPt,j, St,j Z 07
2(1 +c)po,j +H-q < Z(l —cf)so,; + Fo,
jed jed

2(1 + e+ mHe1 < 2(1 —ci)st; + ZDt,jhtfl,j + Fi,

jes jer jeJ
wy = E ht ;,
jeJ
ljwe < by j < wjwe,
)
pej < Tbjwy,
S
st,j < mebjwy,
Ct = Wt — (1 — CG)Lt,

B, 0.9

Y%

100 ey
SFy1 > 2B, — Cy,
SFis > By — Cy +100/3H,,

—— | =1.08) mjhs; +1.98

E ojkhejhek
Jked

SF;3 > —C,
forall t=1,...,T -1, j€J,
wr = Z(RT,j + D7 j)hr—1,j + Fr — rrHr_q.
jeq
Cr =wr — (1 —¢%)Lr,
SFkrs > —Cr,

(h,b,s,w,H,C,B,SF) € N

where P is the probability distribution of the random parameters, EF denotes
the expectation operator, and the constraints are required to hold almost surely
with respect to P. The symbol A stands for the subspace on nonanticipative
decision rules, so the decision variables (recourse functions) of a given stage are
not allowed to depend on random variables whose values are observed only in
later stages. Note that our model is a convex program that is nonlinear both in
the objective and the constraints. There are 19 decision variables in each stage
t =0,...,7 —1 (recall that for loans to policyholders, hy;, ps; and s;; are

determined by L;) and 3 in the last stage.
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3 Scenario tree generation

The probability distribution P of the random parameters is an important input
to the model, and the solution will depend on it in an essential way. We assume
that the random parameters follow the stochastic model developed in Koivu,
Pennanen and Ranne [13]. Numerical solution of the optimization problem is
then done through discretization of the continuous distribution as in Pennanen
and Koivu [17]. This results in a description of the stochastic elements in the
form of a scenario tree. The stochastic model for assets and liabilities is briefly
described in Section 3.1 and Section 3.2 outlines the discretization methods that
produce the scenario trees.

3.1 Modeling the stochastic factors

The formulas for calculating R; and D, for each asset class are displayed in
Table 3, where sr, br, S, Div, P and Rent denote the short term interest rate,
long term bond yield, stock price index, dividend index, property price index
and rental index, respectively, and 7; denotes the length of the time period in
years. The parameter Dj; denotes the average duration of the company’s bond
portfolio.

Table 3: Return and dividend formulas

Asset class Ry Dy
Cash ((1+srt)(1+srt,1))% 1
Bonds ( I;b_’;ir:l ) o % (bri_y + bry)y
Stocks S;S’il %(Dsif:l + DSL:H)T,:
Property Pil (%(% ReT’jt‘) - 0.03) Tt
Loans 1 2(bryq +bry)m

The return for cash investments is approximated by the geometric average of
the short term interest rate during the holding period. The formula for bond
returns is based on a duration approximation as in [13]; see also Campbell,
Lo and MacKinley [1, Chapter 10]. The parameter Dy is set equal to five
years. The dividends for stock and property investments present the average
dividend and rental yield, respectively, during the holding period. For property
investments the maintenance costs, which are assumed to be a constant 3% of
the property value, are deducted from the rental yield. Similarly to bonds, the
cash income for loans is approximated by an average of bond yield. This is
based on the fact that the interest on newly given loans is usually set equal
to the current bond yield. The return for loans is equal to one because these
instruments are not traded in the market.

The Finnish earnings-related pension scheme follows the defined benefit prin-
ciple, where the pension company guarantees the pension payments which are
tied to the development of the policyholder’s salaries. It follows that, the techni-
cal reserves L and cash flows F' depend on policyholder’s wages and population
dynamics. These are assumed independent, so that their development can be
modeled separately. The values of L and F' depend also on the technical interest

11



rate, which determines the total growth rate for the reserves. In the model, the
technical interest rate is calculated based on recent asset returns and it is an
important part of the model because, to a great extent, it determines the corre-
lations between the investment variables and the reserves. The development of
wages is described by the general Finnish wage index W. For a more detailed
description of the development of L and F', see [13].

The stochastic variables in the model can thus be approximately expressed
in terms of the seven economic factors, sr, br, S, Div, P, Rent and W. The
quarterly development of
[ Insry ]

In b?“t
In St
z; = | In Divy
In Pt
In Rent;
L In Wt i

will be described with a Vector Equilibrium Correction (VEqC) model of the
form

k
Aszy = Ailszy i+ Bz 1 —p) + e, (3)
i=1
where 4; € R™*7, 3 € R™! e R, a € R™!, A denotes the shifted difference

operator
Agl‘t = A.Z‘t )

with § € R, and ¢; are independent normally distributed random variables with
zero mean and variance matrix ¥ € R”*7. When the model is stationary the
parameter vector § determines the average drift for the time series. The term
a(B'zi—1 — u) takes into account the long-term behavior of z; around statistical
equilibria described by the linear equations 'z = p. It is assumed that, in the
long run,

E[Blmt] =K,

and that if z; deviates from the equilibria it will tend to move back to them.
The matrix a determines the speed of adjustment toward the equilibria. In a
sense, VEqC-models incorporate long-run equilibrium relationships (often de-
rived from economic theory) with short-run dynamic characteristics deduced
from historical data.

We take § and p as user specified parameters. This enables the incorporation
of expert information in specifying the expected growth rates for z; as well as
long term equilibrium values for such quantities as mean reversion levels, interest
rate spread and dividend yield. In particular, this gives control over mean
returns which have been shown to have a big impact on the optimal portfolio
choice, see Chopra and Ziemba [4]. The appropriate lag-length & is determined
and the remaining parameters are estimated from quarterly data from Finland
and EU-area. For a more detailed description of the model; see [13].
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3.2 Discretization

In our optimization model, we are interested in the conditional distributions
of xy4p, given z, typically for h > 4. This can be calculated conveniently as
follows. After specifying the model (3), we write it as a Vector Auto-Regressive
(VAR) model in levels

k
=T+ A +T)xs1 + Z(Az —Ai)x— — Apti_k—1 +C+ €,y

=2

where ' = af’ and ¢ = —ap + (I — Zle A;)d. This, in turn, can be written in
the companion form B
Ty =A%y +C+ &,

where
[ Tt _I+A1 +F A2—A1 Ak—Ak,1 —Ak
Ti_1 B I 0 e 0 0

i‘t — . y A = . . . . 9
| Ttk i 0 0 I 0
[c (e,
0 0
c= 5 Et -

0 K

It follows that ,

Fron =A"T + Y AV iE+e, (4)
i=1

where e, = Y| A"~ig;. The random term e, is normally distributed with
zero mean, and from the independence of €; it follows that e, has the variance
matrix

N N ... 0
Sp=) AMilro (AT
i=1

0O --- 0

A convenient feature of (4) is that the dimension of the random term never
exceed 7(k + 1) even if h is increased. In the model of [13], k¥ = 1, so the
dimension will be at most 14.

We discretize the model (4) using integration quadratures as described in
[17]. This results in scenario trees that converge weakly to the original process as
the number of branches is increased. This technique is just as easy to implement
as the better known method of conditional sampling. Indeed, a scenario tree
with a given period structure (71, ..., 7r) and branching structure (vy,...,vr)
can be generated as follows. For each t = 0,...,T, denote by N; the set of
nodes in the scenario tree at stage t. The set Nj consists only of the root node
which is labeled by 0. The rest of the nodes will be labeled by positive integers
in the order they are generated. The number h; = 47; gives the length of period
[t —1,t] in quarters.

13



Set m := 0, T, := the current state of the world, and Np := {m}.
fort:=1toT
Ne =10
for n € N1
Draw a random sample of v; points {e}, }7, from N(0,%4,)
fO_I‘Z =1 t_O Vi
m:=m+1
Fpn = S0 APl 4 APT, + el
N =N U {m}
end
end
end

The random samples required above are easily generated by computing the

spectral decomposition
T(k+1)

Sh= Y Mup(up)”,
i=1

where A} are the eigenvalues of ¥y, in decreasing order and u!, are the corre-
sponding eigenvectors. If ¥, has rank d;, we have

¥, = CLCF,
where Cj, = [\/ALup, ..., \/)\Z‘uit], and then the desired sample is obtained as
ezi = ChF(ijl(U;Lt),

where {uj, }7~, is a random sample from Uy,, the d;-dimensional uniform dis-
tribution on [0,1]% and Fj, is the distribution function of the d;-dimensional
standard normal distribution. An advantage of computing the spectral decom-
position (instead of the Cholesky decomposition as e.g. in Hgyland, Kaut and
Wallace [12]) is that when ¥, is singular, d; gives the true dimension of the
random term. For example, when h =1,d; = 7.

The random samples {uzt}z’*zl above can be viewed as discrete approxima-
tions of Uy,. As in [17], we will replace these random samples by point-sets
given by modern integration quadratures that have been designed to give good
approximations of Uy,. In the numerical tests in the next section we will use
point-sets from the Sobol sequence; see for example Press, Teukolsky, Vetter-
ling and Flannery [18]. This produces a scenario tree with the same branching
structure as the above conditional sampling procedure but potentially better
approximation of the original stochastic process. See Pennanen and Koivu [17]
for a numerical study of such scenario trees.

4 Numerical results

4.1 Implementation

Figure 1 sketches the structure of the overall optimization system. The scenario
generator (written in C programming language) takes as inputs the period and

14



branching structures of the scenario tree and the time series model for the
stochastic factors and generates the scenario tree for the assets and liabilities.
The tree can be visually and otherwise inspected e.g. in spreadsheet programs
until the outcomes are satisfactory. The scenario tree is then written into a
text file in AMPL format described in Fourer, Gay and Kernighan [9]. The
optimization model written in AMPL modeling language and the data from the
scenario generator are processed in AMPL and fed to MOSEK [15] which is an
interior-point algorithm for convex (nonlinear) programming. The solution de-
tails and statistics produced by AMPL/MOSEK can again be visualized e.g. in
spreadsheet programs. The system can be used under most Unix and Windows
platforms.

INPUT COMPUTER SYSTEM OUTPUT
Data Econometric Multiperiod
-Marketdata |, model ; Stlocthastlc "
optimization model
- Expert - Assets p
information - Wage index
- Solution
Scenario generator Solver Optimal st
- Optimal strategy
- Statistics T -ampL [ o
) ) Mosek - Statistics
Graphics - Graphics
Data Liability model
- Initial values | 2ok flows
- Population - Technical

forecasts

reserves

Figure 1: Stochastic optimization system

As an example, we generate a scenario tree with period structure (1,3,6)
years and branching structure (25,10, 10) (2500 scenarios). This takes less than
a second on Intel Pentium 4, 2.33GHz, with 1Gb of SDRam. Figure 2 plots
the values of some important parameters on the scenario tree. We solved the
corresponding stochastic programming model for five sets of shortfall penalty
coefficients presented in Table 4.

Table 4: Shortfall penalty coefficients in the example

Br | B2 | B3
SP1 1 10 | 10
SP2| 05|10 10
SP 3 1 1 1
SP4 |01 10| 10
SP 5 0 0 0

In all cases we used the piecewise linear utility function

u’(:) = 1.585 min{-,0.01}
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Figure 2: Scenario tree of the example.

for bonuses. The solution of the corresponding optimization models takes less
than 10 seconds each. Figure 3 displays the optimal portfolio weights in stage
t = 0. One can also examine the development of the optimized decision variables
along the scenario tree. Figures 4(a) and 4(b) plot the optimized C}/L; and
H, /L ratios, respectively, for SP1 of Table 4. The solvency capital C; is always
nonnegative (no bankruptcy) in every scenario while the bonustransfer /liability
ratio Hy/L; is equal to 0.01 in almost every scenario.
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Figure 3: Initial portfolio h® and the optimal portfolios corresponding to the
parameter values in Table 4.

(a) Ct/Lt. (b) Ht/Lt.

Figure 4: Optimized solvency capital and bonus ratios along the scenario tree
for SP1.

4.2 Convergence of discretizations

Being forced to approximate the continuous distribution of the uncertain pa-
rameters by finite distributions, it is natural to ask how the corresponding opti-
mization problems depend on the number of scenarios. A simple test is to study
the behavior of the optimal values as the number of scenarios is increased. We
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will do the test for SP1 of Table 4 using the Sobol sequence as described in
Section 3.2. For simplicity, we only considered fully symmetric scenario trees
where each node has an equal number of branches, i.e. branching structure is
(k,k, k) for k=1,2,3.... The solid line in Figure 5 plots the objective value as
a function of the size of the scenario tree. For low values of k, the optimal value

5400

5200

5000

4800

4600

4400

4200 - | -

4000 L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50
Branches per node

Figure 5: Convergence of the optimal value

goes through large variations, but as k is increased the optimal value seems to
stabilize. In fact, it stabilizes close to 4504 which is what we obtained with the
branching structure (25,10, 10) in the above example.

For comparison, we did the same test using Monte Carlo sampling in gen-
erating the scenario trees. This resulted in the dotted line in Figure 5. The
optimal values obtained with Monte Carlo seem to converge too but not nearly
as fast as the optimal values obtained with the Sobol sequence.

4.3 Out-of-sample test

We implemented an out-of-sample testing procedure to evaluate the performance
of our stochastic programming model. Optimized strategies corresponding to
the five sets of shortfall penalty coefficients in Table 4 were compared to 1328
fixed-mix strategies meeting the statutory restrictions of Table 1. To simplify
the comparison of different strategies, bonus transfers were set to zero in each
model. In addition, transaction costs were ignored in the fixed-mix models to
simplify computations. The scenario trees used in optimization had the same
structure as in the example of Section 4.1, that is, period structure (1, 3, 6) years
and branching structure (25,10, 10).

In the test, we evaluated the performance of each strategy over 325 randomly
simulated scenarios of the stochastic parameters over 20 years. Portfolio rebal-
ancing was made every year, i.e. fixed-mix portfolios are rebalanced to fixed
proportions and stochastic programming problems were solved with a new sce-
nario tree based on the current values of the stochastic parameters along the
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simulated scenario. The following describes the testing procedure. As outlined
in Section 3, the stochastic factors in each year can be expressed in terms of
a 14-dimensional vector. Below, z,, denotes the value of this vector in year y
along a randomly generated scenario s.

for s :=1 to 325
Set Zs0 = ZTo (the current state of the world).
for y:=0to 19
Generate a scenario tree rooted at T,y .
Solve the corresponding optimization problems and rebalance
all the portfolios.
Randomly sample Z; 441 from the time series model and calculate
the resulting portfolios and cash-flows at time y + 1.
end
end

Figure 6 plots the performance of all the 1328 fixed-mix strategies and the 5
stochastic programming strategies with respect to the average solvency capital
at the end of the simulation period versus the bankruptcy probability during
the period. Considering the main risk of the company, bankruptcy, and average
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Figure 6: Cp/Ly vs. bankruptcy probability.
solvency capital, the stochastic programming strategies clearly dominate the

fixed-mix strategies, even though the probability of bankruptcy was not explic-
itly minimized. The riskiest stochastic programming strategy, SP5 of Table 4,
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went bankrupt in 25 simulations out of the 325 and the safest, SP1, in only one.
We will compare SP1 more closely with the fixed-mix strategy circled in Fig-
ure 6. The development of the solvency capital-reserves ratio for both strategies
is described in Figure 7. The three lines represent the development of the sam-
ple average and the 95% confidence interval computed from the 325 scenarios.
A higher mean and upwards skewed distribution indicates that the stochastic
programming model can hedge against risks without losing profitability.

354 351

3 3

254 251
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1 1
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-
012345678910111213141516171819 012345678910111213141516171819

(a) Stochastic programming. (b) Fixed-mix.

Figure 7: C;/L; averages ja 95% confidence intervals.

Figure 8 shows the distribution of the solvency capital-solvency border ratio
C:/ B at the beginning of the second year. Due to the aim for high investment
returns, the stochastic programming strategy avoids unnecessarily high levels of
C'}/ B¢, and consequently, it hits the lower border of the target zones frequently.

Figure 9 displays the development of the distribution of C;/B; in the 325
scenarios over the four zones defined in Subsection 2.3. The stochastic program-
ming strategy achieves target levels better in the long run by choosing a slightly
riskier portfolios at the beginning.
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