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Abstract

We address the statistical estimation of composite functionals which

may be nonlinear in the probability measure. Our study is motivated by

the need to estimate coherent measures of risk, which become increasingly

popular in finance, insurance, and other areas associated with optimiza-

tion under uncertainty and risk. We establish central limit formulae for

composite risk functionals. Furthermore, we discuss the asymptotic be-

havior of optimization problems whose objectives are composite risk func-

tionals and we establish a central limit formula of their optimal values

when an estimator of the risk functional is used. While the mathematical

structures accommodate commonly used coherent measures of risk, they

have more general character, which may be of independent interest.

Keywords Risk Measures, Composite Functionals, Central Limit The-

orem

1 Introduction

Increased interest in the analysis of coherent measures of risk is motivated by
their application as mathematical models of risk quantification in finance and
other areas. This line of research leads to new mathematical problems in convex
analysis, optimization, and statistics. The risk assessment is expressed math-
ematically as a functional of random variable, which may be nonlinear with
respect to the probability measure. Most frequently, the risk measures of inter-
est in practice arise when we evaluate gains or losses depending on the choice z,
which represents the control of a decision maker and random quantities, which
may be summarized in a random vector X . More precisely, we are interested
in the functional f(z,X), which may be optimized under practically relevant
restrictions on the decisions z. Most frequently, some moments of the random
variable Y = f(z,X) are evaluated. However, when models of risk are used, the
existing theory of statistical estimation is not always applicable.
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Our goal is to address the question of statistical estimation of composite
functionals depending on random vectors and their moments. Additionally, we
analyse the optimal values of such functionals, when they depend on finite-
dimensional decisions within a deterministic compact set. The known coherent
measures of risk can be cast in the structures considered here and we shall
specialize our results to several classes of popular risk measures. We emphasize
however, that the results address composite functionals of more general structure
with potentially wider applicability.

Axiomatic definition of risk measures was first proposed in [17]. The cur-
rently accepted definition of a coherent risk measure was introduced in [1] for
finite probability spaces and was further extended to more general spaces in
[33, 12]. Given a probability space (Ω,F , P ), we consider the set of random vari-
ables defined on it, which have finite p-th moments and denote it by Lp(Ω,F , P ).
A coherent measure of risk is a convex, monotonically increasing, and positively
homogeneous functional ̺ : Lp(Ω,F , P ) → R̄, which satisfies the translation
property: ̺(Y + a) = ̺(Y ) + a for all a ∈ R. Here R̄ = R ∪ {+∞} and we
assume that Y represents losses, i.e., smaller realizations are preferred. Related
concepts are introduced in [30, 11].

A measure of risk is called law-invariant, if it depends only on the distri-
bution of the random variable, i.e., if ̺(X) = ̺(Y ) for all random variables
X,Y ∈ Lp(Ω,F , P ) having the same distribution.

A practically relevant law-invariant coherent measure of risk is the mean–
semideviation of order p ≥ 1 (see [23, 24], [35, s. 6.2.2]), defined in the following
way:

̺(X) = E[X ]+κ
∥

∥(X−E[X ])+
∥

∥

p
= E[X ]+κ

[

E
[(

max{0, X−E[X ]}
)p]

]
1
p

, (1)

where κ ∈ [0, 1]. Note the nonlinearity with respect to the probability measure
in formula (1).

Another popular law-invariant coherent measure of risk is the Average Value
at Risk at level α ∈ (0, 1] (see [29, 25]), which is defined as follows:

AVaRα(X) =
1

α

∫ 1

1−α

F−1
X (β) dβ = min

η∈R

{

η +
1

α
E[(X − η)+]

}

. (2)

Here, FX(·) denotes the distribution function of X . The reader may consult, for
example, [35, Chapter 6] and the references therein, for more detailed discussion
of these risk measures and their representation.

The risk measure AVaRα(·) plays a fundamental role as a building block in
the description of every law-invariant coherent risk measure via the Kusuoka
representation. The original result is presented in [19] for risk measures defined
on L∞(Ω,F, P ), with an atomless probability space. It states that for every
law-invariant coherent risk measure ̺(·), a convex set M ⊂ P(0, 1] exists such
that for all Z ∈ L∞(Ω,F, P ), it holds

̺(X) = sup
m∈M

∫ 1

0

AVaRα(X) m(dα). (3)
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Here P(0, 1] denotes the set of probability measures on the interval (0, 1]. This
result is extended to the setting of Lp spaces with p ∈ [1,∞); see [13], [26], [27],
[35], [Dentcheva et al. (2010)], and the references therein.

The extremal representation of AVaRα(X) on the right hand side of (2) was
used as a motivation in [18] to propose the following higher-moment coherent
measures of risk:

̺(X) = min
η∈R

{

η +
1

α
‖(X − η)+‖p

}

, p > 1. (4)

These risk measures are special cases of a more general family considered in [7];
they are also examples of optimized certainty equivalents of [3]. In the paper
[Dentcheva et al. (2010)], the explicit Kusuoka representation for the higher-
order risk measures (4) was described by utilising duality theorems from [28].
These risk measures are used for portfolio optimization in [18], where their ad-
vantages in in comparison to the classical mean-variance optimization model
of Markowitz ([20, 21]) is demonstrated on examples. The recent work of [22]
indicates that if such type of risk measure is used as a risk criterion in European
option portfolio optimization, the time evolution of the portfolio is superior to
the evolution of a portfolio optimized with respect to the AVaR risk or with
respect to the mean-variance optimization model of Markowitz. Similar obser-
vations were recently made by [14].

A connection of measures of risk to the utility theories has been widely dis-
cussed in the literature. Many of the risk measures of interest can be expressed
via optimization of the so-called optimized certainty equivalent [3] for a suit-
able choice of the utility function. Relations of risk measures to rank-dependent
utility functions are given in [12]. In [9], it is established that law invariant
coherent measures of risk are a numerical representation of certain preference
relation defined on the space of bounded quantile functions, and are closely
related to the dual utility theory.

In practical applications, we deal with samples and stochastic models of the
underlying random quantities. Therefore, the questions pertaining to statistical
estimation of the measures of risk are crucial to the proper use of law-invariant
measures of risk. Several measures of risk have an explicit formula, which can
be used as a plug-in estimator, with the original measure P replaced by the
empirical measure. The empirical quantile is a natural estimator of the Value
at Risk. A natural empirical estimator of AVaRα(X) leads to the use of the
L-statistic (see [15, 8]). Furthermore, the Kusuoka representation, as well as
the use of distortion functions in insurance has motivated the construction and
analysis of empirical estimates of spectral measures of risk using L-statistic.
We refer to [15, 6, 16, 4, 36, 2] for more details on this approach. Some risk
measures, such as the tail risk measures of form (4), cannot be estimated via
simple explicit formulae but are obtained as a solution of a convex optimization
problem with convex constraints. Although asymptotic behavior of optimal
values of sample-based expected value models has been investigated before (see
[31, Ch. 8], [35, Ch. 5] and the references therein), the existing results do not
address models with risk measures.
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Our paper is organized as follows. Section 2 contains the key result of our
paper, which establishes a central limit formula for a composite risk functional.
We provide a characterization of the limiting distribution of the empirical esti-
mators for such functionals. Section 3 contains a central limit formula for risk
functionals, which are obtained as the optimal values of composite functionals.
Section 4 provides asymptotic analysis and central limit formulae for the opti-
mal value of optimization problems which use measures of risk in their objective
functions. We pay special attention to some popular measures and we discuss
several illustrative examples in Sections 2, 3, and 4. In Section 5, we perform a
simple simulation study to assess the accuracy of our approximations. Section
6 concludes.

2 Estimation of composite risk functionals

In the first part of our paper, we focus on functionals of the following form:

̺(X) = E

[

f1

(

E
[

f2
(

E[ · · · fk(E[fk+1(X)], X)] · · · , X
)]

, X
)]

,

where X is an m-dimensional random vector, fj : Rmj × R
m → R

mj−1 , j =
1, . . . , k, with m0 = 1 and fk+1 : Rm → R

mk . Let X ⊂ R
m be the domain of

the random variable X . We denote the probability distribution of X by P .
Given a sample X1, . . . , Xn of independent identically distributed observa-

tions, we consider the following plug-in empirical estimate of the value of ̺:

̺(n) =
n
∑

i0=1

1

n

[

f1

(

n
∑

i1=1

1

n

[

f2
(

n
∑

i2=1

1

n
[ · · · fk(

n
∑

ik=1

1

n
fk+1(Xik), Xik−1

)]

· · · , Xi1

)]

, Xi0

)]

Our construction is motivated by the aim to estimate coherent measures of
risk from the family of mean–semideviations ([23, 24]).

Example 1 (Semideviations). Consider the functional (1) representing the
mean–semideviation of order p ≥ 1. In this case, we have k = 2, m = 1, and

f1(η1, x) = x+ κη
1
p

1 ,

f2(η2, x) =
[

max{0, x− η2}
]p
,

f3(x) = x. N

In order to formulate the main theorem of this section, we introduce several
relevant quantities. We define:

f̄j(ηj) =

∫

X

fj(ηj , x)P (dx), j = 1, . . . , k,

µk+1 =

∫

X

fk+1(x)P (dx),

µj = f̄j(µj+1), j = 1, . . . , k.
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Suppose Ij are compact subsets of Rmj such that µj+1 ∈ int(Ij), j = 1, . . . , k.
We introduce the notation H = C1(I1)× Cm1

(I2)× . . .Cmk−1
(Ik)× R

mk , where
Cmj−1

(Ij) is the space of continuous functions on Ij with values in R
mj−1

equipped with the supremum norm. The space R
mk is equipped with the Eu-

clidean norm, and H with the product norm. We use Hadamard directional
derivatives of the functions fj

(

·, x) at points µj+1 in directions ζj+1, i. e.,

f ′
j

(

µj+1, x; ζj+1) = lim
t↓0

s→ζj+1

1

t

[

fj
(

µj+1 + ts, x)− fj
(

µj+1, x)
]

.

For every direction d = (d1, . . . , dk, dk+1) ∈ H, we define recursively the se-
quence of vectors:

ξk+1(d) = dk+1,

ξj(d) =

∫

X

f ′
j

(

µj+1, x; ξj+1(d)
)

P (dx) + dj
(

µj+1

)

, j = k, k − 1, . . . , 1.
(5)

Theorem 2. Suppose the following conditions are satisfied:

(i)
∫

‖fj(ηj , x)‖2 P (dx) < ∞ for all ηj ∈ Ij, and
∫

‖fk+1(x)‖2P (dx) < ∞;
(ii) For all x ∈ X , the functions fj(·, x), j = 1, . . . , k, are Lipschitz continuous:

‖fj(η′j , x)− fj(η
′′
j , x)‖ ≤ γj(x)‖η′j − η′′j ‖, ∀ η′j , η

′′
j ∈ Ij ,

and
∫

γ2
j (x) P (dx) < ∞.

(iii) For all x ∈ X , the functions fj(·, x), j = 1, . . . , k, are Hadamard direction-
ally differentiable.

Then √
n
[

̺(n) − ̺
]

D−−→ ξ1(W ),

where W (·) =
(

W1(·), . . . ,Wk(·),Wk+1

)

is a zero-mean Brownian process on
I = I1 × I2 × · · · × Ik. Here Wj(·) is a Brownian process of dimension mj−1 on
Ij, j = 1, . . . , k, and Wk+1 is an mk-dimensional normal vector. The covariance
function of W has the following form:

cov
[

Wi(ηi),Wj(ηj)
]

=

∫

X

[

fi(ηi, x)− f̄i(ηi)
][

fj(ηj , x)− f̄j(ηj)
]⊤

P (dx),

ηi ∈ Ii, ηj ∈ Ij , i, j = 1, . . . , k,

cov
[

Wi(ηi),Wk+1

]

=

∫

X

[

fi(ηi, x)− f̄i(ηi)
][

fk+1(x)− µk+1

]⊤
P (dx),

ηi ∈ Ii, i = 1, . . . , k,

cov
[

Wk+1,Wk+1

]

=

∫

X

[

fk+1(x) − µk+1

][

fk+1(x) − µk+1

]⊤
P (dx).

(6)

Proof. We define I = I1×I2×· · ·×Ik, M = m0+m1+ · · ·+mk, and the vector-
valued function f : I × X → R

M with block coordinates fj(ηj , x), j = 1, . . . , k,
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and fk+1(x). Similarly, we define f̄ : I → R
M with block coordinates f̄j(ηj),

j = 1, . . . , k, and µk+1. Consider the empirical estimates of the function f̄(η):

h(n)(η) =
1

n

n
∑

i=1

f(η,Xi), n = 1, 2, . . . .

Due to assumptions (i)–(ii), all functions h(n) are elements of the space H.
Furthermore, assumptions (i)–(ii) guarantee that the class of functions f(η, ·),

η ∈ I, is Donsker, that is, the following uniform Central Limit Theorem holds
(see [37, Ex. 19.7]): √

n
(

h(n) − f̄
)

D−−→ W, (7)

where W is a zero-mean Brownian process on I with covariance function

cov
[

W (η′),W (η′′)
]

=

∫

X

[

f(η′, x)− f̄(η′)
][

f(η′′, x)− f̄(η′′)
]⊤

P (dx). (8)

This fact will allow us to establish asymptotic properties of the sequence
{

̺(n)
}

.
First, we define a subset H of H containing all elements (h1, . . . , hk, hk+1)

for which hj+1(hj+2(· · ·hk(hk+1) · · · )) ∈ Ij , j = 1, . . . , k. We define an operator
Ψ : H → R as follows

Ψ(h) = h1

(

h2

(

· · ·hk(hk+1) · · ·
)

)

.

By construction the value of ̺(X) is equal to the value of Ψ
(

f̄
)

and the value

of ̺(n) is equal to the value of Ψ
(

h(n)
)

.

To derive the limit properties of the sequence
{

̺(n)
}

we shall use Delta The-
orem (see, [32]). The essence of applying the theorem is in identifying conditions
under which a statement about a limit result related to convergence in distri-
bution of a scaled version of a statistic h(n), can be translated into a statement
about a convergence in distribution of a scaled version of a transformed statistic
Ψ(h(n)).

To this end, we have to verify Hadamard directional differentiability of Ψ(·)
at f̄ .

Observe that the point f̄ is an element of H , because µj+1 ∈ int(Ij), j =
1, . . . , k. Moreover, due to assumption (ii), the following inequality is true for
every j = 1, . . . , k:

‖hj(hj+1(hj+2(· · ·hk(hk+1) · · · )))− µj‖
≤ ‖hj − f̄j‖+ ‖f̄j(hj+1(hj+2(· · ·hk(hk+1) · · · )))− f̄j(µj+1)‖

≤ ‖hj − f̄j‖+
∫

γj(x) P (dx) · ‖hj+1(hj+2(· · ·hk(hk+1) · · · ))− µj+1‖.

Recursive application of this inequality demonstrates that f̄ is an interior point
of H . Therefore, the quotients appearing in the definition of the Hadamard
directional derivative are well defined.
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Conditions (ii) and (iii) imply that the functions f̄(·) and h(n)(·) are also
Hadamard directionally differentiable. Consider the operator Ψk(h) = hk(hk+1)
at h ∈ int(H). Let dℓ = (dℓ1, . . . , d

ℓ
k, d

ℓ
k+1) ∈ H be a sequence of directions

converging in norm to an arbitrary direction d ∈ H, when ℓ → ∞. For a
sequence tℓ ↓ 0 and ℓ sufficiently large, we have

Ψ ′
k(h; d) = lim

ℓ→∞

1

tℓ

[

Ψk(hk + tℓd
ℓ
k, hk+1 + tℓd

ℓ
k+1)− Ψk(hk, hk+1)

]

= lim
ℓ→∞

1

tℓ

(

[hk + tℓd
ℓ
k](hk+1 + tℓd

ℓ
k+1)− hk(hk+1)

)

= lim
ℓ→∞

1

tℓ

(

hk(hk+1 + tℓd
ℓ
k+1)− hk(hk+1)

)

+ dℓk(hk+1 + tℓd
ℓ
k+1)

= h′
k(hk+1; dk+1) + dk(hk+1).

Consider now the operator Ψk−1(h) = hk−1

(

hk(hk+1)
)

= hk−1

(

Ψk(h)
)

. By the
chain rule for Hadamard directional derivatives, we obtain

Ψ ′
k−1(h; d) = h′

k−1

(

Ψk(h);Ψ
′
k(h; d)

)

+ dk−1

(

Ψk(h)
)

.

In this way, we can recursively calculate the Hadamard directional derivatives
of the operators Ψj(h) = hj

(

hj+1( · · ·hk(hk+1) · · · )
)

as follows:

Ψ ′
j(h; d) = h′

j

(

Ψj+1(h);Ψ
′
j+1(h; d)

)

+ dj
(

Ψj+1(h)
)

, j = k, k − 1, . . . , 1. (9)

Now the Delta Theorem [32], relation (7), and the Hadamard directional differ-
entiability of Ψ(·) at f̄ imply that

√
n
[

̺(n) − ̺(X)
]

=
√
n
[

Ψ
(

h(n)
)

− Ψ
(

f̄
)]

D−−→ Ψ ′
(

f̄ ,W
)

. (10)

The application of the recursive procedure (9) at h = f̄ and d = W leads to
formulae (5). The covariance structure (6) of W follows directly from (8).

We return to Example 1 and apply Theorem 2.

Example 3 (Semideviations continued). We have defined the mappings

f̄1(η1) = E[X ] + κη
1
p

1 =

∫

f1(η1, x)P (dx),

f̄2(η2) = E
{[

max{0, X − η2}
]p}

,

and the constants

µ3 = E[X ], µ2 = E
{[

max{0, X − E[X ]}
]p}

, µ1 = ̺(X).

We assume that p > 1 and I2 ⊂ R is a compact interval containing the support of
the random variable X . The interval I1 = [0, a] ⊂ R can be defined by choosing
a so that a ≥ |X − E(X)|p; for example a may be equal to the diameter of the
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support of X raised to power p. The space H is C1(I1)×C2(I2)×R and we take
a direction d ∈ H. Following (5), we calculate

ξ2(d) = f̄ ′
2(µ3; d3) + d2(µ3) = −pE

{[

max{0, X − µ3}
]p−1}

d3 + d2(µ3),

ξ1(d) = f̄ ′
1

(

µ2; ξ2(d)
)

+ d1
(

µ2

)

=
κ

p
µ

1
p
−1

2 ξ2(d) + d1
(

µ2

)

.

We obtain the expression

ξ1(W ) = W1

(

E
{[

max{0, X − E[X ]}
]p})

+

κ

p

(

E
{[

max{0, X − E[X ]}
]p}

)

1−p
p ×

(

W2

(

E[X ]
)

− pE
{[

max{0, X − E[X ]}
]p−1}

W3

)

. (11)

The covariance structure of the process W can be determined from (6). The
process W1(·) has the constant covariance function:

cov
[

W1(η
′),W1(η

′′)
]

=

∫

X

[

f1(η
′, x) − f̄1(η

′)
][

f1(η
′′, x) − f̄1(η

′′)
]

P (dx) = Var[X ].

It follows that W1(·) has constant paths. The third coordinate, W3 has variance
equal to Var[X ]. It also follows from (6) that cov

[

W1(η),W3

]

= Var[X ]. There-
fore, W1 and W3 are, in fact, one normal random variable, which we denote by
V1.

Observe that (11) involves only the value of the process W2 at µ3 = E[X ].
The variance of the random variable V2 = W2(E[X ]) and its covariance with V1

can be calculated from (6) in a similar way:

Var[V2] = E

{(

[

max{0, X − E[X ]}
]p − E

([

max{0, X − E[X ]}
]p)

)2}

,

cov[V2, V1] =

E

{(

[

max{0, X − E[X ]}
]p − E

([

max{0, X − E[X ]}
]p)

)(

X − E[X ]
)}

.

Formula (11) becomes

ξ1(W ) = V1 +
κ

p

(

E
{[

max{0, X − E[X ]}
]p}

)

1−p
p ×

(

V2 − pE
{[

max{0, X − E[X ]}
]p−1}

V1

)

. (12)

We conclude that √
n
[

̺(n) − ̺
]

D−−→ N (0, σ2),

where the variance σ2 can be calculated in a routine way as a variance of the right
hand side of (12), by substituting the expressions for variances and covariances
of W1, W2, and W3. N
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Remark 4. Following Example 3, we could derive the limiting distribution of√
n
[

̺(n) − ̺
]

for p = 1 as well. However, the risk measure for p = 1 enjoys
a simpler form which was already analysed in the literature (see, [35, Section
6.5].)

3 Estimation of Risk Measures Representable as

Optimal Values of Composite Functionals

As an extension of the methods of section 2, we consider the following general
setting. Functions f1 : Rd × R

s → R, f2 : Rd ×R
m → R

s, and a random vector
X in R

m are given. Our intention is to estimate the value of a composite risk
functional

̺ = min
z∈Z

f1
(

z,E[f2(z,X)]
)

. (13)

where Z ⊂ R
d is a nonempty compact set.

We note that the compactness restriction is made for technical convenience
and can be relaxed.

Let X1, . . . , Xn be a random iid sample from the probability distribution P
of X . We construct the empirical estimate

̺(n) = min
z∈Z

f1

(

z, 1
n

∑n
i=1 f2(z,Xi)

)

.

Our intention is to analyze the asymptotic behavior of ̺n, as n → ∞.
Following the method of section 2, we define the mapping Φ : Z×C(Z) → R

as follows:
Φ(z, h) = f1

(

z, h(z)
)

.

The space Rd×C(Z) is equipped with the product norm of the Euclidean norm
on R

d and the supremum norm on C(Z). We also define the functional v :
C(Z) → R,

v(h) = min
z∈Z

Φ(z, h). (14)

Setting

h̄(z) = E[f2(z,X)],

h(n)(z) = 1
n

∑n
i=1 f2(z,Xi),

we see that

̺ = v(h̄),

̺(n) = v(h(n)), n = 1, 2 . . . .

Let Ẑ denote the set of optimal solutions of problem (13).

Theorem 5. In addition to the general assumptions, suppose the following
conditions are satisfied:
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(i) The function f2(z, ·) is measurable for all z ∈ Z;
(ii) The function f1(z, ·) is differentiable for all z ∈ Z, and both f1(·, ·) and its
derivative with respect to the second argument, ∇f1(·, ·), are continuous with
respect to both arguments;

(iii) An integrable function γ(·) exists such that

‖f2(z′, x)− f2(z
′′, x)‖ ≤ γ(x)‖z′ − z′′‖

for all z′, z′′ ∈ Z and all x ∈ X ; moreover,
∫

γ2(x) P (dx) < ∞.

Then √
n
[

̺(n) − ̺
]

D−−→ min
z∈Ẑ

〈

∇f1
(

z,E[f2(z,X)]
)

,W (z)
〉

, (15)

where W (z) is a zero-mean Brownian process on Z with the covariance function

cov
[

W (z′),W (z′′)
]

=
∫

X

(

f2(z
′, x)− E[f2(z

′, X)]
)(

f2(z
′′, x)− E[f2(z

′′, X)]
)⊤

P (dx). (16)

Proof. Observe that assumptions (i)-(ii) of Theorem 2 are satisfied due to the
compactness of the set Z and assumptions (ii)–(iii) of this theorem. Therefore,
formula (7) holds: √

n
(

h(n) − h̄
)

D−−→ W.

The limiting process W is a zero-mean Brownian process on Z with covariance
function (16).

Furthermore, due to assumption (ii), the function Φ(·, h) is continuous. As
the set Z is compact, problem (14) has a nonempty solution set S(h). By virtue
of [5, Theorem 4.13], the optimal value function v(·) is Hadamard-directionally
differentiable at h̄ in every direction d with

v′(h̄; d) = min
z∈S(h̄)

Φ′
h(z, h̄)d,

where Φ′(z, h) is the Fréchet derivative of Φ(z, ·) at h. Therefore, we can apply
the delta method ([32]) to infer that

√
n
(

v(h(n))− v(h̄)
)

D−−→ min
z∈S(h̄)

Φ′
h(z, h̄)W.

Substituting the functional form of Φ, we obtain

Φ′
h(z, h̄) = ∇f1

(

z,E[f2(z,X)]
)

δz ,

where δz is the Dirac measure at z. Application of this operator to the processW
yields formula (15). Observe that W (·) has continuous paths and the minimum
exists.

10



Corollary 6. If, in addition to conditions of Theorem 5, the set Ẑ contains
only one element ẑ, then the following central limit formula holds:

√
n
[

̺(n) − ̺
]

D−−→
〈

∇f1
(

ẑ,E[f2(ẑ, X)]
)

,W (ẑ)
〉

, (17)

where W (ẑ) is a zero-mean normal vector with the covariance

cov
[

W (ẑ),W (ẑ)
]

= cov
[

f2(ẑ, X), f2(ẑ, X)
]

.

The following examples show that two notable categories of risk measures
fall into the structure (13)

Example 7 (Average Value at Risk). Average Value at Risk (2) is one of
the most popular and most basic coherent measures of risk. Recall that for a
random variable X , it is representable as follows:

AVaRα(X) = min
z∈R

{

z +
1

α
E[(X − z)+]

}

.

This measure fits in the structure (13) by setting

f1(z, η) = z +
1

α
η

f2(z,X) = max(0, X − z).

The plug-in empirical estimators of (2) have the following form

̺(n) = min
z∈R

{

z +
1

αn

n
∑

i=1

(

max(0, Xi − z)
)

}

.

If the support of the distribution of X is bounded, then so is the support of all
empirical distributions and we can assume that the set Z contains the support
of the distribution. Observe that all assumptions of Theorem 5 are satisfied. If
the distribution function of the random variable X is continuous at α, then the
solution of the optimization problem at the right-hand side of (2) is unique. In
that case, the assumptions of Corollary 6 are also satisfied. We conclude that

√
n
[

̺(n) − ̺
]

D−−→ 1

α

(

E
[

max(0, X − ẑ
]

)

W,

where W is a normal random variable with zero mean and variance

Var[W ] = E

[(

max(0, X − ẑ)− E
[

max(0, X − ẑ
]

)2]

.

We note that the assumption of the boundedness of the support of the random
variable X is not really , because we could take a sufficiently large set Z, which
would contain the corresponding quantile of the distribution function of X and
all empirical quantiles for sufficiently large sample sizes.

Additionally, we refer to another method for estimating the Average Value
at Risk at all levels simultaneously, which was discussed in [8], where also central
limit formulae under different set of assumptions were established. N
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Example 8 (Higher-order Inverse Risk Measures). Consider a higher
order inverse risk measure (4) with c = 1

α > 1:

̺[X ] = min
z∈R

{

z + c
∥

∥max(0, X − z)
∥

∥

p

}

, (18)

where p > 1 and ‖ · ‖p is the norm in the Lp space. We define:

f1(z, y) = z + cy
1
p ,

f2(z, x) =
(

max(0, x− z)
)p
.

If the support of the distribution of X is bounded, so is the support of all
empirical distributions. In this case, we can find a bounded set Z (albeit larger
than the support of X) such that all solutions of problems (18) belong to this
set. For p > 1 and c > 1 problem (18) has a unique solution, which we denote
by ẑ.

The plug-in empirical estimators of (18) have the following form

̺(n) = min
z∈R

{

z + c
( 1

n

n
∑

i=1

(

max(0, Xi − z)
)p
)

1
p
}

. (19)

Observe that all assumptions of Theorem 5 and Corollary 6 are satisfied. We
conclude that

√
n
[

̺(n) − ̺
]

D−−→ c

p

(

E
[(

max(0, X − ẑ)
)p]

)

1−p
p

W, (20)

where W is a normal random variable with zero mean and variance

Var[W ] = E

[(

(

max(0, X − ẑ)
)p − E

[(

max(0, X − ẑ)
)p]

)2]

.

N

4 Estimation of Optimized Composite Risk Func-

tionals

In this section, we are concerned with optimization problems in which the ob-
jective function is a composite risk functional. Our goal is to establish a central
limit formula for the optimal value of such problems.

Our methods allow for the analysis of more complicated structures of opti-
mized risk functionals:

̺ = min
u∈U

E

[

f1

(

u,E
[

f2
(

u,E[ · · · fk(u,E[fk+1(u,X)], X)] · · · , X
)]

, X
)]

. (21)

Here X is a m-dimensional random vector, fj : U × R
mj × R

m → R
mj−1 ,

j = 1, . . . , k, with m0 = 1 and fk+1 : U × R
m → R

mk . We assume that U is

12



a compact set in a finite dimensional space and the optimal solution û of this
problem is unique.

We define the functions:

f̄j(u, ηj) =

∫

X

fj(u, ηj , x)P (dx), j = 1, . . . , k,

f̄k+1(u) =

∫

X

fk+1(u, x)P (dx),

and the quantities

µk+1 = f̄k+1(û),

µj = f̄j(û, µj+1), j = 1, . . . , k.

We assume that compact sets I1, . . . , Ik are selected so that int(Ik) ⊃ f̄k+1(U),
and int(Ij) ⊃ f̄j+1(U, Ij+1), j = 1, . . . , k − 1. Let us define the space

H = C(0,1)
1 (U × I1)× C(0,1)

m1
(U × I2)× . . . C(0,1)

mk−1
(U × Ik)× Cmk

(U),

where C(0,1)
mj−1

(U×Ij) is the space of R
mj−1 -valued continuous functions on U×Ij ,

which are differentiable with respect to the second argument with continuous
derivatives on U × Ij . We denote the Jacobian of fj(u, ηj , x) with respect to
the second argument at η∗j ∈ Ij by f ′

j(u, η
∗
j , x). For every direction d ∈ H, we

define recursively the sequence of vectors:

ξk+1(d) = dk+1,

ξj(d) =

∫

X

f ′
j(û, µj+1, x)ξj+1(d)P (dx) + dj

(

µj+1

)

, j = k, k − 1, . . . , 1.
(22)

The empirical estimator is

̺(n) = min
u∈U

n
∑

i=1

1

n

[

f1

(

u,

n
∑

i=1

1

n

[

f2
(

u,

n
∑

i=1

1

n
[ · · · fk(u,

n
∑

i=1

1

n
[fk+1(u,X)], X)]

· · · , X
)]

, X
)]

.

We establish the following result.

Theorem 9. Suppose the following conditions are satisfied:

(i)
∫

X
‖fj(u, ηj , x)‖2 P (dx) < ∞ for all ηj ∈ Ij , u ∈ U , j = 1, . . . , k, and

∫

X
‖fk+1(u, x)‖2P (dx) < ∞ for all u ∈ U ;

(ii) The functions fj(·, ·, x), j = 1, . . . , k, and fk+1(·, x) are Lipschitz continu-
ous for every x ∈ X :

‖fj(u′, η′j , x)− fj(u
′′, η′′j , x)‖ ≤ γj(x)

(

‖u′ − u′′‖+ ‖η′j − η′′j ‖
)

, j = 1, . . . , k.

‖fk+1(u
′, x) − fk+1(u

′′, x)‖ ≤ γk+1(x)‖u′ − u′′‖,

for all η′j , η
′′
j ∈ Ij , u

′, u′′ ∈ U ; moreover,
∫

γ2
j (x) P (dx) < ∞, j = 1, . . . , k+ 1;

13



(iii) The functions fj(u, ·, x), j = 1, . . . , k, are continuously differentiable for
every x ∈ X , u ∈ U ; moreover, their derivatives are continuous with respect to
the first two arguments.

Then √
n
[

̺(n) − ̺
]

D−−→ ξ1(W ),

where W (·) =
(

W1(·), . . . ,Wk(·),Wk+1

)

is a zero-mean Brownian process on
I = I1 × I2 × · · · × Ik. Here Wj(·) is a Brownian process of dimension mj−1 on
Ij, j = 1, . . . , k, and Wk+1 is an mk-dimensional normal vector. The covariance
function of W (·) has the following form

cov
[

Wi(ηi),Wj(ηj)
]

=
∫

X

[

fi(û, ηi, x)− f̄i(û, ηi)
][

fj(û, ηj , x)− f̄j(û, ηj)
]⊤

P (dx),

ηi ∈ Ii, ηj ∈ Ij , i, j = 1, . . . , k

cov
[

Wi(ηi),Wk+1

]

=
∫

X

[

fi(û, ηi, x)− f̄i(û, ηi)
][

fk+1(û, x)− f̄k+1(û)
]⊤

P (dx),

ηi ∈ Ii, i = 1, . . . , k

cov
[

Wk+1,Wk+1

]

=
∫

X

[

fk+1(û, x)− f̄k+1(û)
][

fk+1(û, x)− f̄k+1(û)
]⊤

P (dx).

(23)

Proof. We follow the main line of argument of the proof of Theorem 2. We define
M = m0 +m1 + · · ·+mk and the vector-valued function f : U × I ×X → R

M

with block coordinates fj(u, ηj , x), j = 1, . . . , k, and fk+1(u, x). Similarly, we
define f̄ : U × I → R

M with block coordinates f̄j(u, ηj), j = 1, . . . , k, and
f̄k+1(u). Consider the empirical estimates of the function f̄(u, η):

h(n)(u, η) =
1

n

n
∑

i=1

f(u, η,Xi), n = 1, 2, . . . .

Due to our assumptions, for sufficiently large n all these functions are elements
of the space H.

Owing to assumptions (i)–(ii), the class of functions f(u, η, ·), u ∈ U , η ∈ I,
is Donsker, that is the following uniform Central Limit Theorem holds (see [37,
Ex. 19.7]): √

n
(

h(n) − f̄
)

D−−→ W, (24)

where W is a zero-mean Brownian process on U × I with covariance function

cov
[

W (u′, η′),W (u′′, η′′)
]

=
∫

X

[

f(u′, η′, x)− f̄(u′, η′)
][

f(u′′, η′′, x)− f̄(u′′, η′′)
]⊤

P (dx). (25)

14



This fact will allow us to establish asymptotic properties of the sequence
{

̺(n)
}

.
We define an operator Ψ : H → R as follows

Ψ(u, h) = h1

(

u, h2

(

u, · · ·hk(u, hk+1(u)) · · ·
)

)

.

By definition,

̺(X) = min
u∈U

Ψ
(

u, f̄
)

,

̺(n) = min
u∈U

Ψ
(

u, h(n)
)

.

To apply Delta Theorem to the sequence
{

̺(n)
}

, we have to verify Hadamard
directional differentiability of the optimal value function v(·) = minu∈U Ψ(u, ·)
at f̄ . Observe that our assumptions imply that the conditions of [5, Thm. 4.13]
are satisfied. As the optimal solution set is a singleton, the function v(·) is
differentiable at f̄ with the Fréchet derivative

v′(f̄) = Ψ ′(û, f̄),

where Ψ ′(u, f) is the Fréchet derivative of Ψ(u, ·) at f . The remaining deriva-
tions are identical as those in the proof of Theorem 2. We only need to substitute
û as an additional argument of all functions involved.

Example 10 (Optimization problems with mean–semideviation). Con-
sider now an optimization problem involving a mean–semideviation measure of
risk

min
u∈U

̺[ϕ(u,X)] = E[ϕ(u,X)] + κ
(

E
[(

ϕ(u,X)− E[ϕ(u,X)]
)p

+

]

)
1
p

, (26)

where ϕ : Rd ×X → R. We have

f1(η1, u, x) = κη
1
p

1 + ϕ(u, x),

f2(η2, u, x) =
{[

max{0, ϕ(u, x)− η2}
]p}

,

f3(u, x) = ϕ(u, x),

and

f̄1(η1, u) = κη
1
p

1 + E[ϕ(u,X)],

f̄2(η2, u) = E
{[

max{0, ϕ(u,X)− η2}
]p}

,

f̄3(u) = E[ϕ(u,X)].

We assume that p > 1. Suppose û is the unique solution of problem (26).
We set µ3 = E[ϕ(û, X)]. Then µ2 = E

{[

max{0, ϕ(û, X)− E[ϕ(û, X)]}
]p}

and
µ1 = ̺(X). Following (22), we calculate

ξ2(d) = f̄ ′
2(µ3, û; d3) + d2(µ3) = −pE

{[

max{0, ϕ(û, X)− µ3}
]p−1}

d3 + d2(µ3),
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ξ1(d) = f̄ ′
1

(

µ2, û; ξ2(d)
)

+ d1
(

µ2

)

=
κ

p
µ

1
p
−1

2 ξ2(d) + d1
(

µ2

)

.

We obtain the expression

Ψ ′
1(f̄ ;W ) = W1

(

E
{[

max{0, ϕ(û, X)− E[ϕ(û, X)]}
]p})

+

κ

p

(

E
{[

max{0, ϕ(û, X)− E[ϕ(û, X)]}
]p}

)

1−p
p ×

(

W2

(

E[ϕ(û, X)]
)

− pE
{[

max{0, ϕ(û, X)− E[ϕ(û, X)]}
]p−1}

W3

)

. (27)

The covariance structure of the process W can be determined from (25), similar
to Example 3. The process W1(·) has the constant covariance function:

cov
[

W1(η1(û)),W1(η1(û))
]

= Var[ϕ(û, X)].

The third coordinate, W3 has variance equal to Var[ϕ(û, X)]. Also,

cov(W1(η1(û)),W3) = Var[ϕ(û, X)],

and thus W1 and W3 have the same normal distribution and are perfectly cor-
related.

The variance function of W2(·) and its covariance with W1 (and W3) can be
calculated in a similar way:

Var[W2(E[ϕ(û, X)])] = E

{(

[

max{0, ϕ(û, X)− E[ϕ(û, X)]}
]p−

E
([

max{0, ϕ(û, X)− E[ϕ(û, X)]}
]p)

)(

ϕ(û, X)− E[ϕ(û, X)]
)}

.

We conclude that √
n
[

̺(n) − ̺
]

D−−→ N (0, σ2),

where the variance σ2 can be calculated in a routine way as a variance of the right
hand side of (27), by substituting the expressions for variances and covariances
of W1, W2, and W3. N

5 A simulation study

In this section we illustrate the convergence of some estimators discussed in
this paper to the limiting normal distribution. Many previously known results
for the case p = 1 have been investigated thoroughly in the literature (see,
e.g., [34]) and we will not dwell upon these here. We will only illustrate the
case about Higher-order Inverse Risk Measures as discussed in Example 4 for
the case p > 1. More specifically, we take independent identically distributed
observations Xi, i = 1, 2, . . . , n from an independent identically distributed X ∼
N (0, 3) observations. We take ǫ = 0.05 and p = 2. In that case c = 20.
Numerical calculation in Matlab delivers the theoretical argument minimum
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z∗ = 14.5048 and the value of the risk in (18) being ̺[X ] = 15.5163. The
standard deviation of the random variable in the right hand side of (20) is
16.032. The plug-in estimator ̺(n) of this risk can be represented as a solution
of a convex optimization problem with convex constraints and hence a unique
solution can be found by any package that solves such type of problems. We
have used the cvx package that can be operated within matlab. Denoting
di = max(Xi − z, 0), i = 1, 2, . . . , n and putting all di, i = 1, 2, . . . , n in a vector
d we can rewrite our optimization problem as follows:

min
z,d

{

c
1

n1/p
(

n
∑

i=1

dpi )
1/p + z

}

subject to Xi − z ≤ di, di ≥ 0, i = 1, 2, . . . , n.

(28)

The numerical solution to this optimization problem gives us the estimator ̺(n).
To get an idea about the speed of convergence to the limiting distribution in

(19) we simulate m = 2500 risk estimators ̺
(n)
j , j = 1, 2, . . . , 2500 for a given

sample size n and draw their histogram. The number of bins for the histogram is
determined by the rough “squared root of the sample size” rule. This histogram
is superimposed to the N (15.5163, (16.032/

√
n)2) density. As n is increased,

our theory suggests that the histogram and the normal density graph will look
more and more similar in shape. Their closeness indicates how quickly the
central limit theorem pops up in this case.

Figure 1 shows that the central limit theorem indeed represents a very good
approximation which improves significantly with increasing sample size. The
small downward bias that appears in Figure 1 a) is getting increasingly irrelevant
with growing sample size. We have experimented with different values of p such
as p = 1, 1.5, 2 and 2.5 and we have also changed the value of ǫ (respectively c =
1/ǫ). The tendency shown in Figure 1 is largely upheld, however, as expected,
the standard errors are increased when c and/or p is increased. Also, the limiting
normal approximation seems to be more accurate for the same sample sizes
when a smaller value of p is used. This discussed effect is illustrated on Figure
3 where p = 1 (i.e., the case of AVaR), p = 1.5, p = 2 (where a different sample
in comparison to the sample in Figure 1,) and p = 2.5 was simulated). The
remaining quantities have been kept fixed to n = 2000 and c = 20. We stress
that increasing the sample size in Figure 3 d) makes the histogram look much
more like the limiting normal curve so that the discrepancy observed there is
indeed just due to the limiting approximation popping up at larger samples
when p is increased.

We also experimented with different distributions for the random variable
X. We took specifically t-distributions with degrees of freedom ν such as 4, 6, 8
and 60, shifted to have the same mean of 10 like in the normal simulated data.
The results of this comparison for p = 2, ǫ = 0.05 and n = 4000 are shown in
Figure 2. The variances of the t-distributed variables, being equal to ν/(ν − 2),
are finite and even smaller than the variance of the normal random variable in
Figure 1. However the heavier tails of the t distribution adversely affect the
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(c) n = 4000
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Figure 1: Density histogram of the distribution of the estimator ̺n for increasing
values of n and its normal approximation using Theorem 2 and X ∼ N (10, 3).
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Figure 2: Density histogram of the distribution of the estimator ̺n for n = 4000
and X ∼ tν with ν being 60, 8, 6 and 4.
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Figure 3: Density histogram of the distribution of the estimator ̺n for different
values of p when X ∼ N (10, 3).
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quality of the approximation. Despite the fact that the limiting distribution of
the risk estimator is still normal when ν = 6 and ν = 8, the heavy tailed data
cause the normal approximation to be relatively poor even at n = 4000. The
case ν = 60 is closer to normal distribution and hence the approximation works
better in this case.

Note that the limiting distribution when p = 2 involves the fourth moment
of the t distribution and this moment is finite for ν = 6, 8 and 60 but is infi-
nite when ν = 4. As a result, it can be seen from Figure 2 d) that the normal
approximation collapses in this case. Also, Figure 2 shows that for attaining
similar quality in Kolmogorov metric for the asymptotic approximation like in
the case of normally distributed X, in Figure 1 c), much bigger samples are
needed. For the fixed sample size of 4000, the quality of the normal approxi-
mation worsens as ν decreases from 60 to 8 and then to 6. Furthermore, and
outside of the scope of the present paper, we note that if the distribution of X
has even heavier tails than the t distribution with (for example, if it is in the
class of stable distributions with stability parameter in the range (1,2)) then
the limiting distribution of the risk may not be normal at all.
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6 Conclusions

The infinity dimensional delta method is a standard statistical technique to
evaluate the asymptotic distribution of estimators of statistical functionals. The
applicability of the procedure hinges on veryfing smoothness conditions of the
related functionals. Motivated primarily by the need to estimate coherent risk
measures we introduce a general composite structure for such functionals in in
which all known coherent risk measures can be cast. The potential applicability
of our central limit theorems however extends beyond functionals representing
coherent risk measures. Our short simulation study indicates that the central
limit theorem-type approximations are very accurate when the sample size is
large, p is in reasonable limits between 1 and 3 and the distribution of X is
with not too heavy tails. We note that for smaller sample sizes, the technique
of concentration inequalities may be more powerful and accurate when evalu-
ating the closeness of the approximation. It is possible to derive concentration
inequalities for estimators of statistical functionals with the structure that has
been introduced in our paper. This is a subject of ongoing research.
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