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Abstract

We consider the problem of constructing a portfolio of finitely many assets whose
returns are described by a discrete joint distribution. We propose a new portfolio
optimization model involving stochastic dominance constraints on the portfolio return.
We develop optimality and duality theory for these models. We construct equivalent
optimization models with utility functions. Numerical illustration is provided.
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1 Introduction

The problem of optimizing a portfolio of finitely many assets is a classical problem in the-

oretical and computational finance. Since the seminal work of Markowitz [15, 16, 17] it is

generally agreed that portfolio performance should be measured in two distinct dimensions:

the mean describing the expected return, and the risk which measures the uncertainty of

the return. In the mean–risk approach, we select from the universe of all possible portfolios

those that are efficient : for a given value of the mean they minimize the risk or, equivalently,

for a given value of risk they maximize the mean. This approach allows one to formulate
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the problem as a parametric optimization problem, and it facilitates the trade-off analysis

between mean and risk.

Another theoretical approach to the portfolio selection problem is that of stochastic dom-

inance (see [19, 30, 14]). The concept of stochastic dominance is related to models of risk-

averse preferences [6]. It originated from the theory of majorization [9, 18] for the discrete

case, was later extended to general distributions [23, 7, 8, 25], and is now widely used in

economics and finance [14].

The usual (first order) definition of stochastic dominance gives a partial order in the space

of real random variables. More important from the portfolio point of view is the notion of

second-order dominance, which is also defined as a partial order. It is equivalent to this

statement: a random variable R dominates the random variable Y if E
[
u(R)

]
≥ E

[
u(Y )

]
for

all nondecreasing concave functions u(·) for which these expected values are finite. Thus, no

risk-averse decision maker will prefer a portfolio with return Y over a portfolio with return

R.

In our earlier publications [2, 3, 4, 5] we have introduced a new stochastic optimization

model with stochastic dominance constraints. In this paper we show how this theory can

be used for risk-averse portfolio optimization. We add to the portfolio problem the condi-

tion that the portfolio return stochastically dominates a reference return, for example, the

return of an index. We identify concave nondecreasing utility functions which correspond to

dominance constraints. Maximizing the expected return modified by these utility functions,

guarantees that the optimal portfolio return will dominate the given reference return.

2 The portfolio problem

Let R1, R2, . . . , Rn be random returns of assets 1, 2, . . . , n. We assume that E
[
|Rj|

]
< ∞ for

all j = 1, . . . , n.

Our aim is to invest our capital in these assets in order to obtain some desirable char-

acteristics of the total return on the investment. Denoting by x1, x2, . . . , xn the fractions of
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the initial capital invested in assets 1, 2, . . . , n we can easily derive the formula for the total

return:

R(x) = R1x1 + R2x2 + · · ·+ Rnxn. (1)

Clearly, the set of possible asset allocations can be defined as follows:

X = {x ∈ Rn : x1 + x2 + · · ·+ xn = 1, xj ≥ 0, j = 1, 2, . . . , n}.

In some applications one may introduce the possibility of short positions , i.e., allow some

xj’s to become negative. Other restrictions may limit the exposure to particular assets or

their groups, by imposing upper bounds on the xj’s or on their partial sums. One can also

limit the absolute differences between the xj’s and some reference investments x̄j, which may

represent the existing portfolio, etc. Our analysis will not depend on the detailed way this

set is defined; we shall only use the fact that it is a convex polyhedron. All modifications

discussed above define some convex polyhedral feasible sets, and are, therefore, covered by

our approach.

The main difficulty in formulating a meaningful portfolio optimization problem is the

definition of the preference structure among feasible portfolios. If we use only the mean

return

µ(x) = E
[
R(x)

]
,

then the resulting optimization problem has a trivial and meaningless solution: invest ev-

erything in assets that have the maximum expected return. For these reasons the practice

of portfolio optimization resorts usually to two approaches.

In the first approach we associate with portfolio x some risk measure ρ(x) representing

the variability of the return R(x). In the classical Markowitz model ρ(x) is the variance of

the return,

ρ(x) = Var
[
R(x)

]
,

but many other measures are possible here as well.



Portfolio Optimization with Stochastic Dominance Constraints 4

The mean–risk portfolio optimization problem is formulated as follows:

max
x∈X

µ(x)− λρ(x). (2)

Here, λ is a nonnegative parameter representing our desirable exchange rate of mean for

risk. If λ = 0, the risk has no value and the problem reduces to the problem of maximizing

the mean. If λ > 0 we look for a compromise between the mean and the risk. The general

question of constructing mean–risk models which are in harmony with the stochastic dom-

inance relations has been the subject of the analysis of the recent papers [20, 21, 22, 27].

We have identified there several primal risk measures, most notably central semideviations,

and dual risk measures, based on the Lorenz curve, which are consistent with the stochastic

dominance relations.

The second approach is to select a certain utility function u : R → R and to formulate

the following optimization problem

max
x∈X

E
[
u(R(x))

]
. (3)

It is usually required that the function u(·) is concave and nondecreasing, thus representing

preferences of a risk-averse decision maker. The challenge here is to select the appropriate

utility function that represents well our preferences and whose application leads to non-trivial

and meaningful solutions of (3). References ....

In this paper we propose an alternative approach, by introducing a comparison to a

reference return into our optimization problem. The comparison is based on the stochas-

tic dominance relation. More specifically, we shall consider only portfolios whose return

stochastically dominates a certain reference return.

3 Stochastic dominance

In the stochastic dominance approach, random returns are compared by a point-wise com-

parison of some performance functions constructed from their distribution functions. For
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a real random variable V , its first performance function is defined as the right-continuous

cumulative distribution function of V :

F (V ; η) = P{V ≤ η} for η ∈ R.

A random return V is said [13, 23] to stochastically dominate another random return S to

the first order, denoted V �
FSD

S, if

F (V ; η) ≤ F (S; η) for all η ∈ R.

The second performance function F2 is given by areas below the distribution function F ,

F2(V ; η) =

∫ η

−∞
F (V ; ξ) dξ for η ∈ R,

and defines the weak relation of the second-order stochastic dominance (SSD). That is,

random return V stochastically dominates S to the second order, denoted V �
SSD

S, if

F2(V ; η) ≤ F2(S; η) for all η ∈ R.

(see [7, 8, 25]). The corresponding strict dominance relations �
FSD

and �
SSD

are defined in

the usual way: V � S if and only if V � S, S 6� V .

By changing the order of integration we can express the function F2(V ; ·) as the expected

shortfall [20]: for each target value η we have

F2(V ; η) = E
[
(η − V )+

]
, (4)

where (η− V )+ = max(η− V, 0). The function F(2)(V ; ·) is continuous, convex, nonnegative

and nondecreasing. It is well defined for all random variables V with finite expected value.

In the context of portfolio optimization, we shall consider stochastic dominance relations

between random returns defined by (1). Thus, we say that portfolio x dominates portfolio y

under the FSD rules, if

F (R(x); η) ≤ F (R(y); η) for all η ∈ R,
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where at least one strict inequality holds. Similarly, we say that x dominates y under the

SSD rules (R(x) �
SSD

R(y)), if

F2(R(x); η) ≤ F2(R(y); η) for all η ∈ R,

with at least one inequality strict. Recall that the individual returns Rj have finite expected

values and thus the function F2(R(x); ·) is well defined.

Stochastic dominance relations are of crucial importance for decision theory. It is known

that R(x) �
FSD

R(y) if and only if

E
[
u(R(x))

]
≥ E

[
u(R(y))

]
(5)

for any nondecreasing function u(·) for which these expected values are finite. Furthermore,

R(x) �
SSD

R(y) if and only if (5) holds true for every nondecreasing and concave u(·) for

which these expected values are finite (see, e.g., [14]).

A portfolio x is called SSD-efficient (or FSD-efficient) in a set of portfolios X if there is

no y ∈ X such that R(y) �
SSD

R(x) (or R(y) �
FSD

R(x)).

We shall focus our attention on the SSD relation, because of its consistency with risk-

averse preferences: if R(x) �
SSD

R(y), then portfolio x is preferred to y by all risk-averse

decision makers.

4 The dominance-constrained portfolio problem

The starting point for our model is the assumption that a reference random return Y having

a finite expected value is available. It may have the form Y = R(z̄), for some reference

portfolio z̄. It may be an index or our current portfolio. Our intention is to have the

return of the new portfolio, R(x), preferable over Y . Therefore, we introduce the following
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optimization problem:

max f(x) (6)

subject to R(x) �(2) Y, (7)

x ∈ X. (8)

Here f : X → R is a concave continuous functional. In particular, we may use

f(x) = E
[
R(x)

]
and this will still lead to nontrivial solutions, due to the presence of the dominance con-

straint (7).

Proposition 1 Assume that Y has a discrete distribution with realizations yi, i = 1, . . . ,m.

Then relation (7) is equivalent to

E
[
(yi −R(x))+

]
≤ E

[
(yi − Y )+

]
, i = 1, . . . ,m. (9)

Proof. If relation (7) is true, then the equivalent representation (4) implies (9).

It is sufficient to prove that (9) imply that

F2(R(x); η) ≤ F2(Y ; η) for all η ∈ R.

With no loss of generality we may assume that y1 < y2 < · · · < ym. The distribution function

F (Y ; ·) is piecewise constant with jumps at yi, i = 1, . . . ,m. Therefore, the function F2(Y ; ·)

is piecewise linear and has break points at yi, i = 1, . . . ,m. Let us consider three cases,

depending on the value of η.

Case 1: If η ≤ y1 we have

0 ≤ F2(R(x); η) ≤ F2(R(x); y1) ≤ F2(Y ; y1) = 0.

Therefore the required relation holds as an equality.
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Case 2: Let η ∈ [yi, yi+1] for some i. Since, for any random return R(x), the function

F2(R(x); ·) is convex, inequalities (9) for i and i + 1 imply that for all η ∈ [yi, yi+1] one has

F2(R(x); η) ≤ λF2(R(x); yi) + (1− λ)F2(R(x); yi+1)

≤ λF2(Y ; yi) + (1− λ)F2(Y ; yi+1) = F2(Y ; η),

where λ = (yi+1 − η)/(yi+1 − yi). The last equality follows from the linearity of F2(Y ; ·) in

the interval [yi, yi+1].

Case 3: For η > ym the function F2(Y ; η) is affine with slope 1, and therefore

F2(Y ; η) = F2(Y ; ym) + η − ym

≥ F2(R(x); ym) +

∫ η

ym

F (R(x); α) dα = F2(R(x); η),

as required. �

Let us assume now that the returns have a discrete joint distribution with realizations rjt,

t = 1, . . . , T , j = 1, . . . , n, attained with probabilities pt, t = 1, 2, . . . , T . The the formulation

of the stochastic dominance relation (7) resp. (9) simplifies even further. Introducing vari-

ables sit representing shortfall of R(x) below yi in realization t, i = 1, . . . ,m, t = 1, . . . , T ,

we obtain the following result.

Proposition 2 Assume that Rj, j = 1, . . . , n, and Y have discrete distributions. Then

problem (6)–(8) is equivalent to the problem

max f(x) (10)

subject to
n∑

j=1

xjrjt + sit ≥ yi, i = 1, . . . ,m, t = 1, . . . , T, (11)

T∑
t=1

ptsit ≤ F2(Y ; yi), i = 1, . . . ,m, (12)

sit ≥ 0, i = 1, . . . ,m, t = 1, . . . , T. (13)

x ∈ X. (14)
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Proof. If x ∈ Rn is a feasible point of (6)–(8), then we can set

sit = max
(
0, yi −

n∑
j=1

xjrjt

)
, i = 1, . . . ,m, t = 1, . . . , T.

The pair (x, s) is feasible for (11)–(14).

On the other hand, for any pair (x, s), which is feasible for (11)–(14), inequalities (11)

and (13) imply that

sit ≥ max
(
0, yi −

n∑
j=1

xjrjt

)
, i = 1, . . . ,m, t = 1, . . . , T.

Taking the expected value of both sides and using (12) we obtain

F2(R(x); yi) ≤ F2(Y ; yi), i = 1, . . . ,m.

Proposition 1 implies that x is feasible for problem (6)–(8). �

5 Optimality and Duality

From now on we shall assume that the probability distributions of the returns and of the

reference outcome Y are discrete with finitely many realizations. We also assume that the

realizations of Y are ordered: y1 < y2 < · · · < ym. The probabilities of the realizations are

denoted by πi, i = 1, . . . ,m.

We define the set U of functions u : R → R satisfying the following conditions:

u(·) is concave and nondecreasing;

u(·) is piecewise linear with break points yi, i = 1, . . . ,m;

u(t) = 0 for all t ≥ ym.

It is evident that U is a convex cone.

Let us define the Lagrangian of (6)–(8), L : Rn × U → R, as follows

L(x, u) = f(x) + E
[
u(R(x))

]
− E

[
u(Y )

]
. (15)
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It is well defined, because for every u ∈ U and every x ∈ Rn the expected value E
[
u(R(x))

]
exists and is finite.

Theorem 1 If x̂ is an optimal solution of (6)–(8) then there exists a function û ∈ U such

that

L(x̂, û) = max
x∈X

L(x, û) (16)

and

E
[
û(R(x̂))

]
= E

[
û(Y )

]
. (17)

Conversely, if for some function û ∈ U an optimal solution x̂ of (16) satisfies (7) and (17),

then x̂ is an optimal solution of (6)–(8).

Proof. By Proposition 2 problem (6)–(8) is equivalent to problem (10)–(14). We associate

Lagrange multipliers µ ∈ Rm with constraints (12) and we formulate the Lagrangian Λ :

Rn × RmT × Rm → R as follows:

Λ(x, s, µ) = f(x) +
m∑

i=1

µi

(
F2(Y ; yi)−

T∑
t=1

ptsit

)
.

Let us define the set

Z =
{

(x, s) ∈ X × RmT
+ :

n∑
j=1

xjrjt + sit ≥ yi, i = 1, . . . ,m, t = 1, . . . , T
}

.

Since Z is a convex closed polyhedral set, the constraints (12) are linear, and the objective

function is concave, if the point (x̂, ŝ) is an optimal solution of problem (6)–(8), then the

following Karush-Kuhn-Tucker optimality conditions hold true. There exists a vector of

multipliers µ̂ ≥ 0 such that:

Λ(x̂, ŝ, µ̂) = max
(x,s)∈Z

Λ(x, s, µ̂) (18)

and

µ̂i

(
F2(Y ; yi)−

T∑
t=1

ptŝit

)
= 0, i = 1, . . . ,m. (19)



Portfolio Optimization with Stochastic Dominance Constraints 11

We can transform the Lagrangian Λ as follows:

Λ(x, s, µ) = f(x) +
m∑

i=1

µiF2(Y ; yi)−
m∑

i=1

T∑
t=1

µiptsit

= f(x) +
m∑

i=1

µiF2(Y ; yi)−
T∑

t=1

pt

m∑
i=1

µisit.

For any fixed x the maximization with respect to s such that (x, s) ∈ Z yields

sit = max
(
0, yi −

n∑
j=1

xjrjt

)
= max

(
0, yi − [R(x)]t

)
, i = 1, . . . ,m, t = 1, . . . , T,

where [R(x)]t is the t-th realization of the portfolio return. Define the functions ui : R → R,

i = 1, . . . ,m by

ui(η) = −max(0, yi − η),

and let

uµ(η) =
m∑

i=1

µiui(η).

Let us observe that uµ ∈ U . We can rewrite the result of maximization of the Lagrangian Λ

with respect to s as follows:

max
s

Λ(x, s, µ) = f(x) +
m∑

i=1

µiF2(Y ; yi) +
T∑

t=1

pt

m∑
i=1

µiui

(
[R(x)]t

)
= f(x) +

m∑
i=1

µiF2(Y ; yi) +
T∑

t=1

ptuµ

(
[R(x)]t

)
.

(20)

Furthermore, we can obtain a similar expression for the sum involving Y :

m∑
i=1

µiF2(Y ; yi) =
m∑

i=1

µi

m∑
k=1

πk max(0, yi − yk)

=
m∑

k=1

πk

m∑
i=1

µi max(0, yi − yk) = −
m∑

k=1

πkuµ(yk).

Substituting into (20), we obtain

max
s

Λ(x, s, µ) = f(x) + E
[
uµ(R(x))

]
− E

[
uµ(Y )

]
= L(x, uµ). (21)
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Setting û := uµ̂ we conclude that the conditions (18) imply (16), as required. Further-

more, adding the complementarity conditions (19) over i = 1, . . . ,m, and using the same

transformation we get (17).

To prove the converse, let us observe that for every û ∈ U we can define

µ̂i = û′−(yi)− û′+(yi), i = 1, . . . ,m,

with û′− and û′+ denoting the left and right derivatives of û:

û′−(η) = lim
t↑η

û(η)− û(t)

η − t
, û′+(η) = lim

t↓η

û(t)− û(η)

t− η
.

Since û is concave, µ̂ ≥ 0. Using the elementary functions ui(η) = −max(0, yi − η) we can

represent û as follows:

û(η) =
m∑

i=1

µ̂iui(η).

Consequently, correspondence (21) holds true for µ̂ and û. Therefore, if x̂ is the maximizer

of (16), then the pair (x̂, ŝ), with

ŝit = max
(
0, yi −

n∑
j=1

x̂jrjt

)
, i = 1, . . . ,m, t = 1, . . . , T,

is the maximizer of Λ(x, s, µ̂), over (x, s) ∈ Z. Our result follows then from standard sufficient

conditions for problem (10)–(14) (see,e.g., [24, Thm. 28.1]). �

We can also develop duality relations for our problem. With the Lagrangian (15) we can

associate the dual function

D(u) = max
x∈X

L(x, u).

We are allowed to write the maximization operation here, because the set X is compact and

L(·, u) is continuous.

The dual problem has the form

min
u∈U

D(u). (22)

The set U is a closed convex cone and D(·) is a convex functional, so (22) is a convex

optimization problem.
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Theorem 2 Assume that (6)–(8) has an optimal solution. Then problem (22) has an optimal

solution and the optimal values of both problems coincide. Furthermore, the set of optimal

solutions of (22) is the set of functions û ∈ U satisfying (16)–(17) for an optimal solution x̂

of (6)–(8).

Proof. The theorem is an easy consequence of Theorem 1 and general duality relations in

convex nonlinear programming (see [1, Thm. 2.165]). Note that all constraints of our prob-

lem are linear or convex polyhedral, and therefore we do not need any constraint qualification

conditions here.

6 Splitting

Let us now consider the special form of problem (6)–(8), with

f(x) = E[R(x)].

Recall that the random returns Rj, j = 1, . . . , n, have discrete distributions with realizations

rjt, t = 1, . . . , T , attained with probabilities pt.

In order to facilitate numerical solution of problem (6)–(8), it is convenient to consider

its split-variable form:

max E[R(x)] (23)

subject to R(x) ≥ V, a.s., (24)

V �(2) Y, (25)

x ∈ X. (26)

In the above problem, V is a random variable having realizations vt attained with probabil-

ities pt, t = 1, . . . , T , and relation (24) is understood almost surely. In the case of finitely

many realizations it simply means that

n∑
j=1

rjtxj ≥ vt, t = 1, . . . , T. (27)



Portfolio Optimization with Stochastic Dominance Constraints 14

We shall consider two groups of Lagrange multipliers: a utility function u ∈ U , and a vector

θ ∈ RT , θ ≥ 0. The utility function u(·) will correspond to the dominance constraint

(25), as in the preceding section. The multipliers ptθt, t = 1, . . . , T , will correspond to the

inequalities (27). The Lagrangian takes on the form

L(x, V, u, θ) =
T∑

t=1

pt

n∑
j=1

rjtxj +
T∑

t=1

ptθt(
n∑

j=1

rjtxj − vt)

+
T∑

t=1

ptu(vt)−
m∑

k=1

πku(yk).

(28)

The optimality conditions can be formulated as follows.

Theorem 3 If (x̂, V̂ ) is an optimal solution of (23)–(26), then there exist û ∈ U and a

nonnegative vector θ̂ ∈ RT , such that

L(x̂, V̂ , û, θ̂) = max
(x,V )∈X×RT

L(x, V, û, θ̂), (29)

T∑
t=1

ptû(v̂t)−
m∑

k=1

πkû(yk) = 0, (30)

θ̂t(v̂t −
n∑

j=1

rjtx̂j) = 0, t = 1, . . . , T. (31)

Conversely, if for some function û ∈ U and nonnegative vector θ̂ ∈ RT , an optimal solution

(x̂, V̂ ) of (29) satisfies (24)–(25) and (30)–(31), then (x̂, V̂ ) is an optimal solution of (23)–

(26).

Proof. By Proposition 1, the dominance constraint (25) is equivalent to finitely many

inequalities

E
[
(yi −R(x))+

]
≤ E

[
(yi − Y )+

]
, i = 1, . . . ,m.
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Problem (23)–(26) takes on the form:

max E[R(x)]

subject to
n∑

j=1

rjtxj ≥ vt, t = 1, . . . , T,

E
[
(yi −R(x))+

]
≤ E

[
(yi − Y )+

]
, i = 1, . . . ,m,

x ∈ X.

Let us introduce Lagrange multipliers µi, i = 1, . . . ,m, associated with the dominance

constraints. The standard Lagrangian takes on the form:

Λ(x, V, µ, θ) =
T∑

t=1

pt

n∑
j=1

rjtxj +
T∑

t=1

ptθt(
n∑

j=1

rjtxj − vt)

−
m∑

i=1

µi

T∑
t=1

pt[yi −
n∑

j=1

rjtxj]+ +
m∑

i=1

µi

m∑
k=1

πk[yi − yk]+.

Rearranging the last two sums, exactly as in the proof of Theorem 1, we obtain the following

key relation. For every µ ≥ 0, setting

uµ(η) = −
m∑

i=1

µi max(0, yi − η),

we have

Λ(x, V, µ, θ) = L(x, V, uµ, θ).

The remaining part of the proof is the same as the proof of Theorem 1.

The dual function associated with the split-variable problem has the form

D(u, θ) = sup
x∈X, V ∈RT

L(x, V, u, θ).

and the dual problem is, as usual,

min
u∈U ,θ≥0

D(u, θ). (32)
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The corresponding duality theorem is an immediate consequence of Theorem 3 and standard

duality relations in convex programming. Note that all constraints of our problem (23)–

(26) are linear or convex polyhedral, and therefore we do not need additional constraint

qualification conditions here.

Theorem 4 Assume that (23)–(26) has an optimal solution. Then the dual problem (32)

has an optimal solution and the optimal values of both problems coincide. Furthermore, the

set of optimal solutions of (32) is the set of functions û ∈ U and vectors θ̂ ≥ 0 satisfying

(29)–(31) for an optimal solution (x̂, V̂ ) of (23)–(26).

Let us analyze in more detail the structure of the dual function:

D(u, θ) = sup
x∈X, V ∈RT

{ T∑
t=1

pt

n∑
j=1

rjtxj +
T∑

t=1

ptθt(
n∑

j=1

rjtxj − vt) +
T∑

t=1

ptu(vt)
}
−

m∑
k=1

πku(yk)

= max
x∈X

n∑
j=1

T∑
t=1

pt(1 + θt)rjtxj + sup
V

T∑
t=1

pt

[
u(vt)− θtvt

]
−

m∑
k=1

πku(yk)

= max
1≤j≤n

T∑
t=1

pt(1 + θt)rjt +
T∑

t=1

pt sup
vt

[
u(vt)− θtvt

]
−

m∑
k=1

πku(yk).

In the last equation we have used the fact that X is a simplex and therefore the maximum

of a linear form is attained at one of its vertices. It follows that the dual function can be

expressed as the sum

D(u, θ) = D0(θ) +
T∑

t=1

ptDt(u, θt) + DT+1(u), (33)

with

D0(θ) = max
1≤j≤n

T∑
t=1

pt(1 + θt)rjt, (34)

Dt(u, θt) = sup
vt

[
u(vt)− θtvt

]
, t = 1, . . . , T, (35)

and

DT+1(u) = −
m∑

k=1

πku(yk). (36)
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If the set X is a general convex polyhedron, the calculation of D0 involves a linear program-

ming problem with n variables.

To determine the domain of the dual function, observe that if u′−(y1) < θt then

lim
vt→∞

[
u(vt)− θtvt

]
= +∞,

and thus the supremum in (35) is equal to +∞. On the other hand, if u′−(y1) ≥ θt, then

the function u(vt) − θtvt has a nonnegative slope for vt ≤ y1 and nonpositive slope −θt for

vt ≥ ym. It is piecewise linear and it achieves its maximum at one of the break points.

Therefore

domDt = {(u, θt) ∈ U × R+ : u′−(y1) ≥ θt}.

At any point of the domain,

Dt(u, θt) = max
1≤k≤m

[
u(yk)− θtyk

]
. (37)

The domain of D0 is the entire space RT .

7 Decomposition

It follows from our analysis that the dual functional can be expressed as a weighted sum of

T + 2 functions (34)–(36).

In order to analyze their properties and to develop a numerical method we need to find

a proper representation of the utility function u. We represent the function u by its slopes

between break points. Let us denote the values of u at its break points by

uk = u(yk), k = 1, . . . ,m.

We introduce the slope variables

βk = u′−(yk), k = 1, . . . ,m.
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The vector β = (β1, . . . , βm) is nonnegative, because u is nondecreasing. As u is concave,

βk ≥ βk+1, k = 1, . . . ,m− 1. We can represent the values of u at break points as follows

uk = −
∑
`>k

β`(y` − y`−1), k = 1, . . . ,m.

The function (37) takes on the form

Dt(u, θt) = max
1≤k≤m

[
uk − θtyk

]
= max

1≤k≤m

[
−

∑
`>k

β`(y` − y`−1)− θtyk

]
.

In this way we have expressed Dt(u, θt) as a function of the slope vector β ∈ Rm and of

θt ∈ R+. We denote

Bt(β, θt) = max
1≤k≤m

[
−

∑
`>k

β`(y` − y`−1)− θtyk

]
. (38)

Observe that Bt is the maximum of finitely many linear functions in its domain. The domain

is a convex polyhedron defined by

0 ≤ θt ≤ β1.

Consequently, Bt is a convex polyhedral function. Therefore its subgradient at a point (β, θt)

of the domain can be calculated as the gradient of the linear function at which the maximum

in (38) is attained. Let k∗ be the index of this linear function. Denoting by δ` the `th unit

vector in Rm we obtain the following subgradient of Bt(β, θt):(
−

∑
`>k∗

δ`(y` − y`−1),−yk∗

)
.

Similarly, function (36) can be represented as a function BT+1 of the slope vector β:

BT+1(β) =
m∑

k=1

πk

∑
`>k

β`(y` − y`−1).

It is linear in β and its gradient has the form

n∑
`=1

δ`

∑
k<`

πk(y` − y`−1).
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Finally, denoting by j∗ the index at which the maximum in (34) is attained, we see that the

vector with coordinates

ptrj∗t, t = 1, . . . , T, (39)

is a subgradient of D0.

Summing up, with our representation of the utility function by its slopes, the dual func-

tion is a sum of T + 2 convex polyhedral functions with known domains. Moreover, their

subgradients are readily available. Therefore the dual problem can be solved by nonsmooth

optimization methods (see [11, 10]). We have developed a specialized version of the regular-

ized decomposition method described in [26]. This approach is particularly suitable, because

the dual function is a sum of very many polyhedral functions.

After the dual problem is solved, we obtain not only the optimal dual solution (β̂, θ̂), but

also a collection of active cutting planes for each component of the dual function.

Let us denote by J0 the collection of active cuts for D0. Each cutting plane for D0

provides a subgradient (39) at the optimal dual solution. A convex combination of these

subgradients provides the subgradient of D0 that enters the optimality conditions for the dual

problem. The coefficients of this convex combination are also identified by the regularized

decomposition method. Let g0 denote this subgradient and let νj, j ∈ J0 the corresponding

coefficients. Then

g0 =
T∑

t=1

δt

∑
j∈J0

ptrjtνj,

where

νj ≥ 0,
∑
j∈J0

νj = 1.

For each t the subgradient of Bt with respect to θt entering the optimality conditions is

v̂t ∈ conv{yk∗ : k∗ is a maximizer in (38)}.

Therefore

g0 −
T∑

t=1

ptv̂t = 0.
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Using these relations we can verify that v̂ is the vector of optimal portfolio returns in scenarios

t = 1, . . . , T . Thus the optimal portfolio has the weights

x̂j = νj, j ∈ J0,

x̂j = 0, j 6∈ J0.

We have tested our approach on a basket of 719 real-world assets, using 616 possible

realizations of their joint returns [27]. Historical data on weekly returns in the 12 years from

Spring 1990 to Spring 2002 were used as equally likely realizations.

We have used four reference returns Y . Each of them was constructed as return of a

certain index composed of our assets. Since we actually know the past returns, for the

purpose of comparison we have selected equally weighted indexes composed of the N assets

having the highest average return in this period. Reference Portfolio 1 corresponds to N =

26, Reference Portfolio 2 corresponds to N = 54, Reference Portfolio 3 corresponds to N =

82, and Reference Portfolio 4 corresponds to N = 200. Our problem was to maximize the

expected return, under the condition that the return of the reference portfolio is dominated.

Since the reference point was a return of a portfolio composed from the same basket, we

have m = T = 616 in this case.

The dual problem of minimizing (33) has 1335 decision variables: the utility function u,

represented by the vector of slopes β ∈ R616, and the multiplier θ ∈ R616. The number of

functions in (33) equals 618.

Our method performed very well and converged to the optimal solution in 100–200 iter-

ations, depending on the case, in ca. 20 min CPU time on a 1.6 GHz PC computer.

The utility functions, which play the role of the Lagrange multipliers for the dominance

constraint are illustrated in Figure 1. We see that for Reference Portfolio 1, which contains

only a small number of fast growing assets, the utility function is zero on almost the entire

range of returns. Only very negative returns are penalized.

If the reference portfolio contains more assets, and is therefore more diversified and less

risky, in order to dominate it, we have to use a utility function which introduces penalty



Portfolio Optimization with Stochastic Dominance Constraints 21

-0.01

-0.005

0
-0.03 -0.025 -0.02 -0.015 -0.01 -0.005 0 0.005 0.01

Return

U
ti

lit
y

Reference Portfolio 1
Reference Portfolio 2
Reference Portfolio 3
Reference Portfolio 4

Figure 1: Utility functions corresponding to dominance constraints for four reference port-
folios.
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for a broader range of returns and is steeper. For the broadly based index in Reference

Portfolio 4, the optimal utility function is more smooth and covers even positive returns.

It is worth mentioning that all these utility functions, although nondecreasing and con-

cave, have rather complicated shapes. It would be a very hard task to guess the utility

function that should be used to obtain a solution which dominates our reference portfolio.
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