
An Operating Guideline Approach to the SOA

Peter Massuthe, Wolfgang Reisig, and Karsten Schmidt

Humboldt-Universität zu Berlin
Institut für Informatik
Unter den Linden 6

D-10099 Berlin
{massuthe, reisig, kschmidt}@informatik.hu-berlin.de

Abstract Interorganizational cooperation is more and more organized
by the paradigm of services. The service-oriented architecture (SOA)
provides a general framework for service interaction. It describes three
roles, service provider, service requester, and service broker, together with
the three operations publish, find, and bind.
We provide a formal method based on Petri nets to model services and
their cooperation. We characterize well-behaving pairs of requester’s and
provider’s services and suggest operating guidelines as a convenient and
intuitive artifact to realize publish. Then, the find operation reduces to
a matching problem between the requester’s service and the operating
guideline. Binding of a requester’s and a provider’s service is therefore
guaranteed to result in a well-behaving cooperating service.

Keywords: Services, SOA, Petri nets, Operating guidelines

1 Introduction

A service can be viewed as an artifact consisting of an identifier (id),
an interface (e.g. specified in WSDL [4]), and internal control (e.g. a
workflow). A service can typically not be executed in isolation – services
are designed for being invoked by other services, or for invoking other
services themselves.
The service-oriented architecture (SOA) [6] is a promising and increas-
ingly influential software architecture providing a general framework for
service interaction. It describes three roles of service owners: service
provider, service requester, and service broker. A service provider pub-
lishes information about his service to a repository. The service broker
manages the repository and allows a service requester to find an ade-
quate service provider. Then, the service of the provider and the service
of the requester may bind and start interaction.
Such cooperating services may cause non-trivial communication. Thus,
for a given requester’s service R, the broker’s task is to select from the
repository only those provided services P that are guaranteed to inter-
act properly with R: The services R and P must not deadlock in their
interaction or send unanticipated messages, for instance. Thereby, com-
patibility of the interfaces of R and P is not sufficient to guarantee proper
interaction.

The broker must decide this task by help of the published information
about P . In a currently quite popular approach, the published informa-
tion is a so-called public view [7, 8], i.e. an abstract version P ′ of P with
a communication behavior equivalent to P .

In this paper, we suggest an alternative: The provider does not pub-
lish information about his service P , but information about all proper
services R of potential requesters, instead. This information is called op-
erating guideline, OGP , for P . In our approach, the operating guideline
for P describes, in a compact way, the set of all services R that interact
properly with P .

We claim that matching a requester’s service R with an operating guide-
line OGP is less complex than matching R with the public view P ′ of P .
If R matches OGP , we can guarantee that R and P interact properly.
In this paper, we show that services have canonical operating guidelines
and it is even possible to compute them. Furthermore, the operating
guideline for P typically hides a lot of details about the internal control
structure of P , that the owner of P might want to keep secret.

In our approach, we consider workflow services, an important subclass of
services with operational behavior described as a workflow. We suggest
a formal model based on Petri nets, called open workflow nets (oWFNs),
to represent workflow services. An oWFN is basically a liberal version
of a van der Aalst workflow net [1], enriched with communication places
for asynchronous communication. In this paper, we present our approach
only for acyclic nets.

With oWFNs, we can model services of providers, as well as services
of requesters. We can furthermore compose two oWFNs and obtain a
model for both services in interaction. The composition of two oWFNs
results in an oWFN, again. Composition can therefore be seen as the re-
sult of the SOA bind operation. In our approach, we abstract from every
other aspect of bind as resolving URI, routing, and establishment of com-
munication channels. We assume this to be managed by an underlying
middleware.

We can formulate proper interaction between services as a property of the
corresponding composed oWFN, called weak termination. Each partner
oWFN R that weakly terminates with P , is called a strategy for P .

Considering the behaviors of all strategies for P , it turns out that there is
a unique most permissive behavior, i.e. every strategy for P has a behav-
ior that can be obtained through restricting the most permissive one. The
most permissive behavior itself then provides the basis for the operating
guidelines: We can provide annotations to the most permissive behav-
ior that characterize the allowed restrictions to obtain the behaviors of
all strategies. Operating guidelines (i.e. the annotated most permissive
behavior) is then provided to the service broker, thus realizing publish.

This way, matching a requester’s service R with a published operating
guideline OGP reduces to check whether or not the behavior of R is a
subtree of OGP that satisfies the annotations.

The rest of the paper is structured as follows. In Sec. 2, we consider
the essential aspects of services, and characterize the class of workflow
services. Section 3 introduces the schema of the service-oriented architec-

2

ture with the three roles for service owners and the standard operations
publish, find, and bind.

Our model of workflow services, open workflow nets, is described in
Sec. 4. This includes operational behavior, means of communication,
composition, and desired properties of cooperating oWFNs.

Section 5 then introduces our main construct, operating guidelines. Op-
erating guidelines turn out to be a convenient and elegant instrument
to realize publish. Finally, in Sec. 6, we apply operating guidelines to
decide the existence of a fitting provider’s service for a given service of
a requester, thus realizing find.

2 Services

Nowadays, cooperation across borders of enterprises is increasingly im-
portant. Functionalities are sourced out or so-called virtual enterprises
for specific tasks are formed.

In this setting, services play an important role. A service basically en-
capsulates self-contained functions that interact through a well-defined
interface. Recent publications apply the term service in different con-
texts with varying denotations. In this paper, we assume the essentials
of a service to include an identifier (id), its interface, and its operational
behavior. Thereby, the interface of a service describes means to commu-
nicate with its environment during execution. The operational behavior
of a service is basically a set of operations to be executed according to
some internal control structure.

The well-known class of web services is an implementation of services
with an interface specified in WSDL and an id given by an URI.

In this paper, we concentrate on services with operational behavior de-
scribed as a workflow, i.e. an implemented business process. Such services
will be denoted as workflow services. Workflow services have become
particularly important since the establishment of BPEL [5] as a widely
excepted language to describe web services. BPEL provides control struc-
tures that typically occur in workflows.

T CT C

�

B

Figure 1. A vending machine that sells, for 1 Euro, either a cup of tea (button T), or
coffee (button C).

3

Examples of workflow services include online banking systems (which
are web services as well) and car rentals (which are not necessarily web
services). A Java program is certainly no workflow services (but may be
a web service).
As a running example, we consider the workflow service of a beverage
vending machine, as outlined in Fig. 1. The service provided by this
machine expects a coin (C––) to be inserted and one of the buttons T and
C being pressed. The service then reacts with delivering a beverage, i.e. a
cup of tea (in case T has been pressed) or a cup of coffee (in case C has
been pressed).

3 The Service-Oriented Architecture (SOA)

Generally, services are not executed in isolation, but in cooperation with
other services (e.g. by exchanging messages). For that purpose, service
interaction is organized by the SOA. The SOA assumes that services are
run by agents, with agents entering (and leaving) the scene dynamically.
The services of these agents are intended to communicate with each
other. This requires an agent to establish new communication facilities
with other agents (in particular in case the agent entered the scene only
recently).
In the SOA, such communication facilities are established by help of a
service broker. Each agent is assumed to approach the broker in one of
two roles: As a service provider, i.e. in the role of delivering some service,
or as a service requester, i.e. in the role of using an already provided
service.

Service
Broker

Service
Provider

Service
Requester

publishfind

bind

Service
Broker

Service
Provider

Service
Requester

publishfind

bind

Figure 2. The service-oriented architecture (SOA).

Therefore, the provider, requester, and broker agents execute the follow-
ing three operations:
A service provider sends information to the service broker, indicating
how a service requester may use his service. The service broker then
stores this information together with the provider’s id in a repository.
This operation is called publish.
The SOA operation find means that a requester sends a description of
his requested service to the service broker. The broker selects a fitting
one and returns the corresponding provider’s id.

4

Finally, the requester establishes a connection with the provider, and
both agents jointly run their respective services, described by the SOA
bind operation.
The three roles of agents, together with the three standard operations
are outlined in the SOA triangle, depicted in Fig. 2.
The above operations come up with a number of problems:
Publish: The provider has good reasons to keep published information
about his service at a minimum. He usually wants (1) to cover business
secrets, (2) to retain maximal flexibility to update his service without
giving notice to providers and brokers, and (3) to shield requesters from
details they do not need to know.
In this paper, we suggest operating guidelines (to be introduced in Sec. 5)
as information to be published about a provider’s service. Operating
guidelines serve well as an abstraction from internal details and support
flexibility.
Find: Given a service of a requester and the operating guideline for a
provider, a broker has to decide whether or not the requester’s and the
provider’s services would interact properly.
In this paper, we describe how a broker may decide this question by
matching the requester’s service with operating guidelines.
Bind: Through our operating guidelines approach to publish and find, a
requester’s service is guaranteed to successfully cooperate with the ser-
vice of a broker’s recommended provider (e.g. they do not deadlock). We
completely abstract from implementation details concerning the estab-
lishing of communication channels between provider and requester (such
as resolving an URI, routing, etc.). We just suggest means to describe
the behavior of single services as well as their cooperation.
Summing up, the SOA schema requires a proper representation of ser-
vices and their cooperation, together with adequate descriptions of the
operations publish and find.
The rest of this paper suggests corresponding features for the subclass
of services, called workflow services.

4 Models of Workflow Services

A solution to the problems described above requires a proper model of
workflow services. A model of workflows was already suggested by van der
Aalst [1]. He defines a special class of Petri nets, workflow nets (WFNs),
that adequately describe the control structure of workflows. Since work-
flow services are supposed to communicate with other workflow services,
additional constructs for modeling communication channels are needed.
We suggest open workflow nets (oWFNs) for this endeavour, essentially a
liberal version of van der Aalst workflow nets, enriched with communica-
tion places. Each communication place of an oWFN models a channel to
send (receive) messages to (from) another oWFN. Thereby, we abstract
from data and just model the occurrence of messages as undistinguish-
able tokens.
We assume the usual representation of Petri nets N = (P, T, F), with P
and T the set of places and transitions (graphically, circles and squares),

5

and a set F ⊆ (P×T)∪(T×P) of arcs, graphically: arrows. A marking is
a mapping m : P → N (graphically, m(p) black tokens on p). As usual, a
transition t is enabled at a marking m if for each place p with (p, t) ∈ F ,
m(p) ≥ 1.

If enabled at m, occurrence of t then yields the marking m′ with m′(p) =
m(p)− 1 if (p, t) ∈ F and (t, p) /∈ F , m′(p) = m(p) + 1 if (t, p) ∈ F and
(p, t) /∈ F , and m′(p) = m(p) otherwise.

An open workflow net is a Petri net N = (P, T, F) together with

1. two sets in, out ⊆ P , such that for all transitions t ∈ T holds: if
p ∈ in (p ∈ out) then (t, p) /∈ F ((p, t) /∈ F),

2. a distinguished marking m0, called the initial marking, and

3. a set Ω of distinguished markings, called the final markings of N .

The places in in (out) are called input (output) places. The set in ∪ out
is called the interface of N . The inner of N can be obtained from N by
removing all interface places, together with their adjacent arcs.

Graphically, N is surrounded by a dashed box, with the interface places
on its boundary. As a convention, we label a transition t connected to
an input (output) place x with ?x (!x).

���

?T ?C

!B !B

p0

p1

p2 p4

p3 p5

�

C

T

B

V

Figure 3. An oWFN V for the vending machine of Fig. 1.

As an example, Fig. 3 shows an oWFN, V , modeling the vending machine
of Fig. 1. The places C–– , T, C, and B denote an inserted coin, the button T
or C pressed, and a beverage delivered, respectively. There are two final
markings of V : a single token on p3 or a single token on p5.

We are now ready to define the composition of oWFNs, reflecting the
interplay between workflow services.

Conceiving the vending machine of Fig. 1 as a provider’s service, a cor-
responding customer would insert a coin, press one of the buttons and
later on receive the beverage.

6

� �

!C

?B

q0

q1

q2

q3

�

C

B

C

Figure 4. A customer’s oWFN, C, for the vending machine V that wants coffee.

Fig. 4 models a customer, C, of the vending machine, pressing the coffee
button. This model is again an oWFN. Further examples can be found
in [12].
The interaction of two oWFNs is reflected by their composition. Two
oWFNs M and N may have some elements in common. Nevertheless,
without loss of generality we may assume that M and N only share
input- and output elements:

(PM ∪ TM) ∩ (PN ∪ TN) ⊆ (inM ∪ outM) ∩ (inN ∪ outN) (1)

This property in fact holds for the two oWFNs V and C: They share
nothing but the interface places C–– , C, and B.
Assuming (1), composition of two oWFNs M and N is an oWFN again,
denoted M⊕N , and constructed essentially as the component-wise union
of M and N . So let M ⊕ N be defined by PM⊕N =def PM ∪ PN ,
TM⊕N =def TM ∪ TN , FM⊕N =def FM ∪ FN .
Each place in outM ∩ inN (or in inM ∩ outN) turns into an inner place
of M ⊕N . With I =def (outM ∩ inN) ∪ (inN ∩ outM), let inM⊕N =def

(inM ∪ inN) \ I and outM⊕N =def (outM ∪ outN) \ I.
For markings mM and mN of M and N , respectively, let mM ⊕mN be
a marking of M ⊕ N , defined for p ∈ PM⊕N by (mM ⊕ mN)(p) =def

mM (p) + mN (p), where mM (p) = 0 if p /∈ PM and mN (p) = 0 if p /∈ PN .
Then, let m(M⊕N)0

=def mM0 ⊕mN0 and mM⊕N ∈ ΩM⊕N iff mM⊕N =
mM ⊕mN for some mM ∈ ΩM and some mN ∈ ΩN .
As an example, Fig. 5 shows the oWFN C ⊕ V . This oWFN has two
terminal markings, m1 and m2, with m1(q3) = m1(p3) = 1, m2(q3) =
m2(p5) = 1, and no tokens on all other places. Notice that inC⊕V = {T}
and outC⊕V = ∅.
Fig. 6 shows another oWFN, E. Assume one terminal marking for E, with
a token on r2 and no token elsewhere. E models an erroneous customer
service of the vending machine, as the customer apparently

”
forgets“ to

7

� �

!C

?B

q0

q1

q2

q3

�

� �

?T ?C

!B !B

p0

p1

p2 p4

p3 p5

C

T

B

C ⊕ V

Figure 5. The composed oWFN C ⊕ V of Fig. 3 and Fig. 4.

press one of the machine buttons, and both services deadlock. Summing
up, the oWFN C is an

”
adequate“ partner for V , whereas E is not.

� �

?B

r0

r1

r2

�

B

E

Figure 6. An erroneous partner oWFN E for V .

In technical terms, a marking m of an oWFN is a deadlock if m enables
no transition at all. It is easy to see that in the composed oWFN C⊕V ,
the only reachable deadlock is a final marking. In contrast, in the oWFN
E ⊕ V (not shown here), the marking m with m(r1) = m(p1) = 1 and
m(p) = 0 for all other places p ∈ PE⊕V is a reachable deadlock which is
no final marking.

An oWFN in which all deadlocks are final markings is called weakly
terminating. Given an oWFN N , we call an oWFN M a strategy for N
iff the oWFN N⊕M is weakly terminating. For example, C is a strategy
for V , whereas E is not.

8

5 Publish

As mentioned earlier in this paper, information published by a ser-
vice provider on his service P must enable the service broker to decide
whether or not a requester’s service R is a strategy for P (otherwise,
binding P with R may result in unexpected behavior). Whether or not
R is a strategy for P depends on the internal control structure of P .
Hence, it has been proposed to publish a public view P ′ of P to the
service broker. It is supposed that, by knowing P ′, the broker can decide
whether or not R will interact properly with P .
We propose a different approach: Instead of a description of the provided
service P , we suggest to publish a description of the set of all strategies
(i.e. all properly interacting oWFNs) R for P , directly. In fact, we provide
a description of the behaviors of all strategies R. We call this description
operating guideline for P and write OGP .
In the remainder of this section, we give brief answers to the following
questions for a given oWFN P : (1) What is a behavior? (2) How does
the operating guideline OGP look like? (3) How can it be computed? (4)
Why does it cover all strategies for P?

r1

r2

r3

r4

� �

!C

?B

CB p1

p2

p3

p5

p4

p6

���

?C

!B!B

?T

VB

Figure 7. The behaviors BC and BV of the oWFNs C and V , resprespectively.

The behavior of a usual Petri net can be represented as a reachability
tree. This notion is, however, not adequate for oWFNs, since the marking
on the interface places can be changed by the environment. Thus, we
describe the behavior of an oWFN N by a slightly different structure.
We first compute the reachability tree of the inner of N (see Sec. 4).
Due to our restriction to acyclic oWFNs, the reachability tree is finite.
Then, each edge in the reachability tree is annotated with !x (?x) if the
corresponding transition in N is connected to an output (input) place x,
and with τ , otherwise. This answers question (1) stated above.
Figure 7 shows the behaviors BC and BV of the oWFNs C and V of
Fig. 4 and Fig. 3, respectively.
In the following, to answer question (2), we first present the two in-
gredients to operating guidelines for P : the most permissive behavior
of strategies for P and annotations how to derive the behaviors of all

9

strategies. Then, we sketch the algorithms to compute both ingredients,
answering questions (3) and (4).

These answers rely on results proven in [13, 11] concerning behaviors of
strategies. For the purpose of simplicity only, we constrain the consider-
ations in this paper to deterministic behaviors of strategies. A behavior
is deterministic iff every edge of the behavior has exactly one expression
!x or ?y attached (i.e. there is no silent move τ), and there is no node in
the behavior where two leaving edges have the same expression attached.
All behaviors shown in this paper are deterministic.

Let the set of the (deterministic) behaviors BR of all strategies R for
P be denoted by BP . We can establish a (partial order) relation, more
permissive, to behaviors of BP : A behavior B is more permissive than a
behavior B′ if B′ is isomorphic to a subtree of B containing the root.

s1

s2

s3

s5

s4

s6

� �

!C

?B?B

!T

DB

Figure 8. A more permissive behavior BD of a customer, who decides.

As an example, Fig. 8 shows the behavior BD of some customer D of
the vending machine, who first inserts a coin and then decides for coffee
or tea. BD is more permissive than BC , whereas neither BC is more
permissive than BV , nor BV is more permissive than BC .

In [13, 11], we show that, for every oWFN P , the set BP has a unique most
permissive element, the most permissive behavior, B∗. Consequently, we
call every oWFN R with the most permissive behavior as its behavior
(i.e. BR = B∗), a most permissive strategy for P . While the most per-
missive behavior is unique, most permissive strategies are not. There are
typically many structurally different Petri nets that share the same be-
havior. In particular, our presented concept of behavior does not distin-
guish arbitrary interleaved transitions from truly concurrent transitions.

The main property of the most permissive behavior B∗ is that it com-
prises all behaviors of strategies for P : Every behavior BR of a strategy
R for P is (isomorphic to) a subtree of B∗. Thus, the most permissive
behavior serves as the first ingredient to the operating guideline for P .

Unfortunately, the converse is not true. Not every subtree of the most
permissive behavior is itself a behavior of a strategy. Thus, the remaining
problem is to distinguish those subtrees of the most permissive behavior
which are behaviors of strategies from those subtrees which are no be-

10

haviors of strategies. Our solution to this task is again based on a result
proven in [13, 11]:

Given a provided oWFN P and a behavior BR of some requester’s service
R, we can decide for each node qR of BR whether or not it can cause
a deadlock in R ⊕ P . This is basically determined by the edges that
leave qR: Whether or not R is a strategy for P depends on present or
missing edges in BR. Thus, we code the constraints for edges leaving qR

as a boolean formula over edge labels and annotate it to qR. BR satisfies
these constraints if and only if R is a strategy.

Since the most permissive behavior B∗ is a behavior of some strategy, we
can annotate B∗, too. A subtree of B∗ is thus a behavior of a strategy
if and only if it still satisfies the attached annotations. The annotations
to the nodes of B∗ constitute the second ingredient and complete the
operating guideline for P . This answers question (2) stated above.

As an example, the operating guideline OGV for the vending machine V
(of Fig. 3) is depicted in Fig. 9. The possibility to first press a button and
then inserting a coin comes from the proposed asynchronous communi-
cation. The annotations to nodes which have only one outgoing edge are
skipped.

1

3

5

9

8

12

� �

!C

?B?B

!T

!T
� �

� �

!C

2 4

7

11

?B

6

10

?B

� ������� 	
����� �

!T OR !C

OGV

Figure 9. The operating guideline OGV for the vending machine V .

The rest of this Section is devoted to questions (3) and (4). We sketch
the algorithms to construct the most permissive behavior and to anno-
tate the nodes and argue why operating guidelines cover all behaviors of
strategies.

The most permissive behavior for an oWFN P can be constructed as
follows. Consider, as a starting point, the complete, deterministic behav-
ior BC of some partner oWFN R where for every node and every input
(output) place x of P , there is an outgoing edge labeled !x (?x). We can
limit the depth of BC by the depth of the behavior BP of P . Obviously,
every behavior BR of a strategy for P is a subtree of BC .

Next, we compute a transition system from the composition of BC with
BP . A state of the composed system consists of a state q of BC , a state
p of BP , and a multiset (bag) M of pending messages.

11

Then, we remove, in an iterative process, those nodes q from BC for
which there is a bad node [q, p, M] in the composed system, i.e. a node
which represents an undesired situation like a deadlock that is no final
marking, or unconsumable pending messages. For the removed states, we
can show that they cannot be part of the behavior of any strategy for P .
Thus, every behavior of strategies remains a subtree of BC obtained after
each iteration. Finally, we can show that as soon as the iterative process
of removing states terminates, the remaining behavior (if any) is in fact
the behavior of a strategy - and even the most permissive behavior B∗.
This problem is, in fact, a problem known in the literature as controller
synthesis [3, 10].
To annotate the nodes of B∗, consider again the transition system com-
posed from B∗ and BP . In that tree there is no bad node (since it would
have been removed by the above algorithm). Removing further nodes
(with adjacent edges) in B∗ results in removing multiple nodes (and
edges) in the composed system. This may cause deadlocks or pending
messages are not consumed anymore. Hence, other nodes in the com-
posed system may become bad nodes. If this happens, the considered
node must not be removed. This can easily be expressed by a boolean
formula over the labels of outgoing edges. These formulae are attached to
each node in B∗ and express exactly, which subtrees of B∗ are strategies
itself. This completes the answers to the questions (3) and (4).
To summarize, the operating guideline for an oWFN P can be con-
structed automatically and only by knowing P . As we assume the con-
struction is done by the owner of P , this is acceptable. Furthermore,
the annotations just reflect needed actions of the environment such that
the composed system does not deadlock. The annotations do not reflect
why a deadlock can be reached, nor how the deadlock looks like. When
published, operating guidelines therefore hide most details about the in-
ternal control structure of the provided service, that the service provider
might want to keep secret.
The presented algorithm to construct the most permissive behavior is
just a theoretic algorithm that comes from a constructive proof of the
existence of B∗ in the set BP . Its starting point, the complete, determin-
istic behavior BC may become rather large for realistic services. Even
larger is the composed system of BC and BP , needed to characterize the
nodes of BC .
In current research, we develop efficient representations of operating
guidelines as binary decision diagrams (BDDs) [2], as well as the con-
struction of operating guidelines directly as a BDD. BDDs are a data
structure that proved to be capable of representing large transition sys-
tems in the area of model checking. Preliminary results in the application
of BDDs representing operating guidelines are promising.

6 Find

Matching a requester’s service with an operating guideline OGP is rather
simple. Given an oWFN R of the requester, we first compute its behavior,
BR. This is simple and well-understood state space generation. Then, we

12

need to check whether BR (a) is isomorphic to a subtree of OGP and (b)
satisfies the annotations. Thereby, a literal ?x (!x) at some node of OGP

is evaluated to true if there is an outgoing edge from the corresponding
node in BR labeled ?x (!x) and evaluated to false, otherwise.
It is easy to see that BC and BD match OGV , whereas the behavior BE

of the erroneous partner oWFN E would not match OGV .
Checking the subtree property can be solved by a coordinated depth-first
search through both behaviors. Its run-time is linear in the size of R’s
behavior. Checking the annotations amounts to computing a value of a
boolean formula and can thus be implemented efficiently. Thus, the find
procedure based on operating guidelines turns out to be very efficient.
In contrast, a find based on public views is a more complex operation.
Given a requesting service R and a public view P ′ of a provided service P ,
a service broker must decide whether R is a strategy for P . Currently, the
only available approach to this problem is to build the system composed
of P ′ and R and to check its state space for deadlocks and end states
with unconsumed messages. The size of the state space is typically in the
same order of magnitude as the number of states of P ′ times the number
of states of R. Checking the state space for deadlocks is linear in that
number and thus more complex than matching R with OGP .
The reader might argue that a more complex find may be compensated
by the fact that public view generation is less complex than generating
operating guidelines. We cannot verify statements about the complexity
of public view generation, since we do not know any convincing solu-
tion to public view generation. The only formal approach known to us is
[8] where a few sound abstraction rules for services are proposed which
preserve strategies. It is, however, unclear whether the generated pub-
lic views satisfy the requirement of being sufficiently distinct from the
original service to keep the service itself secret. Besides these doubts, an
efficient find is still more important than an efficient publish. The publish
operation is performed once by a provided service. Find instead, that
is, matching a requesting service against a public view or an operating
guideline, is performed many times. This is due to the fact that one and
the same requesting service must be checked against many provided ser-
vices before a matching service can be found. We thus believe that the
operating guidelines approach is more suitable to the SOA than the pub-
lic view approach. For a more detailed discussion on public views and
operating guidelines see [9].

7 Conclusion

We propose oWFN as a formal model for services that use workflows as
their internal control structure. We showed that it is possible to auto-
matically compute, for an oWFN P , an operating guideline OGP which
characterizes the set of all (deterministic) behaviors of strategies for P .
We propose to use OGP as information published in service repositories.
This way, it is easy for the service broker to assign well-behaving pairs
of provider’s and requester’s services: the requester’s service must match
the operating guideline published for the provided service. Generating an

13

operating guideline may be complex, but we expect that this complexity
can be managed through the use of advanced technology developed in
the area of model checking. In turn, matching a service with an operat-
ing guideline is considerably simpler than checking compliance between
a requester’s service and a public view of a provided service.
We see several directions for future research. First, we need to extend
the approach to services containing cycles. We have a number of pre-
liminary results on this matter. Second, we study specialized operating
guidelines, characterizing, e.g., the set of all those strategies of the con-
sidered vending machine that inevitable lead to the delivery of coffee.
Third, we investigate further important aspects which are relevant for
selecting a service such as real-time constraints or cost models. We want
to extend the concept of operating guidelines to those aspects.
We are convinced that our approach is well suited to implement the ser-
vice discovery outlined in the SOA triangle. Our concept is quite close to
those guidelines that are attached to real vending machines. The concept
of operating guidelines has thus been already successful in every-day life
for a long time.

References

1. W. M. P. van der Aalst. The application of petri nets to workflow
management. Journal of Circuits, Systems and Computers, 8(1):21–
66, 1998.

2. Randal E. Bryant. Graph-based algorithms for Boolean function
manipulation. IEEE Transactions on Computers, C-35(8):677–691,
August 1986.

3. C.G. Cassandras and S. Lafortune. Introduction to Discrete Event
Systems. Kluwer Academic Publishers, 1999.

4. Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva
Weeravarana. Web Service Discription Language (WSDL) 1.1. Tech-
nical report, Ariba, International Business Machines Corporation,
Microsoft, March 2001.

5. F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller,
and S. Weerawarana. Business Process Execution Lan-
guage for Web Services, Version 1.1. Specification, BEA
Systems, IBM, Microsoft, SAP, Siebel, 05 May 2003.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnbiz2k2/html/bpel1-1.asp.

6. Karl Gottschalk. Web Services Architecture Overview.
Ibm whitepaper, IBM developerWorks, 01 September 2000.
http://ibm.com/developerWorks/web/library/w-ovr/.

7. F. Leymann, D. Roller, and M. Schmidt. Web services and business
process management. IBM Systems Journal, 41(2), 2002.

8. A. Martens. Verteilte Geschäftsprozesse - Modellierung und Verifika-
tion mit Hilfe von Web Services. PhD thesis, Institut fr Informatik,
Humboldt-Universität zu Berlin, 2004.

9. P. Massuthe and K. Schmidt. Operating guidelines - an alternative
to public view. Techn. Report 189, Humboldt-Universität zu Berlin,
2005.

14

10. P.J. Ramadge and W.M. Wonham. Supervisory control of a class
of discrete event processes. SIAM J. Control and Optimization,
25(1):206–230, 1987.

11. W. Reisig, K. Schmidt, and Ch. Stahl. Kommunizierende Geschäft-
sprozesse modellieren und analysieren. Accepted for Informatik –
Forschung und Entwicklung, 2005.

12. Wolfgang Reisig. Modeling- and analysis techniques for web services
and business processes. In FMOODS, volume 3535 of Lecture Notes
in Computer Science, pages 243–258, 2005.

13. K. Schmidt. Controllability of business processes. Techn. Report
180, Humboldt-Universität zu Berlin, 2004.

15

