[Seite 42↓]


[1] Tappel, A.L. (1962): Vitamin E as the biological lipid antioxidant, Vit.Horm. (20), Seite 493-510.

[2] Burton, G.W.; Joyce, A. und Ingold, K.U. (1983): Is vitamin E the only lipid-soluble, chain-breaking antioxidant in human blood plasma and erythrocyte membranes?, Arch Biochem Biophys (221) [1], Seite 281-290.

[3] Steinberg, D. (1997): Low density lipoprotein oxidation and its pathobiological significance, J Biol Chem (272) [34], Seite 20963-20966.

[4] Pryor, W.A. (2000): Vitamin E and heart disease: basic science to clinical intervention trials, Free Radic Biol Med (28) [1], Seite 141-164.

[5] Stephens, N.G.; Parsons, A.; Schofield, P.M.; Kelly, F.; Cheeseman, K. und Mitchinson, M.J. (1996): Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS), Lancet (347) [9004], Seite 781-786.

[6] Spector, R. und Vesell, E.S. (2002): Which studies of therapy merit credence? Vitamin E and estrogen therapy as cautionary examples, J Clin Pharmacol (42) [9], Seite 955-962.

[7] Ricciarelli, R.; Tasinato, A.; Clement, S.; Ozer, N.K.; Boscoboinik, D. und Azzi, A. (1998): alpha-Tocopherol specifically inactivates cellular protein kinase C alpha by changing its phosphorylation state, Biochem J (334 ( Pt 1)), Seite 243-249.

[8] Kolleck, I.; Witt, W.; Wissel, H.; Sinha, P. und Rustow, B. (2000): HDL and vitamin E in plasma and the expression of SR-BI on lung cells during rat perinatal development, Lung (178) [4], Seite 191-200.

[9] Boscoboinik, D.; Szewczyk, A.; Hensey, C. und Azzi, A. (1991): Inhibition of cell proliferation by alpha-tocopherol. Role of protein kinase C, J Biol Chem (266) [10], Seite 6188-6194.

[10] Szuwart, T.; Brzoska, T.; Luger, T.A.; Filler, T.; Peuker, E. und Dierichs, R. (2000): Vitamin E reduces platelet adhesion to human endothelial cells in vitro, Am J Hematol (65) [1], Seite 1-4.

[11] Saldeen, T.; Li, D. und Mehta, J.L. (1999): Differential effects of alpha- and gamma-tocopherol on low-density lipoprotein oxidation, superoxide activity, platelet aggregation and arterial thrombogenesis, J Am Coll Cardiol (34) [4], Seite 1208-1215.

[12] Aratri, E.; Spycher, S.E.; Breyer, I. und Azzi, A. (1999): Modulation of alpha-tropomyosin expression by alpha-tocopherol in rat vascular smooth muscle cells, FEBS Lett (447) [1], Seite 91-94.

[13] Ricciarelli, R.; Zingg, J.M. und Azzi, A. (2000): Vitamin E reduces the uptake of oxidized LDL by inhibiting CD36 scavenger receptor expression in cultured aortic smooth muscle cells, Circulation (102) [1], Seite 82-87.

[14] Azzi, A.; Ricciarelli, R. und Zingg, J.M. (2002): Non-antioxidant molecular functions of alpha-tocopherol (vitamin E), FEBS Lett (519) [1-3], Seite 8-10.

[15] Horwitt, M.K. (2001): Critique of the requirement for vitamin E, Am J Clin Nutr (73) [6], Seite 1003-1005.

[16] Traber, M.G. und Sies, H. (1996): Vitamin E in humans: demand and delivery, Annu Rev Nutr (16), Seite 321-347.

[17] Brigelius-Flohe, R. und Traber, M.G. (1999): Vitamin E: function and metabolism, FASEB J (13) [10], Seite 1145-1155.

[18] Sattler, W. und Stocker, R. (1993): Greater selective uptake by Hep G2 cells of high-density lipoprotein cholesteryl ester hydroperoxides than of unoxidized cholesteryl esters, Biochem J (294 ( Pt 3)), Seite 771-778.

[19] Traber, M.G. und Kayden, H.J. (1984): Vitamin E is delivered to cells via the high affinity receptor for low-density lipoprotein, Am J Clin Nutr (40) [4], Seite 747-751.

[20] Goti, D.; Reicher, H.; Malle, E.; Kostner, G.M.; Panzenboeck, U. und Sattler, W. (1998): High-density lipoprotein (HDL3)-associated alpha-tocopherol is taken up by HepG2 cells via the selective uptake pathway and resecreted with endogenously synthesized apo-lipoprotein B-rich lipoprotein particles, Biochem J (332 ( Pt 1)), Seite 57-65.

[21] Löffler, G. und Petrides, P. (1997): Biochemie und Pathobiochemie, Berlin Heidelberg New York.

[22] Krieger, M. (1999): Charting the fate of the "good cholesterol": identification and characterization of the high-density lipoprotein receptor SR-BI, Annu Rev Biochem (68), Seite 523-558.

[23] Simons, K. und Ikonen, E. (2000): How cells handle cholesterol, Science (290) [5497], Seite 1721-1726.

[24] Fielding, C.J. und Fielding, P.E. (1995): Molecular physiology of reverse cholesterol transport, J Lipid Res (36) [2], Seite 211-228.

[25] Pieters, M.N.; Schouten, D. und Van Berkel, T.J. (1994): In vitro and in vivo evidence for the role of HDL in reverse cholesterol transport, Biochim Biophys Acta (1225) [2], Seite 125-134.

[26] Krieger, M. (1998): The "best" of cholesterols, the "worst" of cholesterols: a tale of two receptors, Proc Natl Acad Sci U S A (95) [8], Seite 4077-4080.

[27] Botham, K.M. und Bravo, E. (1995): The role of lipoprotein cholesterol in biliary steroid secretion. Studies with in vivo experimental models, Prog Lipid Res (34) [1], Seite 71-97.

[28] Gwynne, J.T. und Strauss, J.F., 3rd (1982): The role of lipoproteins in steroidogenesis and cholesterol metabolism in steroidogenic glands, Endocr Rev (3) [3], Seite 299-329.

[29] Glass, C.; Pittman, R.C.; Weinstein, D.B. und Steinberg, D. (1983): Dissociation of tissue uptake of cholesterol ester from that of apoprotein A-I of rat plasma high density lipoprotein: selective delivery of cholesterol ester to liver, adrenal, and gonad, Proc Natl Acad Sci U S A (80) [17], Seite 5435-5439.

[30] Glomset, J.A. (1968): The plasma lecithins:cholesterol acyltransferase reaction, J Lipid Res (9) [2], Seite 155-167.

[31] Gwynne, J.T. (1989): High-density lipoprotein cholesterol levels as a marker of reverse cholesterol transport, Am J Cardiol (64) [13], Seite 10G-17G.

[32] Gwynne, J.T. und Mahaffee, D.D. (1989): Rat adrenal uptake and metabolism of high density lipoprotein cholesteryl ester, J Biol Chem (264) [14], Seite 8141-8150.

[33] Oram, J.F. und Yokoyama, S. (1996): Apolipoprotein-mediated removal of cellular cholesterol and phospholipids, J Lipid Res (37) [12], Seite 2473-2491.

[34] Brown, M.S. und Goldstein, J.L. (1999): A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood, Proc Natl Acad Sci U S A (96) [20], Seite 11041-11048.

[35] Brown, M.S.; Ye, J.; Rawson, R.B. und Goldstein, J.L. (2000): Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans, Cell (100) [4], Seite 391-398.

[36] Yokoyama, S. (2000): Release of cellular cholesterol: molecular mechanism for cholesterol homeostasis in cells and in the body, Biochim Biophys Acta (1529) [1-3], Seite 231-244.

[37] Christian, A.E.; Haynes, M.P.; Phillips, M.C. und Rothblat, G.H. (1997): Use of cyclodextrins for manipulating cellular cholesterol content, J Lipid Res (38) [11], Seite 2264-2272.

[38] Acton, S.; Rigotti, A.; Landschulz, K.T.; Xu, S.; Hobbs, H.H. und Krieger, M. (1996): Identification of scavenger receptor SR-BI as a high density lipoprotein receptor, Science (271) [5248], Seite 518-520.

[39] Acton, S.L.; Scherer, P.E.; Lodish, H.F. und Krieger, M. (1994): Expression cloning of SR-BI, a CD36-related class B scavenger receptor, J Biol Chem (269) [33], Seite 21003-21009.

[40] Williams, D.L.; Connelly, M.A.; Temel, R.E.; Swarnakar, S.; Phillips, M.C.; de la Llera-Moya, M. und Rothblat, G.H. (1999): Scavenger receptor BI and cholesterol trafficking, Curr Opin Lipidol (10) [4], Seite 329-339.

[41] Babitt, J.; Trigatti, B.; Rigotti, A.; Smart, E.J.; Anderson, R.G.; Xu, S. und Krieger, M. (1997): Murine SR-BI, a high density lipoprotein receptor that mediates selective lipid uptake, is N-glycosylated and fatty acylated and colocalizes with plasma membrane caveolae, J Biol Chem (272) [20], Seite 13242-13249.

[42] Lisanti, M.P.; Scherer, P.E.; Vidugiriene, J.; Tang, Z.; Hermanowski-Vosatka, A.; Tu, Y.H.; Cook, R.F. und Sargiacomo, M. (1994): Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source: implications for human disease, J Cell Biol (126) [1], Seite 111-126.

[43] Kurzchalia, T.V. und Parton, R.G. (1999): Membrane microdomains and caveolae, Curr Opin Cell Biol (11) [4], Seite 424-431.

[44] Gwynne, J.T. und Hess, B. (1980): The role of high density lipoproteins in rat adrenal cholesterol metabolism and steroidogenesis, J Biol Chem (255) [22], Seite 10875-10883.

[45] Pittman, R.C.; Knecht, T.P.; Rosenbaum, M.S. und Taylor, C.A., Jr (1987): A nonendocytotic mechanism for the selective uptake of high density lipoprotein-associated cholesterol esters, J Biol Chem (262) [6], Seite 2443-2450.

[46] Azhar, S.; Tsai, L. und Reaven, E. (1990): Uptake and utilization of lipoprotein cholesteryl esters by rat granulosa cells, Biochim Biophys Acta (1047) [2], Seite 148-160.

[47] Reaven, E.; Chen, Y.D.; Spicher, M. und Azhar, S. (1984): Morphological evidence that high density lipoproteins are not internalized by steroid-producing cells during in situ organ perfusion, J Clin Invest (74) [4], Seite 1384-1397.

[48] Rinninger, F. und Pittman, R.C. (1988): Regulation of the selective uptake of high density lipoprotein-associated cholesteryl esters by human fibroblasts and Hep G2 hepatoma cells, J Lipid Res (29) [9], Seite 1179-1194.

[49] Rinninger, F.; Brundert, M.; Jackle, S.; Galle, P.R.; Busch, C.; Izbicki, J.R.; Rogiers, X.; Henne-Bruns, D.; Kremer, B. und Broelsch, C.E. (1994): Selective uptake of high-density lipoprotein-associated cholesteryl esters by human hepatocytes in primary culture, Hepatology (19) [5], Seite 1100-1114.

[50] Azhar, S.; Tsai, L.; Medicherla, S.; Chandrasekher, Y.; Giudice, L. und Reaven, E. (1998): Human granulosa cells use high density lipoprotein cholesterol for steroidogenesis, J Clin Endocrinol Metab (83) [3], Seite 983-991.

[51] Temel, R.E.; Trigatti, B.; DeMattos, R.B.; Azhar, S.; Krieger, M. und Williams, D.L. (1997): Scavenger receptor class B, type I (SR-BI) is the major route for the delivery of high density lipoprotein cholesterol to the steroidogenic pathway in cultured mouse adrenocortical cells, Proc Natl Acad Sci U S A (94) [25], Seite 13600-13605.

[52] Rigotti, A.; Trigatti, B.L.; Penman, M.; Rayburn, H.; Herz, J. und Krieger, M. (1997): A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism, Proc Natl Acad Sci U S A (94) [23], Seite 12610-12615.

[53] Ji, Y.; Jian, B.; Wang, N.; Sun, Y.; Moya, M.L.; Phillips, M.C.; Rothblat, G.H.; Swaney, J.B. und Tall, A.R. (1997): Scavenger receptor BI promotes high density lipoprotein-mediated cellular cholesterol efflux, J Biol Chem (272) [34], Seite 20982-20985.

[54] Jian, B.; de la Llera-Moya, M.; Ji, Y.; Wang, N.; Phillips, M.C.; Swaney, J.B.; Tall, A.R. und Rothblat, G.H. (1998): Scavenger receptor class B type I as a mediator of cellular cholesterol efflux to lipoproteins and phospholipid acceptors, J Biol Chem (273) [10], Seite 5599-5606.

[55] de la Llera-Moya, M.; Rothblat, G.H.; Connelly, M.A.; Kellner-Weibel, G.; Sakr, S.W.; Phillips, M.C. und Williams, D.L. (1999): Scavenger receptor BI (SR-BI) mediates free cholesterol flux independently of HDL tethering to the cell surface, J Lipid Res (40) [3], Seite 575-580.

[56] Urban, S.; Zieseniss, S.; Werder, M.; Hauser, H.; Budzinski, R. und Engelmann, B. (2000): Scavenger receptor BI transfers major lipoprotein-associated phospholipids into the cells, J Biol Chem (275) [43], Seite 33409-33415.

[57] Kolleck, I.; Schlame, M.; Fechner, H.; Looman, A.C.; Wissel, H. und Rustow, B. (1999): HDL is the major source of vitamin E for type II pneumocytes, Free Radic Biol Med (27) [7-8], Seite 882-890.

[58] Goti, D.; Hrzenjak, A.; Levak-Frank, S.; Frank, S.; van der Westhuyzen, D.R.; Malle, E. und Sattler, W. (2001): Scavenger receptor class B, type I is expressed in porcine brain capillary endothelial cells and contributes to selective uptake of HDL-associated vitamin E, J Neurochem (76) [2], Seite 498-508.

[59] Green, S.R. und Pittman, R.C. (1991): Comparative acyl specificities for transfer and selective uptake of high density lipoprotein cholesteryl esters, J Lipid Res (32) [3], Seite 457-467.

[60] Rigotti, A.; Miettinen, H.E. und Krieger, M. (2003): The Role of the High-Density Lipoprotein Receptor SR-BI in the Lipid Metabolism of Endocrine and Other Tissues, Endocr Rev (24) [3], Seite 357-387.

[61] Kozarsky, K.F.; Donahee, M.H.; Rigotti, A.; Iqbal, S.N.; Edelman, E.R. und Krieger, M. (1997): Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels, Nature (387) [6631], Seite 414-417.

[62] Ji, Y.; Wang, N.; Ramakrishnan, R.; Sehayek, E.; Huszar, D.; Breslow, J.L. und Tall, A.R. (1999): Hepatic scavenger receptor BI promotes rapid clearance of high density lipoprotein free cholesterol and its transport into bile, J Biol Chem (274) [47], Seite 33398-33402.

[63] Sehayek, E.; Ono, J.G.; Shefer, S.; Nguyen, L.B.; Wang, N.; Batta, A.K.; Salen, G.; Smith, J.D.; Tall, A.R. und Breslow, J.L. (1998): Biliary cholesterol excretion: a novel mechanism that regulates dietary cholesterol absorption, Proc Natl Acad Sci U S A (95) [17], Seite 10194-10199.

[64] Ueda, Y.; Royer, L.; Gong, E.; Zhang, J.; Cooper, P.N.; Francone, O. und Rubin, E.M. (1999): Lower plasma levels and accelerated clearance of high density lipoprotein (HDL) and non-HDL cholesterol in scavenger receptor class B type I transgenic mice, J Biol Chem (274) [11], Seite 7165-7171.

[65] Wang, N.; Arai, T.; Ji, Y.; Rinninger, F. und Tall, A.R. (1998): Liver-specific overexpression of scavenger receptor BI decreases levels of very low density lipoprotein ApoB, low density lipoprotein ApoB, and high density lipoprotein in transgenic mice, J Biol Chem (273) [49], Seite 32920-32926.

[66] Rigotti, A.; Trigatti, B.; Babitt, J.; Penman, M.; Xu, S. und Krieger, M. (1997): Scavenger receptor BI--a cell surface receptor for high density lipoprotein, Curr Opin Lipidol (8) [3], Seite 181-188.

[67] Varban, M.L.; Rinninger, F.; Wang, N.; Fairchild-Huntress, V.; Dunmore, J.H.; Fang, Q.; Gosselin, M.L.; Dixon, K.L.; Deeds, J.D.; Acton, S.L.; Tall, A.R. und Huszar, D. (1998): Targeted mutation reveals a central role for SR-BI in hepatic selective uptake of high density lipoprotein cholesterol, Proc Natl Acad Sci U S A (95) [8], Seite 4619-4624.

[68] Rigotti, A.; Edelman, E.R.; Seifert, P.; Iqbal, S.N.; DeMattos, R.B.; Temel, R.E.; Krieger, M. und Williams, D.L. (1996): Regulation by adrenocorticotropic hormone of the in vivo expression of scavenger receptor class B type I (SR-BI), a high density lipoprotein receptor, in steroidogenic cells of the murine adrenal gland, J Biol Chem (271) [52], Seite 33545-33549.

[69] Landschulz, K.T.; Pathak, R.K.; Rigotti, A.; Krieger, M. und Hobbs, H.H. (1996): Regulation of scavenger receptor, class B, type I, a high density lipoprotein receptor, in liver and steroidogenic tissues of the rat, J Clin Invest (98) [4], Seite 984-995.

[70] Wang, N.; Weng, W.; Breslow, J.L. und Tall, A.R. (1996): Scavenger receptor BI (SR-BI) is up-regulated in adrenal gland in apolipoprotein A-I and hepatic lipase knock-out mice as a response to depletion of cholesterol stores. In vivo evidence that SR-BI is a functional high density lipoprotein receptor under feedback control, J Biol Chem (271) [35], Seite 21001-21004.

[71] Spady, D.K.; Woollett, L.A.; Meidell, R.S. und Hobbs, H.H. (1998): Kinetic characteristics and regulation of HDL cholesteryl ester and apolipoprotein transport in the apoA-I-/- mouse, J Lipid Res (39) [7], Seite 1483-1492.

[72] Fluiter, K.; van der Westhuijzen, D.R. und Van Berkel, T.J. (1998): In vivo regulation of scavenger receptor BI and the selective uptake of high density lipoprotein cholesteryl esters in rat liver parenchymal and Kupffer cells, J Biol Chem (273) [14], Seite 8434-8438.

[73] Witt, W.; Kolleck, I.; Fechner, H.; Sinha, P. und Rustow, B. (2000): Regulation by vitamin E of the scavenger receptor BI in rat liver and HepG2 cells, J Lipid Res (41) [12], Seite 2009-2016.

[74] Trigatti, B.; Rayburn, H.; Vinals, M.; Braun, A.; Miettinen, H.; Penman, M.; Hertz, M.; Schrenzel, M.; Amigo, L.; Rigotti, A. und Krieger, M. (1999): Influence of the high density lipoprotein receptor SR-BI on reproductive and cardiovascular pathophysiology, Proc Natl Acad Sci U S A (96) [16], Seite 9322-9327.

[75] Miettinen, H.E.; Rayburn, H. und Krieger, M. (2001): Abnormal lipoprotein metabolism and reversible female infertility in HDL receptor (SR-BI)-deficient mice, J Clin Invest (108) [11], Seite 1717-1722.

[76] Van Eck, M.; Twisk, J.; Hoekstra, M.; Van Rij, B.T.; Van der Lans, C.A.; Bos, I.S.; Kruijt, J.K.; Kuipers, F. und Van Berkel, T.J. (2003): Differential effects of scavenger receptor BI deficiency on lipid metabolism in cells of the arterial wall and in the liver, J Biol Chem (278) [26], Seite 23699-23705.

[77] Braun, A.; Trigatti, B.L.; Post, M.J.; Sato, K.; Simons, M.; Edelberg, J.M.; Rosenberg, R.D.; Schrenzel, M. und Krieger, M. (2002): Loss of SR-BI expression leads to the early onset of occlusive atherosclerotic coronary artery disease, spontaneous myocardial infarctions, severe cardiac dysfunction, and premature death in apolipoprotein E-deficient mice, Circ Res (90) [3], Seite 270-276.

[78] Trigatti, B.L.; Krieger, M. und Rigotti, A. (2003): Influence of the HDL Receptor SR-BI on Lipoprotein Metabolism and Atherosclerosis, Arterioscler Thromb Vasc Biol (23) [10], Seite 1732-1738.

[79] Purcell-Huynh, D.A.; Farese, R.V., Jr; Johnson, D.F.; Flynn, L.M.; Pierotti, V.; Newland, D.L.; Linton, M.F.; Sanan, D.A. und Young, S.G. (1995): Transgenic mice expressing high levels of human apolipoprotein B develop severe atherosclerotic lesions in response to a high-fat diet, J Clin Invest (95) [5], Seite 2246-2257.

[80] Arai, T.; Wang, N.; Bezouevski, M.; Welch, C. und Tall, A.R. (1999): Decreased atherosclerosis in heterozygous low density lipoprotein receptor-deficient mice expressing the scavenger receptor BI transgene, J Biol Chem (274) [4], Seite 2366-2371.

[81] Kozarsky, K.F.; Donahee, M.H.; Glick, J.M.; Krieger, M. und Rader, D.J. (2000): Gene transfer and hepatic overexpression of the HDL receptor SR-BI reduces atherosclerosis in the cholesterol-fed LDL receptor-deficient mouse, Arterioscler Thromb Vasc Biol (20) [3], Seite 721-727.

[82] Ueda, Y.; Gong, E.; Royer, L.; Cooper, P.N.; Francone, O.L. und Rubin, E.M. (2000): Relationship between expression levels and atherogenesis in scavenger receptor class B, type I transgenics, J Biol Chem (275) [27], Seite 20368-20373.

[83] Pratico, D.; Tangirala, R.K.; Rader, D.J.; Rokach, J. und FitzGerald, G.A. (1998): Vitamin E suppresses isoprostane generation in vivo and reduces atherosclerosis in ApoE-deficient mice, Nat Med (4) [10], Seite 1189-1192.

[84] Thomas, S.R.; Leichtweis, S.B.; Pettersson, K.; Croft, K.D.; Mori, T.A.; Brown, A.J. und Stocker, R. (2001): Dietary cosupplementation with vitamin E and coenzyme Q(10) inhibits atherosclerosis in apolipoprotein E gene knockout mice, Arterioscler Thromb Vasc Biol (21) [4], Seite 585-593.

[85] Kosters, A.; Jirsa, M. und Groen, A.K. (2003): Genetic background of cholesterol gallstone disease, Biochim Biophys Acta (1637) [1], Seite 1-19.

[86] Fuchs, M.; Ivandic, B.; Muller, O.; Schalla, C.; Scheibner, J.; Bartsch, P. und Stange, E.F. (2001): Biliary cholesterol hypersecretion in gallstone-susceptible mice is associated with hepatic up-regulation of the high-density lipoprotein receptor SRBI, Hepatology (33) [6], Seite 1451-1459.

[87] Rigotti, A.; Zanlungo, S.; Miquel, J.F. und Wang, D.Q. (2002): HDL receptor SR-BI and cholesterol gallstones, Hepatology (35) [1], Seite 240-242.

[88] Rodrigueza, W.V.; Thuahnai, S.T.; Temel, R.E.; Lund-Katz, S.; Phillips, M.C. und Williams, D.L. (1999): Mechanism of scavenger receptor class B type I-mediated selective uptake of cholesteryl esters from high density lipoprotein to adrenal cells, J Biol Chem (274) [29], Seite 20344-20350.

[89] Greene, D.J.; Skeggs, J.W. und Morton, R.E. (2001): Elevated triglyceride content diminishes the capacity of high density lipoprotein to deliver cholesteryl esters via the scavenger receptor class B type I (SR-BI), J Biol Chem (276) [7], Seite 4804-4811.

[90] Chapman, M.J.; Goldstein, S.; Lagrange, D. und Laplaud, P.M. (1981): A density gradient ultracentrifugal procedure for the isolation of the major lipoprotein classes from human serum, J Lipid Res (22) [2], Seite 339-358.

[91] Walker, J.M. (1994): The bicinchoninic acid (BCA) assay for protein quantitation, Methods Mol Biol (32), Seite 5-8.

[92] Catignani, G.L. und Bieri, J.G. (1983): Simultaneous determination of retinol and a-tocopherol in serum or plasma by liquid chromatography, Clin Chem (29), Seite 708-712.

[93] Gobran, L.I. und Rooney, S.A. (1998): PKC isoforms and other signaling proteins involved in surfactant secretion in developing rat type II cells, Am J Physiol (274) [6 Pt 1], Seite 901-907.

[94] Gobran, L.I. und Rooney, S.A. (1999): Surfactant secretagogue activation of protein kinase c isoforms in cultured rat type II cells, Am J Physiol (277) [2 Pt 1], Seite 251-256.

[95] Laemmli, U.K. (1970): Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature (227) [259], Seite 680-685.

[96] Schrimpf, G. und Gassen, R. (1999): Gentechnische Methoden.

[97] Burnette, W.N. (1981): "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A, Anal Biochem (112) [2], Seite 195-203.

[98] Salinovich, O. und Montelaro, R.C. (1986): Reversible staining and peptide mapping of proteins transferred to nitrocellulose after separation by sodium dodecylsulfate-polyacrylamide gel electrophoresis, Anal Biochem (156) [2], Seite 341-347.

[99] Sinha, P.; Kolleck, I.; Volk, H.D.; Schlame, M. und Rustow, B. (2002): Vitamin E deficiency sensitizes alveolar type II cells for apoptosis, Biochim Biophys Acta (1583) [1], Seite 91-98.

[100] Tolle, A.; Kolleck, I.; Schlame, M.; Wauer, R.; Stevens, P.A. und Rustow, B. (1997): Effect of hyperoxia on the composition of the alveolar surfactant and the turnover of surfactant phospholipids, cholesterol, plasmalogens and vitamin E, Biochim Biophys Acta (1346) [2], Seite 198-204.

[101] Mardones, P.; Quinones, V.; Amigo, L.; Moreno, M.; Miquel, J.F.; Schwarz, M.; Miettinen, H.E.; Trigatti, B.; Krieger, M.; VanPatten, S.; Cohen, D.E. und Rigotti, A. (2001): Hepatic cholesterol and bile acid metabolism and intestinal cholesterol absorption in scavenger receptor class B type I-deficient mice, J Lipid Res (42) [2], Seite 170-180.

[102] Mardones, P.; Strobel, P.; Miranda, S.; Leighton, F.; Quinones, V.; Amigo, L.; Rozowski, J.; Krieger, M. und Rigotti, A. (2002): Alpha-tocopherol metabolism is abnormal in scavenger receptor class B type I (SR-BI)-deficient mice, J Nutr (132) [3], Seite 443-449.

[103] Johnson, W.J.; Bamberger, M.J.; Latta, R.A.; Rapp, P.E.; Phillips, M.C. und Rothblat, G.H. (1986): The bidirectional flux of cholesterol between cells and lipoproteins. Effects of phospholipid depletion of high density lipoprotein, J Biol Chem (261) [13], Seite 5766-5776.

[104] Rothblat, G.H.; de la Llera-Moya, M.; Atger, V.; Kellner-Weibel, G.; Williams, D.L. und Phillips, M.C. (1999): Cell cholesterol efflux: integration of old and new observations provides new insights, J Lipid Res (40) [5], Seite 781-796.

[105] Gu, X.; Kozarsky, K. und Krieger, M. (2000): Scavenger receptor class B, type I-mediated [3H]cholesterol efflux to high and low density lipoproteins is dependent on lipoprotein binding to the receptor, J Biol Chem (275) [39], Seite 29993-30001.

[106] Yancey, P.G.; Bortnick, A.E.; Kellner-Weibel, G.; de la Llera-Moya, M.; Phillips, M.C. und Rothblat, G.H. (2003): Importance of Different Pathways of Cellular Cholesterol Efflux, Arterioscler Thromb Vasc Biol EDAT- // : MHDA- // : PHST- /Jan/ [aheadofprint] AID - ./.ATV...DD [doi] AID - .ATV...DD [pii] PST - ppublish (23) [5], Seite 712-719.

[107] Kellner-Weibel, G.; de la Llera-Moya, M.; Connelly, M.A.; Stoudt, G.; Christian, A.E.; Haynes, M.P.; Williams, D.L. und Rothblat, G.H. (2000): Expression of scavenger receptor BI in COS-7 cells alters cholesterol content and distribution, Biochemistry (39) [1], Seite 221-229.

[108] Langer, C.; Gansz, B.; Goepfert, C.; Engel, T.; Uehara, Y.; von Dehn, G.; Jansen, H.; Assmann, G. und von Eckardstein, A. (2002): Testosterone up-regulates scavenger receptor BI and stimulates cholesterol efflux from macrophages, Biochem Biophys Res Commun (296) [5], Seite 1051-1057.

[109] Fielding, C.J. und Fielding, P.E. (2001): Cellular cholesterol efflux, Biochim Biophys Acta (1533) [3], Seite 175-189.

[110] Bortnick, A.E.; Rothblat, G.H.; Stoudt, G.; Hoppe, K.L.; Royer, L.J.; McNeish, J. und Francone, O.L. (2000): The correlation of ATP-binding cassette 1 mRNA levels with cholesterol efflux from various cell lines, J Biol Chem (275) [37], Seite 28634-28640.

[111] Liscovitch, M. und Lavie, Y. (2000): Multidrug resistance: a role for cholesterol efflux pathways?, Trends Biochem Sci (25) [11], Seite 530-534.

[112] Gillotte, K.L.; Zaiou, M.; Lund-Katz, S.; Anantharamaiah, G.M.; Holvoet, P.; Dhoest, A.; Palgunachari, M.N.; Segrest, J.P.; Weisgraber, K.H.; Rothblat, G.H. und Phillips, M.C. (1999): Apolipoprotein-mediated plasma membrane microsolubilization. Role of lipid affinity and membrane penetration in the efflux of cellular cholesterol and phospholipid, J Biol Chem (274) [4], Seite 2021-2028.

[113] Gillotte, K.L.; Davidson, W.S.; Lund-Katz, S.; Rothblat, G.H. und Phillips, M.C. (1998): Removal of cellular cholesterol by pre-beta-HDL involves plasma membrane microsolubilization, J Lipid Res (39) [10], Seite 1918-1928.

[114] Wang, L.; Connelly, M.A.; Ostermeyer, A.G.; Chen, H.H.; Williams, D.L. und Brown, D.A. (2003): Caveolin-1 does not affect SR-BI-mediated cholesterol efflux or selective uptake of cholesteryl ester in two cell lines, J Lipid Res (44) [4], Seite 807-815.

[115] Sun, Y.; Wang, N. und Tall, A.R. (1999): Regulation of adrenal scavenger receptor-BI expression by ACTH and cellular cholesterol pools, J Lipid Res (40) [10], Seite 1799-1805.

[116] Azhar, S.; Nomoto, A.; Leers-Sucheta, S. und Reaven, E. (1998): Simultaneous induction of an HDL receptor protein (SR-BI) and the selective uptake of HDL-cholesteryl esters in a physiologically relevant steroidogenic cell model, J Lipid Res (39) [8], Seite 1616-1628.

[117] Rothblat, G.H.; de la Llera-Moya, M.; Favari, E.; Yancey, P.G. und Kellner-Weibel, G. (2002): Cellular cholesterol flux studies: methodological considerations, Atherosclerosis (163) [1], Seite 1-8.

[118] Knowles, B.B.; Howe, C.C. und Aden, D.P. (1980): Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen, Science (209) [4455], Seite 497-499.

[119] Rash, J.M.; Rothblat, G.H. und Sparks, C.E. (1981): Lipoprotein apolipoprotein synthesis by human hepatoma cells in culture, Biochim Biophys Acta (666) [2], Seite 294-298.

[Seite 57↓]

© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 3.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am: