Akil, M. and Lewis, D. A. (1997): Cytoarchitecture of the entorhinal cortex in schizophrenia, Am.J.Psychiatry 154 [7], pp. 1010-1012. URL:


An, W. F.; Bowlby, M. R.; Betty, M.; Cao, J.; Ling, H. P.; Mendoza, G.; Hinson, J. W.; Mattsson, K. I.; Strassle, B. W.; Trimmer, J. S. and Rhodes, K. J. (2000): Modulation of A-type potassium channels by a family of calcium sensors, Nature 403 [6769], pp. 553-556. URL:

Anderson, K. M.; Roshak, A.; Winkler, J. D.; McCord, M. and Marshall, L. A. (1997): Cytosolic 85-kDa phospholipase A2-mediated release of arachidonic acid is critical for proliferation of vascular smooth muscle cells, J.Biol.Chem. 272 [48], pp. 30504-30511. URL:

Angelova, P. and Muller, W. (2006): Oxidative modulation of the transient potassium current IA by intracellular arachidonic acid in rat CA1 pyramidal neurons, Eur.J.Neurosci. 23 [9], pp. 2375-2384. URL:


Arnold, S. E.; Franz, B. R.; Gur, R. C.; Gur, R. E.; Shapiro, R. M.; Moberg, P. J. and Trojanowski, J. Q. (1995): Smaller neuron size in schizophrenia in hippocampal subfields that mediate cortical-hippocampal interactions, Am.J.Psychiatry 152 [5], pp. 738-748. URL:

Auerbach, J. M. and Segal, M. (1997): Peroxide modulation of slow onset potentiation in rat hippocampus, J.Neurosci. 17 [22], pp. 8695-8701. URL:

Baas, A. S. and Berk, B. C. (1995): Differential activation of mitogen-activated protein kinases by H2O2 and O2- in vascular smooth muscle cells, Circ.Res. 77 [1], pp. 29-36. URL:


Bahring, R.; Boland, L. M.; Varghese, A.; Gebauer, M. and Pongs, O. (2001): Kinetic analysis of open- and closed-state inactivation transitions in human Kv4.2 A-type potassium channels, J.Physiol 535 [Pt 1], pp. 65-81. URL:

Bast, A.; Wolf, G.; Oberbaumer, I. and Walther, R. (2002): Oxidative and nitrosative stress induces peroxiredoxins in pancreatic beta cells, Diabetologia 45 [6], pp. 867-876. URL:

Baxter, D. A. and Byrne, J. H. (1991): Ionic conductance mechanisms contributing to the electrophysiological properties of neurons, Curr.Opin.Neurobiol. 1 [1], pp. 105-112. URL:


Beck, E. J.; Bowlby, M.; An, W. F.; Rhodes, K. J. and Covarrubias, M. (2002): Remodelling inactivation gating of Kv4 channels by KChIP1, a small-molecular-weight calcium-binding protein, J.Physiol 538 [Pt 3], pp. 691-706. URL:

Bevan, S. and Wood, J. N. (1987): Arachidonic-acid metabolites as second messengers, Nature 328 [6125], pp. 20. URL:

Bingmann, D. and Kolde, G. (1982): PO2-profiles in hippocampal slices of the guinea pig, Exp.Brain Res. 48 [1], pp. 89-96. URL:


Bittner, K. and Muller, W. (1999): Oxidative downmodulation of the transient K-current IA by intracellular arachidonic acid in rat hippocampal neurons, J.Neurophysiol. 82 [1], pp. 508-511. URL:

Blaine, J. T. and Ribera, A. B. (2001): Kv2 channels form delayed-rectifier potassium channels in situ, J.Neurosci. 21 [5], pp. 1473-1480. URL:

Braak, H. and Braak, E. (1992): The human entorhinal cortex: normal morphology and lamina-specific pathology in various diseases, Neurosci.Res. 15 [1-2], pp. 6-31. URL:


Braak, H. and Braak, E. (1995): Staging of Alzheimer's disease-related neurofibrillary changes, Neurobiol.Aging 16 [3], pp. 271-278. URL:

Braak, H. and Braak, E. (1996): Evolution of the neuropathology of Alzheimer's disease, Acta Neurol.Scand.Suppl 165, pp. 3-12. URL:

Campomanes, C. R.; Carroll, K. I.; Manganas, L. N.; Hershberger, M. E.; Gong, B.; Antonucci, D. E.; Rhodes, K. J. and Trimmer, J. S. (2002): Kv beta subunit oxidoreductase activity and Kv1 potassium channel trafficking, J.Biol.Chem. 277 [10], pp. 8298-8305. URL:


Carmody, R. J.; McGowan, A. J. and Cotter, T. G. (1999): Reactive oxygen species as mediators of photoreceptor apoptosis in vitro, Exp.Cell Res. 248 [2], pp. 520-530. URL:

Chakraborti, S. and Michael, J. R. (1993): Role of protein kinase C in oxidant--mediated activation of phospholipase A2 in rabbit pulmonary arterial smooth muscle cells, Mol.Cell Biochem. 122 [1], pp. 9-15. URL:

Coetzee, W. A.; Amarillo, Y.; Chiu, J.; Chow, A.; Lau, D.; McCormack, T.; Moreno, H.; Nadal, M. S.; Ozaita, A.; Pountney, D.; Saganich, M.; Vega-Saenz, de Miera and Rudy, B. (1999): Molecular diversity of K+ channels, Ann.N.Y.Acad.Sci. 868, pp. 233-285. URL:


Colbert, C. M. and Pan, E. (1999): Arachidonic acid reciprocally alters the availability of transient and sustained dendritic K(+) channels in hippocampal CA1 pyramidal neurons, J.Neurosci. 19 [19], pp. 8163-8171. URL:

Connor, J. A. and Stevens, C. F. (1971): Voltage clamp studies of a transient outward membrane current in gastropod neural somata, J.Physiol 213 [1], pp. 21-30. URL:

Cooper, E. C.; Milroy, A.; Jan, Y. N.; Jan, L. Y. and Lowenstein, D. H. (1998): Presynaptic localization of Kv1.4-containing A-type potassium channels near excitatory synapses in the hippocampus, J.Neurosci. 18 [3], pp. 965-974. URL:


Covarrubias, M.; Wei, A. A. and Salkoff, L. (1991): Shaker, Shal, Shab, and Shaw express independent K+ current systems, Neuron 7 [5], pp. 763-773. URL:

Danthi, P.; Tosteson, M.; Li, Q. H. and Chow, M. (2003): Genome delivery and ion channel properties are altered in VP4 mutants of poliovirus, J.Virol. 77 [9], pp. 5266-5274. URL:

Davi, G.; Ciabattoni, G.; Consoli, A.; Mezzetti, A.; Falco, A.; Santarone, S.; Pennese, E.; Vitacolonna, E.; Bucciarelli, T.; Costantini, F.; Capani, F. and Patrono, C. (1999): In vivo formation of 8-iso-prostaglandin f2alpha and platelet activation in diabetes mellitus: effects of improved metabolic control and vitamin E supplementation, Circulation 99 [2], pp. 224-229. URL:


Dolorfo, C. L. and Amaral, D. G. (1998): Entorhinal cortex of the rat: organization of intrinsic connections, J.Comp Neurol. 398 [1], pp. 49-82. URL:

Du, F.; Eid, T.; Lothman, E. W.; Kohler, C. and Schwarcz, R. (1995): Preferential neuronal loss in layer III of the medial entorhinal cortex in rat models of temporal lobe epilepsy, J.Neurosci. 15 [10], pp. 6301-6313. URL:

Du, F.; Whetsell, W. O., Jr.; bou-Khalil, B.; Blumenkopf, B.; Lothman, E. W. and Schwarcz, R. (1993): Preferential neuronal loss in layer III of the entorhinal cortex in patients with temporal lobe epilepsy, Epilepsy Res. 16 [3], pp. 223-233. URL:


Duerson, K.; White, R. E.; Jiang, F.; Schonbrunn, A. and Armstrong, D. L. (1996): Somatostatin stimulates BKCa channels in rat pituitary tumor cells through lipoxygenase metabolites of arachidonic acid, Neuropharmacology 35 [7], pp. 949-961. URL:

Duprat, F.; Guillemare, E.; Romey, G.; Fink, M.; Lesage, F.; Lazdunski, M. and Honore, E. (1995): Susceptibility of cloned K+ channels to reactive oxygen species, Proc.Natl.Acad.Sci.U.S.A 92 [25], pp. 11796-11800. URL:

Eberhart, C. E. and Dubois, R. N. (1995): Eicosanoids and the gastrointestinal tract, Gastroenterology 109 [1], pp. 285-301. URL:


Eder, C.; Klee, R. and Heinemann, U. (1996): Modulation of A-currents by [K+]o in acutely isolated pyramidal neurones of juvenile rat entorhinal cortex and hippocampus, Neuroreport 7 [10], pp. 1565-1568. URL:

Freeman, E. J.; Damron, D. S.; Terrian, D. M. and Dorman, R. V. (1991): 12-Lipoxygenase products attenuate the glutamate release and Ca2+ accumulation evoked by depolarization of hippocampal mossy fiber nerve endings, J.Neurochem. 56 [3], pp. 1079-1082. URL:

Freeman, E. J.; Terrian, D. M. and Dorman, R. V. (1990): Presynaptic facilitation of glutamate release from isolated hippocampal mossy fiber nerve endings by arachidonic acid, Neurochem.Res. 15 [7], pp. 743-750. URL:


Frisoni, G. B.; Laakso, M. P.; Beltramello, A.; Geroldi, C.; Bianchetti, A.; Soininen, H. and Trabucchi, M. (1999): Hippocampal and entorhinal cortex atrophy in frontotemporal dementia and Alzheimer's disease, Neurology 52 [1], pp. 91-100. URL:

Garaschuk, O.; Linn, J.; Eilers, J. and Konnerth, A. (2000): Large-scale oscillatory calcium waves in the immature cortex, Nat.Neurosci. 3 [5], pp. 452-459. URL:

Giese, K. P.; Fedorov, N. B.; Filipkowski, R. K. and Silva, A. J. (1998): Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning, Science 279 [5352], pp. 870-873. URL:


Gomez-Isla, T.; Price, J. L.; McKeel, D. W., Jr.; Morris, J. C.; Growdon, J. H. and Hyman, B. T. (1996): Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease, J.Neurosci. 16 [14], pp. 4491-4500. URL:

Gong, M. C.; Kinter, M. T.; Somlyo, A. V. and Somlyo, A. P. (1995): Arachidonic acid and diacylglycerol release associated with inhibition of myosin light chain dephosphorylation in rabbit smooth muscle, J.Physiol 486 ( Pt 1), pp. 113-122. URL:

Gopalakrishna, R. and Anderson, W. B. (1989): Ca2+- and phospholipid-independent activation of protein kinase C by selective oxidative modification of the regulatory domain, Proc.Natl.Acad.Sci.U.S.A 86 [17], pp. 6758-6762. URL:


Graham, F. L. and van der Eb, A. J. (1973): A new technique for the assay of infectivity of human adenovirus 5 DNA, Virology 52 [2], pp. 456-467. URL:

Gulbis, J. M.; Mann, S. and MacKinnon, R. (1999): Structure of a voltage-dependent K+ channel beta subunit, Cell 97 [7], pp. 943-952. URL:

Hampson, A. J. and Grimaldi, M. (2002): 12-hydroxyeicosatetrenoate (12-HETE) attenuates AMPA receptor-mediated neurotoxicity: evidence for a G-protein-coupled HETE receptor, J.Neurosci. 22 [1], pp. 257-264. URL:


Hatano, N.; Ohya, S. and Imaizumi, Y. (2002): Functional interaction between KChIP1 and GFP-fused Kv4.3L co-expressed in HEK293 cells, Pflugers Arch. 444 [1-2], pp. 80-88. URL:

Heinemann, S. H.; Rettig, J.; Graack, H. R. and Pongs, O. (1996): Functional characterization of Kv channel beta-subunits from rat brain, J.Physiol 493 ( Pt 3), pp. 625-633. URL:

Heinemann, S. H.; Rettig, J.; Wunder, F. and Pongs, O. (1995): Molecular and functional characterization of a rat brain Kv beta 3 potassium channel subunit, FEBS Lett. 377 [3], pp. 383-389. URL:


Henneberger, C.; Juttner, R.; Schmidt, S. A.; Walter, J.; Meier, J. C.; Rothe, T. and Grantyn, R. (2005): GluR- and TrkB-mediated maturation of GABA receptor function during the period of eye opening, Eur.J.Neurosci. 21 [2], pp. 431-440. URL:

Hii, C. S.; Ferrante, A.; Edwards, Y. S.; Huang, Z. H.; Hartfield, P. J.; Rathjen, D. A.; Poulos, A. and Murray, A. W. (1995): Activation of mitogen-activated protein kinase by arachidonic acid in rat liver epithelial WB cells by a protein kinase C-dependent mechanism, J.Biol.Chem. 270 [9], pp. 4201-4204. URL:

Hille, B. (1992): G protein-coupled mechanisms and nervous signaling, Neuron 9 [2], pp. 187-195. URL:


Hoffman, D. A.; Magee, J. C.; Colbert, C. M. and Johnston, D. (1997): K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons, Nature 387 [6636], pp. 869-875. URL:

Holmqvist, M. H.; Cao, J.; Hernandez-Pineda, R.; Jacobson, M. D.; Carroll, K. I.; Sung, M. A.; Betty, M.; Ge, P.; Gilbride, K. J.; Brown, M. E.; Jurman, M. E.; Lawson, D.; Silos-Santiago, I.; Xie, Y.; Covarrubias, M.; Rhodes, K. J.; Distefano, P. S. and An, W. F. (2002): Elimination of fast inactivation in Kv4 A-type potassium channels by an auxiliary subunit domain, Proc.Natl.Acad.Sci.U.S.A 99 [2], pp. 1035-1040. URL:

Hoshi, T. and Heinemann, S. (2001): Regulation of cell function by methionine oxidation and reduction, J.Physiol 531 [Pt 1], pp. 1-11. URL:


Hoshi, T.; Zagotta, W. N. and Aldrich, R. W. (1990): Biophysical and molecular mechanisms of Shaker potassium channel inactivation, Science 250 [4980], pp. 533-538. URL:

Hoshi, T.; Zagotta, W. N. and Aldrich, R. W. (1991): Two types of inactivation in Shaker K+ channels: effects of alterations in the carboxy-terminal region, Neuron 7 [4], pp. 547-556. URL:

Hsueh, Y. P. and Sheng, M. (1998): Eph receptors, ephrins, and PDZs gather in neuronal synapses, Neuron 21 [6], pp. 1227-1229. URL:


Hwang, C.; Sinskey, A. J. and Lodish, H. F. (1992): Oxidized redox state of glutathione in the endoplasmic reticulum, Science 257 [5076], pp. 1496-1502. URL:

Isacoff, E. Y.; Jan, Y. N. and Jan, L. Y. (1991): Putative receptor for the cytoplasmic inactivation gate in the Shaker K+ channel, Nature 353 [6339], pp. 86-90. URL:

Isbrandt, D.; Leicher, T.; Waldschutz, R.; Zhu, X.; Luhmann, U.; Michel, U.; Sauter, K. and Pongs, O. (2000): Gene structures and expression profiles of three human KCND (Kv4) potassium channels mediating A-type currents I(TO) and I(SA), Genomics 64 [2], pp. 144-154. URL:


Jan, Y. N. and Jan, L. Y. (1990): Genes required for specifying cell fates in Drosophila embryonic sensory nervous system, Trends Neurosci. 13 [12], pp. 493-498. URL:

Jelsema, C. L. and Axelrod, J. (1987): Stimulation of phospholipase A2 activity in bovine rod outer segments by the beta gamma subunits of transducin and its inhibition by the alpha subunit, Proc.Natl.Acad.Sci.U.S.A 84 [11], pp. 3623-3627. URL:

Johnston, D.; Hoffman, D. A. and Poolos, N. P. (2000): Potassium channels and dendritic function in hippocampal pyramidal neurons, Epilepsia 41 [8], pp. 1072-1073. URL:


Kandel, E. R. and O'Dell, T. J. (1992): Are adult learning mechanisms also used for development?, Science 258 [5080], pp. 243-245. URL:

Keros, S. and McBain, C. J. (1997): Arachidonic acid inhibits transient potassium currents and broadens action potentials during electrographic seizures in hippocampal pyramidal and inhibitory interneurons, J.Neurosci. 17 [10], pp. 3476-3487. URL:

Keyser, D. O. and Alger, B. E. (1990): Arachidonic acid modulates hippocampal calcium current via protein kinase C and oxygen radicals, Neuron 5 [4], pp. 545-553. URL:


Kim, D. and Clapham, D. E. (1989): Potassium channels in cardiac cells activated by arachidonic acid and phospholipids, Science 244 [4909], pp. 1174-1176. URL:

Kim, D. and Duff, R. A. (1990): Regulation of K+ channels in cardiac myocytes by free fatty acids, Circ.Res. 67 [4], pp. 1040-1046. URL:

Klee, R.; Ficker, E. and Heinemann, U. (1995): Comparison of voltage-dependent potassium currents in rat pyramidal neurons acutely isolated from hippocampal regions CA1 and CA3, J.Neurophysiol. 74 [5], pp. 1982-1995. URL:


Kourie, J. I. (1998): Interaction of reactive oxygen species with ion transport mechanisms, Am.J.Physiol 275 [1 Pt 1], pp. C1-24. URL:

Krimer, L. S.; Herman, M. M.; Saunders, R. C.; Boyd, J. C.; Hyde, T. M.; Carter, J. M.; Kleinman, J. E. and Weinberger, D. R. (1997): A qualitative and quantitative analysis of the entorhinal cortex in schizophrenia, Cereb.Cortex 7 [8], pp. 732-739. URL:

Kuo, H. C.; Cheng, C. F.; Clark, R. B.; Lin, J. J.; Lin, J. L.; Hoshijima, M.; Nguyen-Tran, V. T.; Gu, Y.; Ikeda, Y.; Chu, P. H.; Ross, J.; Giles, W. R. and Chien, K. R. (2001): A defect in the Kv channel-interacting protein 2 (KChIP2) gene leads to a complete loss of I(to) and confers susceptibility to ventricular tachycardia, Cell 107 [6], pp. 801-813. URL:


Leslie, C. C. (1997): Properties and regulation of cytosolic phospholipase A2, J.Biol.Chem. 272 [27], pp. 16709-16712. URL:

Leslie, C. C. (2004): Regulation of the specific release of arachidonic acid by cytosolic phospholipase A2, Prostaglandins Leukot.Essent.Fatty Acids 70 [4], pp. 373-376. URL:

Lin, L. L.; Lin, A. Y. and Knopf, J. L. (1992): Cytosolic phospholipase A2 is coupled to hormonally regulated release of arachidonic acid, Proc.Natl.Acad.Sci.U.S.A 89 [13], pp. 6147-6151. URL:


Liss, B. and Roeper, J. (2001): Molecular physiology of neuronal K-ATP channels (review), Mol.Membr.Biol. 18 [2], pp. 117-127. URL:

Liu, Y. and Gutterman, D. D. (2002): The coronary circulation in diabetes: influence of reactive oxygen species on K+ channel-mediated vasodilation, Vascul.Pharmacol. 38 [1], pp. 43-49. URL:

Loo, R. W.; Conde-Frieboes, K.; Reynolds, L. J. and Dennis, E. A. (1997): Activation, inhibition, and regiospecificity of the lysophospholipase activity of the 85-kDa group IV cytosolic phospholipase A2, J.Biol.Chem. 272 [31], pp. 19214-19219. URL:


Machlin, L. J. and Bendich, A. (1987): Free radical tissue damage: protective role of antioxidant nutrients, FASEB J. 1 [6], pp. 441-445. URL:

MACLEAN, P. D. (1952): Some psychiatric implications of physiological studies on frontotemporal portion of limbic system (visceral brain), Electroencephalogr.Clin.Neurophysiol.Suppl 4 [4], pp. 407-418. URL:

Maletic-Savatic, M.; Lenn, N. J. and Trimmer, J. S. (1995): Differential spatiotemporal expression of K+ channel polypeptides in rat hippocampal neurons developing in situ and in vitro, J.Neurosci. 15 [5 Pt 2], pp. 3840-3851. URL:


Mathern, G. W.; Babb, T. L.; Micevych, P. E.; Blanco, C. E. and Pretorius, J. K. (1997): Granule cell mRNA levels for BDNF, NGF, and NT-3 correlate with neuron losses or supragranular mossy fiber sprouting in the chronically damaged and epileptic human hippocampus, Mol.Chem.Neuropathol. 30 [1-2], pp. 53-76. URL:

McCormack, K.; McCormack, T.; Tanouye, M.; Rudy, B. and Stuhmer, W. (1995): Alternative splicing of the human Shaker K+ channel beta 1 gene and functional expression of the beta 2 gene product, FEBS Lett. 370 [1-2], pp. 32-36. URL:

McCormack, T. and McCormack, K. (1994): Shaker K+ channel beta subunits belong to an NAD(P)H-dependent oxidoreductase superfamily, Cell 79 [7], pp. 1133-1135. URL:


Meves, H. (1994): Modulation of ion channels by arachidonic acid, Prog.Neurobiol. 43 [2], pp. 175-186. URL:

Muller, W. and Bittner, K. (2002): Differential oxidative modulation of voltage-dependent K+ currents in rat hippocampal neurons, J.Neurophysiol. 87 [6], pp. 2990-2995. URL:

Muller, W. and Bittner, K. (2002): Differential oxidative modulation of voltage-dependent K+ currents in rat hippocampal neurons, J.Neurophysiol. 87 [6], pp. 2990-2995. URL:


Muller, W. and Misgeld, U. (1990): Inhibitory role of dentate hilus neurons in guinea pig hippocampal slice, J.Neurophysiol. 64 [1], pp. 46-56. URL:

Muller, W. and Misgeld, U. (1991): Picrotoxin- and 4-aminopyridine-induced activity in hilar neurons in the guinea pig hippocampal slice, J.Neurophysiol. 65 [1], pp. 141-147. URL:


Nadal, M. S.; Ozaita, A.; Amarillo, Y.; Vega-Saenz, de Miera; Ma, Y.; Mo, W.; Goldberg, E. M.; Misumi, Y.; Ikehara, Y.; Neubert, T. A. and Rudy, B. (2003): The CD26-related dipeptidyl aminopeptidase-like protein DPPX is a critical component of neuronal A-type K+ channels, Neuron 37 [3], pp. 449-461. URL:

Nakamura, T. Y.; Nandi, S.; Pountney, D. J.; Artman, M.; Rudy, B. and Coetzee, W. A. (2001): Different effects of the Ca(2+)-binding protein, KChIP1, on two Kv4 subfamily members, Kv4.1 and Kv4.2, FEBS Lett. 499 [3], pp. 205-209. URL:

Nishiyama, M.; Okamoto, H.; Watanabe, T.; Hori, T.; Hada, T.; Ueda, N.; Yamamoto, S.; Tsukamoto, H.; Watanabe, K. and Kirino, T. (1992): Localization of arachidonate 12-lipoxygenase in canine brain tissues, J.Neurochem. 58 [4], pp. 1395-1400. URL:


Nishiyama, M.; Watanabe, T.; Ueda, N.; Tsukamoto, H. and Watanabe, K. (1993): Arachidonate 12-lipoxygenase is localized in neurons, glial cells, and endothelial cells of the canine brain, J.Histochem.Cytochem. 41 [1], pp. 111-117. URL:

O'Keefe, J. and Conway, D. H. (1978): Hippocampal place units in the freely moving rat: why they fire where they fire, Exp.Brain Res. 31 [4], pp. 573-590. URL:

Opitz, T.; De Lima, A. D. and Voigt, T. (2002): Spontaneous development of synchronous oscillatory activity during maturation of cortical networks in vitro, J.Neurophysiol. 88 [5], pp. 2196-2206. URL:


Ordway, R. W.; Singer, J. J. and Walsh, J. V., Jr. (1991): Direct regulation of ion channels by fatty acids, Trends Neurosci. 14 [3], pp. 96-100. URL:

Pak, M. D.; Baker, K.; Covarrubias, M.; Butler, A.; Ratcliffe, A. and Salkoff, L. (1991): mShal, a subfamily of A-type K+ channel cloned from mammalian brain, Proc.Natl.Acad.Sci.U.S.A 88 [10], pp. 4386-4390. URL:

Pardo, L. A.; Heinemann, S. H.; Terlau, H.; Ludewig, U.; Lorra, C.; Pongs, O. and Stuhmer, W. (1992): Extracellular K+ specifically modulates a rat brain K+ channel, Proc.Natl.Acad.Sci.U.S.A 89 [6], pp. 2466-2470. URL:


Petersen, K. R. and Nerbonne, J. M. (1999): Expression environment determines K+ current properties: Kv1 and Kv4 alpha-subunit-induced K+ currents in mammalian cell lines and cardiac myocytes, Pflugers Arch. 437 [3], pp. 381-392. URL:

Petroni, A.; Blasevich, M.; Salami, M.; Papini, N.; Montedoro, G. F. and Galli, C. (1995): Inhibition of platelet aggregation and eicosanoid production by phenolic components of olive oil, Thromb.Res. 78 [2], pp. 151-160. URL:

Piomelli, D. (1993): Arachidonic acid in cell signaling, Curr.Opin.Cell Biol. 5 [2], pp. 274-280. URL:


Piomelli, D.; Shapiro, E.; Feinmark, S. J. and Schwartz, J. H. (1987): Metabolites of arachidonic acid in the nervous system of Aplysia: possible mediators of synaptic modulation, J.Neurosci. 7 [11], pp. 3675-3686. URL:

Po, S.; Roberds, S.; Snyders, D. J.; Tamkun, M. M. and Bennett, P. B. (1993): Heteromultimeric assembly of human potassium channels. Molecular basis of a transient outward current?, Circ.Res. 72 [6], pp. 1326-1336. URL:

Pomposiello, S.; Rhaleb, N. E.; Alva, M. and Carretero, O. A. (1999): Reactive oxygen species: role in the relaxation induced by bradykinin or arachidonic acid via EDHF in isolated porcine coronary arteries, J.Cardiovasc.Pharmacol. 34 [4], pp. 567-574. URL:


Pomposiello, S. I.; Carroll, M. A.; Falck, J. R. and McGiff, J. C. (2001): Epoxyeicosatrienoic acid-mediated renal vasodilation to arachidonic acid is enhanced in SHR, Hypertension 37 [3], pp. 887-893. URL:

Pongs, O. (1992): Molecular biology of voltage-dependent potassium channels, Physiol Rev. 72 [4 Suppl], pp. S69-S88. URL:

Pongs, O. (1999): Voltage-gated potassium channels: from hyperexcitability to excitement, FEBS Lett. 452 [1-2], pp. 31-35. URL:


Pouzet, B.; Welzl, H.; Gubler, M. K.; Broersen, L.; Veenman, C. L.; Feldon, J.; Rawlins, J. N. and Yee, B. K. (1999): The effects of NMDA-induced retrohippocampal lesions on performance of four spatial memory tasks known to be sensitive to hippocampal damage in the rat, Eur.J.Neurosci. 11 [1], pp. 123-140. URL:

Pusch, M. and Neher, E. (1988): Rates of diffusional exchange between small cells and a measuring patch pipette, Pflugers Arch. 411 [2], pp. 204-211. URL:

Rettig, J.; Heinemann, S. H.; Wunder, F.; Lorra, C.; Parcej, D. N.; Dolly, J. O. and Pongs, O. (1994): Inactivation properties of voltage-gated K+ channels altered by presence of beta-subunit, Nature 369 [6478], pp. 289-294. URL:


Roshak, A.; Sathe, G. and Marshall, L. A. (1994): Suppression of monocyte 85-kDa phospholipase A2 by antisense and effects on endotoxin-induced prostaglandin biosynthesis, J.Biol.Chem. 269 [42], pp. 25999-26005. URL:

Rozanski, G. J. and Xu, Z. (2002): Glutathione and K(+) channel remodeling in postinfarction rat heart, Am.J.Physiol Heart Circ.Physiol 282 [6], pp. H2346-H2355. URL:

Rudy, B. (1988): Diversity and ubiquity of K channels, Neuroscience 25 [3], pp. 729-749. URL:


Rudy, B.; Chow, A.; Lau, D.; Amarillo, Y.; Ozaita, A.; Saganich, M.; Moreno, H.; Nadal, M. S.; Hernandez-Pineda, R.; Hernandez-Cruz, A.; Erisir, A.; Leonard, C. and Vega-Saenz de, Miera E. (1999): Contributions of Kv3 channels to neuronal excitability, Ann.N.Y.Acad.Sci. 868, pp. 304-343. URL:

Ruppersberg, J. P.; Stocker, M.; Pongs, O.; Heinemann, S. H.; Frank, R. and Koenen, M. (1991): Regulation of fast inactivation of cloned mammalian IK(A) channels by cysteine oxidation, Nature 352 [6337], pp. 711-714. URL:

Ruth, R. E.; Collier, T. J. and Routtenberg, A. (1988): Topographical relationship between the entorhinal cortex and the septotemporal axis of the dentate gyrus in rats: II. Cells projecting from lateral entorhinal subdivisions, J.Comp Neurol. 270 [4], pp. 506-516. URL:


Ruth, R. E.; Collier, T. J. and Routtenberg, A. (1982): Topography between the entorhinal cortex and the dentate septotemporal axis in rats: I. Medial and intermediate entorhinal projecting cells, J.Comp Neurol. 209 [1], pp. 69-78. URL:

Salkoff, L.; Baker, K.; Butler, A.; Covarrubias, M.; Pak, M. D. and Wei, A. (1992): An essential 'set' of K+ channels conserved in flies, mice and humans, Trends Neurosci. 15 [5], pp. 161-166. URL:

Samad, T. A.; Moore, K. A.; Sapirstein, A.; Billet, S.; Allchorne, A.; Poole, S.; Bonventre, J. V. and Woolf, C. J. (2001): Interleukin-1beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity, Nature 410 [6827], pp. 471-475. URL:


Schafer, F. Q. and Buettner, G. R. (2001): Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple, Free Radic.Biol.Med. 30 [11], pp. 1191-1212. URL:

Schoppa, N. E. and Westbrook, G. L. (1999): Regulation of synaptic timing in the olfactory bulb by an A-type potassium current, Nat.Neurosci. 2 [12], pp. 1106-1113. URL:

Schweitzer, P.; Madamba, S. and Siggins, G. R. (1990): Arachidonic acid metabolites as mediators of somatostatin-induced increase of neuronal M-current, Nature 346 [6283], pp. 464-467. URL:


Serodio, P.; Kentros, C. and Rudy, B. (1994): Identification of molecular components of A-type channels activating at subthreshold potentials, J.Neurophysiol. 72 [4], pp. 1516-1529. URL:

Serodio, P.; Vega-Saenz, de Miera and Rudy, B. (1996): Cloning of a novel component of A-type K+ channels operating at subthreshold potentials with unique expression in heart and brain, J.Neurophysiol. 75 [5], pp. 2174-2179. URL:

Sheng, M.; Liao, Y. J.; Jan, Y. N. and Jan, L. Y. (1993): Presynaptic A-current based on heteromultimeric K+ channels detected in vivo, Nature 365 [6441], pp. 72-75. URL:


Sheng, M.; Tsaur, M. L.; Jan, Y. N. and Jan, L. Y. (1992): Subcellular segregation of two A-type K+ channel proteins in rat central neurons, Neuron 9 [2], pp. 271-284. URL:

Shi, G.; Nakahira, K.; Hammond, S.; Rhodes, K. J.; Schechter, L. E. and Trimmer, J. S. (1996): Beta subunits promote K+ channel surface expression through effects early in biosynthesis, Neuron 16 [4], pp. 843-852. URL:

Sobey, C. G.; Heistad, D. D. and Faraci, F. M. (1997): Mechanisms of bradykinin-induced cerebral vasodilatation in rats. Evidence that reactive oxygen species activate K+ channels, Stroke 28 [11], pp. 2290-2294. URL:


Soto, M. A.; Gonzalez, C.; Lissi, E.; Vergara, C. and Latorre, R. (2002): Ca(2+)-activated K+ channel inhibition by reactive oxygen species, Am.J.Physiol Cell Physiol 282 [3], pp. C461-C471. URL:

Spencer, S. S. and Spencer, D. D. (1994): Entorhinal-hippocampal interactions in medial temporal lobe epilepsy, Epilepsia 35 [4], pp. 721-727. URL:

Squire, L. R. (1992): Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans, Psychol.Rev. 99 [2], pp. 195-231. URL:


Steward, O. and Scoville, S. A. (1976): Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat, J.Comp Neurol. 169 [3], pp. 347-370. URL:

Stuhmer, W.; Ruppersberg, J. P.; Schroter, K. H.; Sakmann, B.; Stocker, M.; Giese, K. P.; Perschke, A.; Baumann, A. and Pongs, O. (1989): Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain, EMBO J. 8 [11], pp. 3235-3244. URL:

Taglialatela, M.; Castaldo, P.; Iossa, S.; Pannaccione, A.; Fresi, A.; Ficker, E. and Annunziato, L. (1997): Regulation of the human ether-a-gogo related gene (HERG) K+ channels by reactive oxygen species, Proc.Natl.Acad.Sci.U.S.A 94 [21], pp. 11698-11703. URL:


Trevisi, L.; Bova, S.; Cargnelli, G.; Ceolotto, G. and Luciani, S. (2002): Endothelin-1-induced arachidonic acid release by cytosolic phospholipase A2 activation in rat vascular smooth muscle via extracellular signal-regulated kinases pathway, Biochem.Pharmacol. 64 [3], pp. 425-431. URL:

Valiyaveetil, F. I.; Zhou, Y. and MacKinnon, R. (2002): Lipids in the structure, folding, and function of the KcsA K+ channel, Biochemistry 41 [35], pp. 10771-10777. URL:

Vane, J. R. (1976): Prostaglandins as mediators of inflammation, Adv.Prostaglandin Thromboxane Res. 2, pp. 791-801. URL:


Vega-Saenz de, Miera E. and Rudy, B. (1992): Modulation of K+ channels by hydrogen peroxide, Biochem.Biophys.Res.Commun. 186 [3], pp. 1681-1687. URL:

Villarroel, A. and Schwarz, T. L. (1996): Inhibition of the Kv4 (Shal) family of transient K+ currents by arachidonic acid, J.Neurosci. 16 [8], pp. 2522-2532. URL:

Wang, F. C.; Parcej, D. N. and Dolly, J. O. (1999): alpha subunit compositions of Kv1.1-containing K+ channel subtypes fractionated from rat brain using dendrotoxins, Eur.J.Biochem. 263 [1], pp. 230-237. URL:


Watanabe, S.; Hoffman, D. A.; Migliore, M. and Johnston, D. (2002): Dendritic K+ channels contribute to spike-timing dependent long-term potentiation in hippocampal pyramidal neurons, Proc.Natl.Acad.Sci.U.S.A 99 [12], pp. 8366-8371. URL:

Wei, A.; Covarrubias, M.; Butler, A.; Baker, K.; Pak, M. and Salkoff, L. (1990): K+ current diversity is produced by an extended gene family conserved in Drosophila and mouse, Science 248 [4955], pp. 599-603. URL:

Weiss, J. L. and Burgoyne, R. D. (2001): Voltage-independent inhibition of P/Q-type Ca2+ channels in adrenal chromaffin cells via a neuronal Ca2+ sensor-1-dependent pathway involves Src family tyrosine kinase, J.Biol.Chem. 276 [48], pp. 44804-44811. URL:


Williams, J. H.; Errington, M. L.; Lynch, M. A. and Bliss, T. V. (1989): Arachidonic acid induces a long-term activity-dependent enhancement of synaptic transmission in the hippocampus, Nature 341 [6244], pp. 739-742. URL:

Witter, M. P.; Groenewegen, H. J.; Lopes da Silva, F. H. and Lohman, A. H. (1989): Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region, Prog.Neurobiol. 33 [3], pp. 161-253. URL:

Witter, M. P.; Wouterlood, F. G.; Naber, P. A. and van, Haeften T. (2000): Anatomical organization of the parahippocampal-hippocampal network, Ann.N.Y.Acad.Sci. 911, pp. 1-24. URL:


Wong, W.; Newell, E. W.; Jugloff, D. G.; Jones, O. T. and Schlichter, L. C. (2002): Cell surface targeting and clustering interactions between heterologously expressed PSD-95 and the Shal voltage-gated potassium channel, Kv4.2, J.Biol.Chem. 277 [23], pp. 20423-20430. URL:

Yasuda, Y.; Yoshinaga, N.; Murayama, T. and Nomura, Y. (1999): Inhibition of hydrogen peroxide-induced apoptosis but not arachidonic acid release in GH3 cell by EGF, Brain Res. 850 [1-2], pp. 197-206. URL:

Yu, M.; onso-Galicia, M.; Sun, C. W.; Roman, R. J.; Ono, N.; Hirano, H.; Ishimoto, T.; Reddy, Y. K.; Katipally, K. R.; Reddy, K. M.; Gopal, V. R.; Yu, J.; Takhi, M. and Falck, J. R. (2003): 20-hydroxyeicosatetraenoic acid (20-HETE): structural determinants for renal vasoconstriction, Bioorg.Med.Chem. 11 [13], pp. 2803-2821. URL:


Yumoto, N.; Hatanaka, M.; Watanabe, Y. and Hayaishi, O. (1986): Involvement of GTP-regulatory protein in brain prostaglandin E2 receptor and separation of the two components, Biochem.Biophys.Res.Commun. 135 [1], pp. 282-289. URL:

Zagotta, W. N.; Hoshi, T. and Aldrich, R. W. (1990): Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB, Science 250 [4980], pp. 568-571. URL:

Zahradnik, H. P.; Schafer, W.; Neulen, J.; Wetzka, B.; Gaillard, T.; Tielsch, J. and Casper, F. (1992): The role of eicosanoids in reproduction, Eicosanoids 5 Suppl, pp. S56-S59. URL:


Zhang, L. and McBain, C. J. (1995): Voltage-gated potassium currents in stratum oriens-alveus inhibitory neurones of the rat CA1 hippocampus, J.Physiol 488 ( Pt 3), pp. 647-660. URL:

Zhu, X. R.; Wulf, A.; Schwarz, M.; Isbrandt, D. and Pongs, O. (1999): Characterization of human Kv4.2 mediating a rapidly-inactivating transient voltage-sensitive K+ current, Receptors.Channels 6 [5], pp. 387-400. URL:

Zola-Morgan, S. M. and Squire, L. R. (1990): The primate hippocampal formation: evidence for a time-limited role in memory storage, Science 250 [4978], pp. 288-290. URL:


Zona, C.; Palma, E.; Pellerin, L. and Avoli, M. (1993): Arachidonic acid augments potassium currents in rat neocortical neurones, Neuroreport 4 [4], pp. 359-362. URL:

© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 4.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am: