[Seite 104↓]


Alkhatib, G., Richardson, C. and Shen, S.H. (1990) Intracellular processing, glycosylation and cell-surface expression of the measles virus fusion protein (F) encoded by a recombinant adenovirus. Virology 175, 262-270

Almers, W. (1990) Exocytosis. Annu. Rev. Physiol. 52, 607-624

Armstrong, T.R., Kushnir, A.S. and White, J. (2000) The transmembrane domain of influenza hemagglutinin exhibits a stringent length requirement to support the hemifusion to fusion transition. J. Cell Biol. 151, 425-437

Aroeti, B. and Henis, Y.I. (1991) Accumulation of Sendai virus glycoproteins in cell-cell contact regions and its role in cell fusion. J. Biol. Chem. 266, 15845-15849

Asano, K. and Asano, A. (1985) Why is a specific amino acid sequence of F glycoprotein required for the membrane fusion reaction between envelope of HVJ (Sendai virus) and target cell membranes? Biochem. Int. 10, 115-122

Ashwell, G. and Harford, J. (1982) Carbohydrate-specific receptors of the liver. (Review) Annu. Rev. Biochem. 51, 531-554

Bagai, S., Puri, A., Blumenthal, R. and Sarkar, D.P. (1993) Hemagglutinin-Neuraminidase enhances F-Protein-mediated membrane fusion of reconstituted Sendai virus envelopes with cells. J. Virol. 67, 3312-3318

Bagai, S. and Lamb, R.A. (1996) Truncation of the COOH-terminal region of the paramyxovirus SV5 fusion protein leads to hemifusion but not complete fusion. J. Cell Biol. 135, 73-84

Bagai, S. and Lamb, R.A. (1997) A glycine to alanine substitution in the paramyxovirus SV5 fusion peptide increases the initial rate of fusion. Virology 238, 283-290

Baker, K.A., Dutch, R.E., Lamb, R.A. and Jardetzky, T.S. (1999) Structural basis for paramyxovirus-mediated membrane fusion. Mol. Cell 3, 309-319

[Seite 105↓]

Ben-Efraim, I., Kliger, Y., Hermesh, Ch. and Shai, Y. (1999) Membrane-induced step in the activation of Sendai virus fusion protein. J. Mol. Biol. 285, 609-625

Bethell, R.C., Norman, M.G. and Penn, C.R. (1995) The kinetics of the acid-induced conformational change of Influenza virus Hemagglutinin can be followed using 1,1‘-bis(4-anilino-5-naphatlensulphonic acid). Biochem. Biophys. Res. Commun. 206, 355-361

Bitzer, M., Lauer, U., Baumann, C., Spiegel, M., Gregor, M. and Neubert, W.J. (1997) Sendai virus efficiently infects cells via the asialoglycoprotein receptor and requires the presence of cleaved F-0 precursor proteins for this alternative route of cell entry. J. Virol. 71, 5481-5486

Bligh, E.G. and Dyer, W.J. (1959) A rapid method of total lipid extraction and purification.Can. J. Biochem. Physiol.37, 911-917

Blumenthal, R., Bali-Puri, A., Walter, A., Corell, W. and Eidelmann, O. (1987) pH-dependent fusion of Vesicular stomatitis virus with vero cells. J. Biol. Chem. 262, 13614-13619

Böttcher, C.J.F., van Gent, C.M. and Pries, C. (1961) A rapid and sensitive sub-micro phosphorus determination. Anal. Chim. Acta 24, 203-204

Böttcher, C., Ludwig, K., Herrmann, A., van Heel, M. and Stark, H. (1999) Structure of Influenza Hemagglutinin at neutral and at fusigenic pH by electron cryo-microscopy. FEBS Lett. 463, 255-259

Bousse, T., Takimoto, T., Gorman, W.L., Takahashi, T. and Portner, A. (1994) Regions on the Hemagglutinin-Neuraminidase proteins of Human parainfluenza virus type-1 and Sendai virus important for membrane fusion. Virology 204, 506-514

Bousse, T., Takimoto, T. and Portner, A. (1995) A single amino acid changes enhances the fusion promotion activity of human parainfluenza virus type 1 hemagglutinin-neuraminidase glycoprotein. Virology 209, 654-657

Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254

Brand, C.M. and Skehel, J.J. (1972) Crystalline antigen from the Influenza virus envelope. Nat. New Biol. 238, 145-147

Bullough, P.A., Hughson, F.M., Skehel, J.J. and Wiley, D.C. (1994) Structure of Influenza Hemagglutinin at the pH of membrane fusion. Nature 371, 37-43

[Seite 106↓]

Calder, L.J., Gonzalez-Reyes, L., Garcia-Barreno, B., Wharton, S.A., Skehel, J.J., Wiley, D.C. and Melero, J.A. (2000) Electron microscopy of the human respiratory syncytial virus fusion protein and complexes that it forms with monoclonal antibodies. Virology 271, 122-131

Carr, C.M. and Kim, P.S. (1993) A spring-loaded mechanism for the conformational change of Influenza Hemagglutinin. Cell 73, 823-832

Carr, C.M., Chaudhry, C. and Kim, P.S. (1997) Influenza Hemagglutinin is spring-loaded by a metastable native conformation. Proc. Natl. Acad. Sci. U.S.A. 94, 14306-14313

Chan, D.C., Fass, D., Berger, J.M. and Kim, P.S. (1997) Core structure of gp41 from the HIV envelope glycoprotein. Cell 89, 263-273

Chen, J., Skehel, J.J. and Wiley, D.C. (1999) N- and C-terminal residues combine in the fusion-pH Influenza Hemagglutinin HA2 subunit to form an N cap that terminates the triple-strainded coied coil. Proc. Natl. Acad. Sci. U.S.A. 96, 8967-8972

Chen, L., Gorman, J.J., McKimm-Breschkin, J., Lawrence, L.J., Tulloch, P.A., Smith, B.J., Colman, P.M. and Lawrence, M,C. (2001) The structure of the fusion glycoprotein of Newcastle disease virus suggests a novel paradigm for the molecular mechanism of membrane fusion. Structure 9, 255-266

Chernomordik, L.V., Melikyan, G.B. and Chizmadzhev, Y.A. (1987) Biomembrane fusion: a new concept derived from model studies using two interacting planar lipid bilayers. (Review) Biochim. Biophys. Acta 906, 309-352

Chernomordik, L.V., Vogel, S.S., Sokoloff, A., Onaran, H.O., Leikina, E.A. and Zimmerberg, J. (1993) Lysolipids reversibly inhibit Ca-2+-dependent, GTP-dependent and pH-dependent fusion of biological membranes. FEBS Lett. 318, 71-76

Chernomordik, L.V., Kozlov, M.M. and Zimmerberg, J. (1995) Lipids in biological membrane fusion. J. Membr. Biol. 146 , 1-14

Chernomordik, L.V., Leikina, E., Frolov, V., Bronk, P. and Zimmerberg, J. (1997) An early stage of membrane fusion mediated by the low pH conformation of Influenza Hemagglutinin depends upon membrane lipids. J. Cell Biol. 136, 81-93

Chernomordik, L.V., Leikina, E.A., Kozlov, M.M., Frolov, V. and Zimmerberg, J. (1999) Structural intermediates in influenza haemagglutinin-mediated fusion. Mol. Membr. Biol. 16, 33-42

[Seite 107↓]

Connaris, H., Takimoto, T., Russell, R., Crennell, S., Moustafa, I., Portner, A. and Taylor, G. (2002) Probing the sialic acid binding site of the hemagglutinin-neuraminidase of Newcastle disease virus: identification of key amino acids involved in cell binding, catalysis, and fusion. J. Virol. 76, 1816-1824

Crennell, S., Takimoto, T., Portner, A. and Taylor, G. (2000) Crystal structure of the multifunctional paramyxovirus hemagglutinin-neuraminidase. Nat. Struct. Biol. 7, 1068-1074

Dallocchio, F., Tomasi, M. and Bellini, T. (1995) Activation of the Sendai virus fusion protein by receptor binding. Biochem. Biophys. Res. Commun. 208, 36-41

Daniels, R.S., Downie, J.C., Hay, A.J., Knossow, M., Skehel, J.J., Wang, M.L. and Wiley, D.C. (1985) Fusion mutants of the Influenza virus hemagglutinin glycoprotein. Cell 40, 431-439

Deng, R., Wang, Z., Mirza, A.M. and Iorio, R.M. (1995) Localization of a domain on the paramyxovirus attachment protein required for the promotion of cellular fusion by its homologous fusion protein spike. Virology 209, 457-469

Dodge, J.T., Mitchell, C. and Hanahan, D.J. (1963) The preparation of hemoglobin free ghosts of human erythrocytes. Arch. biochem. Biophys. 100, 119-130

Doms, R.W., Helenius, A. and White, J. (1985) Membrane fusion activity of the Influenza virus Hemagglutinin. J. Biol. Chem. 260, 2973-2981

Dong, J., Roth, M.G. and Hunter, E. (1992) A chimeric avian retrovirus containing the Influenza virus hemagglutinin gene has an expanded host range. J. Virol. 66, 7374-7382

Dutch, R.E., Bagai Joshi, S. and Lamb, R.A. (1998) Membrane fusion promoted by increasing surface densities of the paramyxovirus F and HN proteins: comparison of fusion reactions mediated by Simian virus 5 F, Human parainfluenza virus type 3 F, and Influenza virus HA. J. Virol. 72, 7745-7753

Dutch, R.E., Leser, G.P. and Lamb, R.A. (1999) Paramyxovirus fusion protein: Characteri-zation of the core trimer, a rod.shaped complex with helices in anti-parallel orientation. Virology 254, 147-159

Dutch, R.E. and Lamb, R.A. (2001) Deletion of the cytoplasmic tail of the fusion protein of the paramyxovirus simian virus 5 affects fusion pore enlargement. J. Virol. 75, 5363-5369

[Seite 108↓]

Dutch, R.E., Hagglund, R.N., Nagel, M.A., Paterson, R.G. and Lamb, R.A. (2001) Paramyxovirus fusion (F) protein: a conformational change on cleavage activation. Virology 281, 138-150

Ebata, S.N., Cote, M.J., Kang, C.Y. and Dimock, K. (1991) The fusion and hemagglutinin-neuraminidase glycoproteins of human parainfluenza virus 3 are both required for fusion. Virology 183, 437-441

Fujii, T. and Tamura, A. (1983) Dynamic behaviour of amphiphilic lipids to penetrate into membrane of intact hman erythrocytes and to induce change in the cell shape. Biomed. Biochim. Acta 42, 81-85

Gething, M.J., White, J.M. and Waterfield, M.D. (1978) Purification of the fusion protein of Sendai virus: Analysis of the NH2-terminal sequence generated during precursor activition. Proc. Natl. Acad. Sci. U.S.A . 75, 2737-2740

Gething, M.-J., Doms, R.W., York, D. and White, J. (1986) Studies on the mechanism of membrane fusion: site-specific mutagenesis of the Hemagglutinin of Influenza virus. J. Cell Biol. 102, 11-23

Ghosh, J.K., Peisajovich, S.G. and Shai, Y. (2000) Sendai virus internal fusion peptide: structural and functional characterization and a plausible mode of viral entry inhibition. Biochemistry. 39, 11581-11592

Godley, L., Pfeifer, J., Steinhauer, D., Ely, B., Shaw, G., Kaufmann, R., Suchanek, E., Pabo, C., Skehel, J.J., Wiley, D.C. and Wharton, S. (1992) Introduction of intersubunit disulfide bonds in the membrane-distal region of the influenza hemagglutinin abolishes membrane fusion activity. Cell 68, 635-645

Gonzalez-Reyes, L., Ruiz-Arguello, M.B., Garcia-Barreno, B., Calder, L., Lopez, J.A., Albar, J.P., Skehel, J.J., Wiley, D.C. and Melero, J.A. (2001) Cleavage of the human respiratory syncytial virus fusion protein at two distinct sites is required for activation of membrane fusion. Proc. Natl. Acad. Sci. U. S. A. 98, 9859-9864

Gruenke, J.A., Armstrong, R.T., Newcomb, W.W., Brown, J.C. and White, J.M. (2002) New insights into the spring-loaded conformational change of influenza virus hemagglutinin. J. Virol. 76, 4456-4466

Günther-Ausborn, S., Praetor, A. and Stegmann, T. (1995) Inhibition of influenza-induced membrane fusion by lysophosphatidylcholine. J. Biol. Chem . 270, 29279-29285

Harter, C., James, P., Bachi, T., Semenza, G. and Brunner, J. (1989) Hydrophobic binding of the ectodomain of influenza hemagglutinin to membranes occurs through the „fusion peptide“. J. Biol. Chem. 264, 6459-6464

[Seite 109↓]

He, B., Lin, G.Y., Durbin, J.E., Durbin, R.D. and Lamb, R.A. (2001) The SH integral membrane protein of the paramyxovirus SV5 is required to block apoptosis in MDBK cells. J. Virol. 75, 4068-4079

Heminway, B.R., Yu, Y., Tanaka, Y., Perrine, K.G., Gustafson, E., Bernstein, J.M. and Galinski, M.S. (1994) Analysis of respiratory syncytial virus F, G, and SH proteins in cell fusion. Virology 200, 801-805

Henis, Y. I.., Herman-Barhom, Y., Aroeti, B. and Gutman, O. (1989) Lateral mobility of both envelope proteins (F and HN) of Sendai virus in the cell membrane is essential for cell-cell fusion. J. Biol. Chem . 264, 17119-17125

Hiebert, S.W., Richardson, C.D. and Lamb, R.A. (1988) Cell surface expression and orientation in membranes of the 44-amino-acid SH protein of simian virus 5. J. Virol . 62, 2347-2357

Hoekstra. D., de Boer, T., Klappe, K. and Wilschut, J. (1984) Fluorescence method for measuring the kinetics of fusion between biological membranes. Biochemistry 23, 5675-5681

Hoekstra, D., Novick, S.L., Hoff, H., Nir, S. and Klappe, K. (1989) Mechanisms of viral entry: Interaction of Sendai virus with biological and artificial membranes. in „Cell Biology of Virus Entry, Replication and Pathogenesis“ Alan R. Liss, Inc., 177-186

Hoekstra, D. (1990) Membrane Fusion of Enveloped Viruses: Especially a Matter of Proteins. J. of Bioenerg. Biomemb . 22, 121-155

Homma, M. and Ohuchi, M. (1973) Trypsin action on the growth of Sendai virus in tissue culture cells. III Structural difference of Sendai viruses grown in eggs and in tissue culture cells. J. Virol . 12, 1457-1465

Horvath, C.M., Paterson, R.G., Shaughnessy, M.A., Wood, R. and Lamb, R.A. (1992) Biological activity of paramyxovirus fusion proteins: factors influencing formation of syncytia. J. Virol . 66, 4564-4569

Hrafnsdottir, S. and Menon, A.K. (2000) Reconstitution and partial characterization of phospholipid flippase activity from detergent extracts of the Bacillus subtilis cell membrane. J. Bacteriol . 182, 4198-4206

Hsu, M-Ch., Scheid, A. and Choppin. P.W. (1979) Reconstitution of membranes with individual paramyxovirus gycoproteins and phospholipid in cholate solution. Virology 95, 476-491

Hsu, M., Scheid, A. and Choppin, P.W. (1981) Activation of the Sendai virus fusion protein (F) involves a conformational change with exposure of a new hydrophobic region.J. Biol. Chem. 256, 3557-3563

[Seite 110↓]

Hsu, M.C., Scheid, A. and Choppin, P.W. (1982) Enhancement of membrane-fusing activity of sendai virus by exposure of the virus to basic pH is correlated with a conformational change in the fusion protein. Proc. Natl. Acad. Sci. U. S. A . 79, 5862-5866

Hu, X.L., Ray, R. and Compans, R.W. (1992) Functional interactions between the fusion protein and hemagglutinin-neuraminidase of human parainfluenza viruses. J. Virol . 66, 1528-1534

Huang, Q., Opitz, R., Knapp, E.W. and Herrmann, A. (2002) Protonation and stability of the globular domain of influenza virus hemagglutinin. Biophys. J. 82, 1050-1058

Huberman, K., Peluso, R.W. and Moscona, A. (1995) Hemagglutinin-neuraminidase of human parainfluenza 3: role of the neuraminidase in the viral life cycle. Virology 214, 294-300

Ito, M., Nishio, M., Kawano, M., Kusagawa, S., Komada, H., Ito, Y. and Tsurudome, M. (1997) Role of a single amino acid at the amino terminus of the simian virus 5 F2 subunit in syncytium formation J. Virol . 71, 9855-9858

Ito, M., Nishio, M., Komada, H., Ito, Y. and Tsurudome, M. (2000) An amino acid in the heptad repeat 1 domain is important for the haemagglutinin-neuraminidase-independent fusing activity of simian virus 5 fusion protein. J. Gen. Virol . 81 , 719-727

Jahn, R. and Grubmüller, H. (2002) Membrane fusion.(Review)Curr.Opinion Cell Biol . 14, 488-495

Jin, H., Leser, G.P. and Lamb, R.A. (1994) The influenza virus hemagglutinin cytoplasmic tail is not essential for virus assembly or infectivity. EMBO J . 13, 5504-5515

Joshi, S.B., Dutch, R.E. and Lamb, R.A. (1998) A core trimer of the paramyxovirus fusion protein: parallels to influenza virus hemagglutinin and HIV-1 gp41. Virolog y 248, 20-34

Iemble, G.W., Bodian, D.L., Rose, J., Wilson, I.A. and White, J.M. (1992) Intermonomer disulfide bonds impair the fusion activity of influenza virus hemagglutinin. J. Virol . 66, 4940-4950

Kemble, G.W., Danieli, T. and White, J.M. (1994) Lipid-anchored influenza Hemagglutinin promotes hemifusion, not complete fusion. Cell 76 , 383-391

Klappe, K., Wilschut, J., Nir, S., and Hoekstra, D. (1986) Parameters affecting fusion between Sendai Virus and liposomes. Role of viral proteins, liposome composition and pH. Biochem . 25, 8252-8260

[Seite 111↓]

Korte, T. and Herrmann, A. (1994) pH-Dependent binding of the fluorophore bis-ANS to influenza virus reflects the conformational change of hemagglutinin. Eur. Bioph. J . 23 , 105-113

Korte, T., Ludwig, K., Booy, F.P., Blumenthal, R. and Herrmann, A. (1999) Conformational intermediates and fusion activity of influenza virus hemagglutinin. J. Virol . 73, 4567-4574

Kozerski, C., Ponimaskin, E., Schroth-Diez, B., Schmidt, M.F. and Herrmann, A. (2000) Modification of the cytoplasmic domain of influenza virus hemagglutinin affects enlargement of the fusion pore. J. Virol . 74, 7529-7537

Kozlov, M.M., Leikin, S.L., Chernomordik, L.V., Markin, V.S. and Chizmadzhev, Y.A. (1989) Stalk mechanism of vesicle fusion. Intermixing of aqueous contents. Eur. Biophys. J. 17, 121-129

Lamb, R.A. (1993) Paramyxovirus fusion: A hypothesis for changes. Virology 197, 1-11

Lamb, R.A., Bagai Joshi, S. and Dutch, R.E. (1999) The paramyxovirus fusion protein forms extremely stable core trimer: structural parallels to influenza virus haemagglutinin and HIV-1 gp41. Mol. Memb. Biol . 16, 11-19

Lambert, D.M., Barney, S., Lambert, A.L., Guthrie, K., Medinas, R., Davis, D.E., Bucy, T., Erickson, J., Merutka, G. and Petteway, S.R. (1996) Peptides from conserved regions of paramyxovirus fusion (F) proteins are potent inhibitors of viral fusion. Proc. Natl. Acad. Sci. U. S. A. 93, 2186-2191

Lescar, J., Roussel, A., Wien, M.W., Navaza, J., Fuller, S.D., Wengler, G., Wengler, G., Rey, F.A. (2001) The Fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell 105 , 137-148

Levine, A.J. (1993) Das Influenza-A-Virus. in: Viren: Diebe, Mörder und Piraten . Spektrum Akademischer Verlag , 184

Leyrer, S., Bitzer, M., Lauer, U., Kramer, J., Neubert, W.J. and Sedlmeier, R. (1998) Sendai virus-like particles devoid of Hemagglutinin-Neuraminidase protein infect cells via the human asialoglycoprotein receptor. J. Genet. Virol . 79, 683-687

Lowry, O.H. , Rosenbrough, N.J. , Farr, A.L. and Randall, R.J. (1951) Protein Measurement with the Folin Reagent. J. Biol. Chem . 193, 265

[Seite 112↓]

Lüneberg, J., Martin, I., Nüßler, F., Ruysschaert, J.M. and Herrmann, A. (1995) Structure and topology of the influenza virus fusion peptide in lipid bilayers. J. Biol. Chem . 270, 27606-27614

Ludwig, K. (2000) Die dreidimensionale Struktur des Influenzavirus-Hämagglutinin im membranfusionsaktiven Zustand. (Dissertation) Humboldt-Universität zu Berlin ; Berlin

Markosyan, R.M., Cohen, F.S. and Melikyan, G.B. (2000) The lipid-anchored ectodomain of influenza virus hemagglutinin (GPI-HA) is capable of inducing nonenlarging fusion pores. Mol. Biol. Cell 11, 1143-1152

Markwell, M.A. and Fox, C.F. (1980) Protein-protein interactions within paramyxoviruses identified by native disulfide bonding or reversible chemical cross-linking. J. Virol . 33, 152-166

Markwell, M.A.K., Portner, A. and Schwartz, A.L. (1985) An alternative route of infection for viruses: Entry by means of the asialoglycoprotein receptor of a Sendai virus mutant lacking its attachment protein. Proc. Natl. Acad. Sci. U. S. A. 82 , 978-982

Melikyan, G.B., White, J.M. and Cohen, F.S. (1995) GPI-anchored influenza hemagglutinin induces hemifusion to both red blood cell and planar bilayer membranes. J. Cell Biol . 131, 679-691

Melikyan, G.B., Lin, S., Roth, M.G. and Cohen, F.S. (1999) Amino acid sequence requirements of the transmembrane and cytoplasmic domains of influenza virus hemagglutinin for viable membrane fusion. Mol. Biol. Cell 10, 1821-1836

Morrot, G., Herve, P., Zachowski, A., Fellmann, P. and Devaux, P.F. (1989) Aminophospholipid translocase of human erythrocytes: phospholipid substrate specificity and effect of cholesterol. Biochemistry 28, 3456-3462

Moscona, A. and Peluso, R.W. (1991) Fusion properties of cells persistently infected with human parainfluenza virus type 3: participation of hemagglutinin-neuraminidase in membrane fusion. J. Virol . 65, 2773-2777

Nakanishi, M., Uchida, T., Kim, J. and Okada, Y. (1982) Glycoproteins of Sendai virus (HVJ) have a critical ratio for fusion between virus envelopes and cell membranes. Exp. Cell Res . 142, 95-101

Novick, S.L. and Hoekstra, D. (1988) Membrane penetration of Sendai virus glycoproteins during the early stages of fusion with liposomes as determined by hydrophobic photoaffinity labeling. Proc. Natl. Acad. Sci. U. S. A . 85, 7433-7437

[Seite 113↓]

Nüßler, F., Clague, M.J. and Herrmann, A. (1997) Meta-stability of the hemifusion intermediate induced by glycosylphosphatidylinositol-anchored influenza hemagglutinin. Biophys. J. 73, 2280-2291

Parks, G.D. and Lamb, R.A. (1990) Folding and oligomerization properties of a soluble and secreted form of the paramyxovirus hemagglutinin-neuraminidase glycoprotein. Virology 178, 498-508

Paterson, R.G., Hiebert, S.W. and Lamb, R.A. (1985) Expression at the cell surface of biologically active fusion and hemagglutinin/neuraminidase proteins of the paramyxovirus simian virus 5 from cloned cDNA. Proc. Natl. Acad. Sci. U. S. A . 82, 7520-7524

Paterson, R.G. and Lamb, R.A. (1987) Ability of the hydrophobic fusion-related external domain of a paramyxovirus F protein to act as a membrane anchor. Cel I 48, 441-452

Paterson, R.G., Shaughnessy, M.A. and Lamb, R.A. (1989) Analysis of the relationship between cleavability of a paramyxovirus fusion protein and length of the connecting peptide. J. Virol . 63, 1293-1301

Peisajovich, S.G., Samuel, O. and Shai, Y. (2000) Paramyxovirus F1 protein has two fusion peptides: implications for the mechanism of membrane fusion. J. Mol. Biol . 296, 1353-1365

Peisajovich, S.G. and Shai, Y. (2002) New insights into the mechanism of virus-induced membrane fusion. Trends Biochem. Sci . 27 , 183-190

Ponimaskin, E. and Schmidt, M.F.G. (1998) Domain-structure of cytoplasmic border region is main determinant for palmitoylation of influenza virus hemagglutinin (H7). Virology 249, 325-335

Prehm, P., Scheid, A. and Choppin, P.W. (1979) The carbohydrate structure of the glycoproteins of the paramyxovirus SV5 grown in bovine kidney cells. J. Biol. Chem . 254, 9669-9677

Qiao, H., Pelletier, S.L., Hoffman, L., Hacker, J., Armstrong, R.T. and White, J.M. (1998) Specific single or double proline substitutions in the „spring-loaded“ coiled-coil region of the influenza hemagglutinin impair or abolish membrane fusion activity. J. Cell Biol . 141, 1335-1347

Rapaport, D. and Shai, Y. (1994) Interaction of fluorescently labeled analogues of the amino-terminal fusion peptide of Sendai virus with phospholipid membranes. J. Biol.Chem. 269, 15124-15131

[Seite 114↓]

Rapaport, D., Ovadia, M. and Shai, Y. (1995) A synthetic peptide corresponding to a conserved heptad repeat domain is a potent inhibitor of Sendai virus-cell fusion: An emerging similarity with functional domains of other viruses. EMBO J. 14, 5524-5531

Rey, F.A., Heinz, F.X., Mandl, C., Kunz, C. and Harrison, S.C. (1995) The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature 375, 291-298

Roth, M.G., Doyle, C., Sambrook, J. and Gething, M.J. (1986) Heterologous transmembrane and cytoplasmic domains direct functional chimeric influenza virus hemagglutinins into the endocytic pathway. J. Cell Biol . 102, 1271-1283

Ruiz-Arguello, M., Gonzalez-Reyes, L., Calder, L.J., Palomo, C., Martin, D., Saiz, M.J., Garcia-Barreno, B., Skehel, J.J. and Melero, J.A. (2002) Effect of proteolytic processing at two distinct sites on shape and aggregation of an anchorless fusion protein of human respiratory syncytial virus and fate of the intervening segment. Virology 298, 317-326

Russell, R., Paterson, R.G. and Lamb, R.A. (1994) Studies with cross-linking reagents on the oligomericform of the paramyxovirus fusion protein. Virology 199, 160-168

Sakai, Y. and Shibuta, H. (1989) Syncytium formation by recombinant vaccinia viruses carrying bovine parainfluenza 3 virus envelope protein genes. J. Virol . 63, 3661-3668

Samuel, O. and Shai, Y. (2001) Participation of two fusion peptides in measles virus-induced membrane fusion: emerging similarity with other paramyxoviruses. Biochemistry 40, 1340-1349

Scheid, A., Caliguiri, L.A., Compans, R.W. and Choppin. P.W. (1972) Isolation of paramyxovirus glycoproteins. Association of both hemagglutinating and neuraminidase activities with the larger SV5 glycoprotein. Virology 50, 640-652

Scheid, A. and Choppin, P.W. (1974) Identification of biological activities of paramyxovirus glycoproteins. Activation of cell fusion, hemolysis, and infectivity of proteolytic cleavage of an inactive precursor protein of Sendai virus. Virology 57, 475-490

Scheid, A. and Choppin, P.W. (1977) Two disulfide-linked polypeptide chains constitute the active F protein of paramyxoviruses. Virology 80, 54-66

[Seite 115↓]

Schroth-Diez, B., Ponimaskin, E., Reverey, H., Schmidt, M.F. and Herrmann, A. (1998) Fusion activity of transmembrane and cytoplasmic domain chimeras of the influenza virus glycoprotein hemagglutinin. J. Virol . 72, 133-141

Schroth-Diez, B., Ludwig, K., Baljinnyam, B., Kozerski, C., Huang, Q. and Herrmann, A. (2000) The role of the transmembrane and of the intraviral domain of glycoproteins in membrane fusion of enveloped viruses. Biosci. Rep . 20, 571-595

Sechoy, O., Philippot, J.R. and Bienvenue, A. (1987) F protein-F protein interaction within the Sendai virus identified by native bonding or chemical cross-linking. J. Biol. Chem . 262, 11519-11523

Sergel, T., McGinnes, L.W. and Morrison, T.G. (1993) The fusion promotion activity of the NDV HN protein does not correlate with neuraminidase activity. Virology 196, 831-834

Sergel, T. and Morrison, T.G. (1995) Mutations in the cytoplasmic domain of the fusion glycoprotein of Newcastle disease virus depress syncytia formation. Virology 210, 264-272

Simpson, D.A. and Lamb, R.A. (1992) Alterations to influenza virus hemagglutinin cytoplasmic tail modulate virus infectivity. J. Virol . 66, 790-803

Spruce, A.E., Iwata, A. and Almers, W. (1991) The first milliseconds of the pore formed by a fusogenic viral envelope protein during membrane fusion. Proc. Natl. Acad. Sci. U. S. A . 88, 3623-3627

Stegmann, T., Hoekstra, D., Scherphof, G. and Wilschut, J. (1986) Fusion activity of influenza virus. A comparison between biological and artificial target membrane vesicles. J. Biol. Chem . 261, 10966-10969

Stegmann, T., Delfino, J.M., Richards, F.M. and Helenius, A. (1991) The HA2 subunit of influenza hemagglutinin inserts into the target membrane prior to fusion. J. Biol. Chem . 266, 18404-18410

Stegmann, T. and Helenius, A. (1993) Influenza Virus Fusion: From Models Toward a Mechanism.in: Viral Fusion Mechanisms ed. by J. Bentz , CRC Press, Inc., 89-111

Steinhauer, D.A., Wharton, S.A., Skehel, J.J. and Wiley, D.C. (1995) Studies of the membrane fusion activities of fusion peptide mutants of influenza virus hemagglutinin. J. Virol . 69, 6643-6651

Stone-Hulslander, J. and Morrison, T.G. (1997) Detection of an interaction between the HN and F proteins in Newcastle disease virus-infected cells. J. Virol . 71, 6287-6295

[Seite 116↓]

Stuart, D. (1994) Virus structure. Docking mission accomplished.Nature 371, 19-20

Takimoto, T., Taylor, G.L., Connaris, H.C., Crennell, S.J. and Portner, A. (2002) Role of the hemagglutinin-neuraminidase protein in the mechanism of paramyxovirus-cell membrane fusion. J. Virol . 76, 13028-13033

Tanabayashi, K. and Compans, R.W. (1996) Functional interaction of paramyxovirus glycoproteins: Identification of a domain in Sendai virus HN which promotes cell fusion. J. Virol . 70, 6112-6118

Tomasi, M. and Loyter, A. Selective extraction of biologically active F-Glycoprotein from Dithiothreitol reduced Sendai virus particles. FEBS Lett . 131, 381-385

Tong, S. and Compans, R.W. (1999) Alternative mechanisms of interaction between homotypic and heterotypic parainfluenza virus HN and F proteins. J. Gen. Virol . 80, 107-115

Tse, F.W., Iwata, A. and Almers, W. (1993) Membrane Flux Through the Pore Formed by a Fusogenic Viral Envelope Protein During Cell Fusion. J. Cell Biol . 121, 543-552

Tsurudome, M., Kawano, M., Yuasa, T., Tabata, N., Nishio, M., Komada, H. and Ito, Y. (1995) Identification of regions on the hemagglutinin-neuraminidase protein of human parainfluenza virus type 2 important for promoting cell fusion. Virology 213, 190-203

Tsurudome, M., Ito, M., Nishio, M., Kawano, M., Okamoto, K., Kusagawa, S., Komada, H. and Ito, Y. (1998) Identification of regions on the fusion protein of human parainfluenza virus type 2 which are required for haemagglutinin-neuraminidase proteins to promote cell fusion. J. Gen. Virol . 79, 279-289

Tsurudome, M., Ito, M., Nishio, M., Kawano, M., Komada, H. and Ito, Y. (2001) Hemagglutinin-neuraminidase-independent fusion activity of simian virus 5 fusion (F) protein: difference in conformation between fusogenic and nonfusogenic F proteins on the cell surface. J. Virol . 75, 8999-9009

Varghese, J.N., Laver, W.G. and Colman, P.M. (1983) Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 A resolution. Nature 303, 35-40

Vogel, S.S., Leikina, E.A. and Chernomordik, L.V. (1993) Lysophosphatidylcholine reversibly arrests exocytosis and viral fusion at a stage between triggering and membrane merger. J. Biol. Chem . 268, 25764-25768

[Seite 117↓]

Weissenhorn, W., Dessen, A., Harrison, S.C., Skehel, J.J. and Wiley, D.C. (1997) Atomic structure of the ectodomain from HIV-1 gp41. Nature 387, 426-430

Weissenhorn, W., Calder, L.J., Wharton, S.A., Skehel, J.J. and Wiley, D.C. (1998) The central structural feature of the membrane fusion protein subunit from the Ebola virus glycoprotein is a long triple-stranded coiled coil. Proc. Natl. Acad. Sci. U. S. A . 95, 6032-6036

Wiley, D.C. and Skehel, J.J. (1987) The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. (Review) Annu. Rev. Biochem . 56, 365-394

Wilson, I.A., Skehel, J.J. and Wiley, D.C. (1981) Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature 289, 366-373

Wharton, S.A., Skehel, J.J. and Wiley, D.C. (2000) Temperature dependence of fusion by sendai virus. Virology 271, 71-78

Wharton, S.A., Skehel, J.J. and Wiley, D.C. (1986) Studies of influenza haemagglutinin-mediated membrane fusion. Virology 149, 27-35

White, J., Kartenbeck, J. and Helenius, A. (1982) Membrane fusion activity of influenza virus. EMBO J. 1, 217-222

White, J.M. (1990) Viral and cellular membrane fusion proteins. Annu. Rev. Physiol . 52, 675-697

White, J.M. (1992) Membrane fusion.Science 258, 917-924

White, J.M. (1995) Membrane fusion: The influenza paradigm.Cold Spring Harb. Symp. Quant. Biol. 60, 581-587

Yeagle, P.L., Smith, F.T., Young, J.E. and Flanagan, T.D. (1994) Inhibition of membrane fusion by lysophosphatidylcholine. Biochem . 33, 1820-1827

Yoshima, H., Nakanishi, M., Okada, Y. and Kobata, A. (1981) Carbohydrate structures of HVJ (Sendai Virus) glycoproteins. J. Biol. Chem . 256, 5355-5361

Young, J.K., Li, D., Abramowitz, M.C. and Morrison, T.G. (1999) Interaction of peptides with sequences from the Newcastle disease virus fusion protein heptad repeat regions. J. Virol . 73, 5945-5956

[Seite 118↓]

Yu, M., Wang, E., Liu, Y., Cao, D., Jin, N., Zhang, C.W., Bartlam, M., Rao, Z., Tien, P. and Gao, G.F. (2002) Six-helix bundle assembly and characterization of heptad repeat regions from the F protein of Newcastle disease virus. J. Gen. Virol . 83 , 623-629

Zhao, X., Singh, M., Malashkevich, V.N. and Kim, P.S. (2000) Structural characterization of the human respiratory syncytial virus fusion protein core. Proc. Natl. Acad. Sci. U. S. A. 97, 14172-14177

[Seite 119↓]

© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 3.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am: