Rickers, Anke: Identifikation molekularer Regulatoren der anti-IgM induzierten B-Zell Apoptose



1. Jacobson, M.D., M. Weil, and M.C. Raff (1997). Programmed cell death in animal development. Cell 88: 347-354.

2. Ellis, R.E., J. Yuan, and H.R. Horvitz (1991). Mechanisms and functions of cell death. Ann. Rev. Cell Biol. 7: 663-698.

3. Yuan, J. (1997). Transducing signals of life and death. Curr Opin Cell Biol 9: 247-451.

4. Frisch, S.M., and H. Francis (1994). Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 124: 619-626.

5. Green, D.R., R.P. Bissonnette, J.M. Glynn, and Y. Shi (1992). Activation-induced apoptosis in lymphoid systems. Semin Immunol 4: 379-388.

6. Melchers, F., A. Rolink, U. Grawunder, T.H. Winkler, H. Karasuyama, P. Ghia, and J. Andersson (1995). Positive and negative selection events during B lymphopoiesis. Curr Opin Immunol 7: 214-227.

7. Beidler, D.R., M. Tewari, P.D. Friesen, G. Poirier, and V.M. Dixit (1995). The baculovirus p35 protein inhibits Fas- and tumor necrosis factor-induced apoptosis. J Biol Chem 270: 16526-16528.

8. Martin, S.J., C.P. Reutelingsperger, A.J. McGahon, J.A. Rader, S.R. van, D.M. LaFace, and D.R. Green (1995). Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med 182: 1545-1556.

9. Chinnaiyan, A.M., and V.M. Dixit (1996). The cell-death machine. Curr Biol 6: 555-562.

10. Tsujimoto, Y., L.R. Finger, J. Yunis, P.C. Nowell, and C.M. Croce (1984). Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 226: 1097-1099.

11. Bargou, R.C., C. Wagener, K. Bommert, M.Y. Mapara, P.T. Daniel, W. Arnold, M. Dietel, H. Guski, A. Feller, H.D. Royer, and B. Dorken (1996). Overexpression of the death-promoting gene bax-alpha which is downregulated in breast cancer restores sensitivity to different apoptotic stimuli and reduces tumor growth in SCID mice. J Clin Invest 97: 2651-2659.

12. Ashwell, J.D., N.A. Berger, J.A. Cidlowski, D.P. Lane, and S.J. Korsmeyer (1994). Coming to terms with death: apoptosis in cancer and immune development. Immunol Today 15: 147-151.

13. Holtzman, D.M., and M. Deshmukh (1997). Caspases: a treatment target for neurodegenerative disease. Nat Med 3: 954-955.

14. Hengartner, M.O., and H.R. Horvitz (1994). Programmed cell death in Caenorhabditis elegans. Curr Opin Genet Dev 4: 581-586.

15. Chinnaiyan, A.M., K. O'Rourke, B.R. Lane, and V.M. Dixit (1997). Interaction of CED-4 with CED-3 and CED-9: a molecular framework for cell death. Science 275: 1122-1126.

16. Pegoraro, L., A. Palumbo, J. Erikson, M. Falda, B. Giovanazzo, B.S. Emanuel, G. Rovera, P.C. Nowell, and C.M. Croce (1984). A 14;18 and an 8;14 chromosome translocation in a cell line derived from an acute B-cell leukemia. Proc Natl Acad Sci U S A 81: 7166-7170.

17. Vaux, D.L., S. Cory, and J.M. Adams (1988). Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335: 440-442.

18. Tsujimoto, Y., and C.M. Croce (1986). Analysis of the structure, transcripts, and protein products of bcl-2, the gene involved in human follicular lymphoma. Proc Natl Acad Sci U S A 83: 5214-5218.

19. Jansen, B., W.H. Schlagbauer, B.D. Brown, R.N. Bryan, E.A. van, M. Muller, K. Wolff, H.G. Eichler, and H. Pehamberger (1998). bcl-2 antisense therapy chemosensitizes human melanoma in SCID mice. Nat Med 4: 232-234.

20. Chao, D.T., and S.J. Korsmeyer (1998). BCL-2 FAMILY: Regulators of Cell Death. Annu. Rev. Immunol. 16: 395-419.


21. Korsmeyer, S.J., J.R. Shutter, D.J. Veis, D.E. Merry, and Z.N. Oltvai (1993). Bcl-2/Bax: a rheostat that regulates an anti-oxidant pathway and cell death. Semin Cancer Biol 4: 327-332.

22. Yin, X.M., Z.N. Oltval, and S.J. Korsmeyer (1994). BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax [see comments]. Nature 369: 321-323.

23. Boise, L.H., G.M. Gonzalez, C.E. Postema, L. Ding, T. Lindsten, L.A. Turka, X. Mao, G. Nunez, and C.B. Thompson (1993). bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74: 597-608.

24. Muchmore, S.W., M. Sattler, H. Liang, R.P. Meadows, J.E. Harlan, H.S. Yoon, D. Nettesheim, B.S. Chang, C.B. Thompson, S.L. Wong, S.L. Ng, and S.W. Fesik (1996). X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381: 335-341.

25. Apte, S.S., M.G. Mattei, and B.R. Olsen (1995). Mapping of the human BAX gene to chromosome 19q13.3-q13.4 and isolation of a novel alternatively spliced transcript, BAX delta. Genomics 26: 592-594.

26. Cheng, E.H., B. Levine, L.H. Boise, C.B. Thompson, and J.M. Hardwick (1996). Bax-independent inhibition of apoptosis by Bcl-XL. Nature 379: 554-556.

27. Knudson, C.M., and S.J. Korsmeyer (1997). Bcl-2 and Bax function independently to regulate cell death. Nat Genet 16: 358-363.

28. Knudson, C.M., K.S. Tung, W.G. Tourtellotte, G.A. Brown, and S.J. Korsmeyer (1995). Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270: 96-99.

29. Simonen, M., H. Keller, and J. Heim (1997). The BH3 domain of Bax is sufficient for interaction of Bax with itself and with other family members and it is required for induction of apoptosis. Eur J Biochem 249: 85-91.

30. Srinivasula, S.M., M. Ahmad, T. Fernandes-Alnemri, and E.S. Alnemri (1998). Autoactivation of Procaspase-9 by Apaf-1-mediated oligomerisation. Molecular Cell: 949-957.

31. Oltvai, Z.N., C.L. Milliman, and S.J. Korsmeyer (1993). Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74: 609-619.

32. Zha, H., and J.C. Reed (1997). Heterodimerization-independent functions of cell death regulatory proteins Bax and Bcl-2 in yeast and mammalian cells. J Biol Chem 272: 31482-31488.

33. Sattler, M., H. Liang, D. Nettesheim, R.P. Meadows, J.E. Harlan, M. Eberstadt, H.S. Yoon, S.B. Shuker, B.S. Chang, A.J. Minn, C.B. Thompson, and S.W. Fesik (1997). Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science 275: 983-986.

34. Hsu, S.Y., A. Kaipia, E. McGee, M. Lomeli, and A.J. Hsueh (1997). Bok is a pro-apoptotic Bcl-2 protein with restricted expression in reproductive tissues and heterodimerizes with selective anti-apoptotic Bcl-2 family members. Proc Natl Acad Sci U S A 94: 12401-12406.

35. Krajewski, S., M. Krajewska, A. Shabaik, H.G. Wang, S. Irie, L. Fong, and J.C. Reed (1994). Immunohistochemical analysis of in vivo patterns of Bcl-X expression. Cancer Res 54: 5501-5507.

36. Blagosklonny, M.V., P. Giannakakou, D.W. el, D.G. Kingston, P.I. Higgs, L. Neckers, and T. Fojo (1997). Raf-1/bcl-2 phosphorylation: a step from microtubule damage to cell death. Cancer Res 57: 130-135.

37. Bardelli, A., P. Longati, D. Albero, S. Goruppi, C. Schneider, C. Ponzetto, and P.M. Comoglio (1996). HGF receptor associates with the anti-apoptotic protein BAG-1 and prevents cell death. Embo J 15: 6205-6212.

38. Chang, B.S., A.J. Minn, S.W. Muchmore, S.W. Fesik, and C.B. Thompson (1997). Identification of a novel regulatory domain in Bcl-X(L) and Bcl-2. Embo J 16: 968-977.

39. Clem, R.J., E.H. Cheng, C.L. Karp, D.G. Kirsch, K. Ueno, A. Takahashi, M.B. Kastan, D.E. Griffin, W.C. Earnshaw, M.A. Veliuona, and J.M. Hardwick (1998). Modulation of cell death by Bcl-XL through caspase interaction. Proc Natl Acad Sci U S A 95: 554-559.

40. Cheng, E.H., D.G. Kirsch, R.J. Clem, R. Ravi, M.B. Kastan, A. Bedi, K. Ueno, and J.M. Hardwick (1997). Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 278: 1966-1968.


41. Reed, J.C. (1997). Double identity for proteins of the Bcl-2 family. Nature 387: 773-776.

42. Hockenbery, D., G. Nunez, C. Milliman, R.D. Schreiber, and S.J. Korsmeyer (1990). Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348: 334-336.

43. Alnemri, E.S. (1997). Mammalian cell death proteases: a family of highly conserved aspartate specific cysteine proteases. J Cell Biochem 64: 33-42.

44. Han, Z., E.A. Hendrickson, T.A. Bremner, and J.H. Wyche (1997). A sequential two-step mechanism for the production of the mature p17:p12 form of caspase-3 in vitro. J Biol Chem 272: 13432-13436.

45. Kuida, K., T.S. Zheng, S. Na, C. Kuan, D. Yang, H. Karasuyama, P. Rakic, and R.A. Flavell (1996). Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384: 368-372.

46. Villa, P., S.H. Kaufmann, and W.C. Earnshaw (1997). Caspases and caspase inhibitors. Trends Biochem Sci 22: 388-393.

47. Casciola, R.L., D.W. Nicholson, T. Chong, K.R. Rowan, N.A. Thornberry, D.K. Miller, and A. Rosen (1996). Apopain/CPP32 cleaves proteins that are essential for cellular repair: a fundamental principle of apoptotic death. J Exp Med 183: 1957-1964.

48. Casciola, R.L., G.J. Anhalt, and A. Rosen (1995). DNA-dependent protein kinase is one of a subset of autoantigens specifically cleaved early during apoptosis. J Exp Med 182: 1625-1634.

49. Emoto, Y., Y. Manome, G. Meinhardt, H. Kisaki, S. Kharbanda, M. Robertson, T. Ghayur, W.W. Wong, R. Kamen, R. Weichselbaum (1995). Proteolytic activation of protein kinase C delta by an ICE-like protease in apoptotic cells. Embo J 14: 6148-6156.

50. Erhardt, P., K.J. Tomaselli, and G.M. Cooper (1997). Identification of the MDM2 oncoprotein as a substrate for CPP32-like apoptotic proteases. J Biol Chem 272: 15049-15052.

51. Janicke, R.U., P.A. Walker, X.Y. Lin, and A.G. Porter (1996). Specific cleavage of the retinoblastoma protein by an ICE-like protease in apoptosis. Embo J 15: 6969-6978.

52. Mashima, T., M. Naito, K. Noguchi, D.K. Miller, D.W. Nicholson, and T.R.A. Tsuruo (1997). Actin cleavage by cpp 32/apopain during the development of apoptosis. Oncogene. Mar 14: 1007-1012.

53. Sakahira, H., M. Enari, and S. Nagata (1998). Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391: 96-99.

54. Liu, X., H. Zou, C. Slaughter, and X. Wang (1997). DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89: 175-184.

55. Enari, M., H. Sakahira, H. Yokoyama, K. Okawa, A. Iwamatsu, and S. Nagata (1998). A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391: 43-50.

56. Zou, H., W.J. Henzel, X. Liu, A. Lutschg, and X. Wang (1997). Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3 [see comments]. Cell 90: 405-413.

57. Spector, M.S., S. Desnoyers, D.J. Hoeppner, and M.O. Hengartner (1997). Interaction between the C. elegans cell-death regulators CED-9 and CED-4. Nature 385: 653-656.

58. Liu, X., C.N. Kim, J. Yang, R. Jemmerson, and X. Wang (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86: 147-157.

59. Kluck, R.M., W.E. Bossy, D.R. Green, and D.D. Newmeyer (1997). The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis [see comments]. Science 275: 1132-1136.

60. Kluck, R.M., S.J. Martin, B.M. Hoffman, J.S. Zhou, D.R. Green, and D.D. Newmeyer (1997). Cytochrome c activation of CPP32-like proteolysis plays a critical role in a Xenopus cell-free apoptosis system. Embo J 16: 4639-4649.

61. Bossy, W.E., D.D. Newmeyer, and D.R. Green (1998). Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. Embo J 17: 37-49.


62. Kim, C.N., X. Wang, Y. Huang, A.M. Ibrado, L. Liu, G. Fang, and K. Bhalla (1997). Overexpression of Bcl-X(L) inhibits Ara-C-induced mitochondrial loss of cytochrome c and other perturbations that activate the molecular cascade of apoptosis. Cancer Res 57: 3115-3120.

63. Rosse, T., R. Olivier, L. Monney, M. Rager, S. Conus, I. Fellay, B. Jansen, and C. Borner (1998). Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature 391: 496-499.

64. Hockenbery, D.M., Z.N. Oltvai, X.M. Yin, C.L. Milliman, and S.J. Korsmeyer (1993). Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75: 241-251.

65. Krammer, P.H., I. Behrmann, P. Daniel, J. Dhein, and K.M. Debatin (1994). Regulation of apoptosis in the immune system. Curr Opin Immunol 6: 279-289.

66. Itoh, N., S. Yonehara, A. Ishii, M. Yonehara, S. Mizushima, M. Sameshima, A. Hase, Y. Seto, and S. Nagata (1991). The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66: 233-243.

67. Mayumi, M., V. Ohshima, D. Hata, K.M. Kim, T. Heike, K. Katamura, and K. Furusho (1995). Igm mediated b cell apoptosis. Critical Reviews In Immunology 15: 255-269.

68. Melamed, D., R.J. Benschop, J.C. Cambier, and D. Nemazee (1998). Developmental regulation of B lymphocyte immune tolerance compartmentalizes clonal selection from receptor selection. Cell 92: 173-182.

69. Melchers, F., H. Karasuyama, D. Haasner, S. Bauer, A. Kudo, N. Sakaguchi, B. Jameson, and A. Rolink (1993). The surrogate light chain in B cell development. Immunol. Today 14: 60-68.

70. Ishida, Y., G. Ueda, K. Noguchi, R. Nagasawa, S. Hirose, H. Sato, and T. Shirai (1987). Unique cell surface phenotypes of proliferating lymphocytes in mice homozygous for lpr and gld mutations, defined by monoclonal antibodies to MRL/Mp-lpr/lpr T cells. Cell Immunol 105: 136-416.

71. Roths, J.B., E.D. Murphy, and E.M. Eicher (1984). A new mutation, gld, that produces lymphoproliferation and autoimmunity in C3H/HeJ mice. J Exp Med 159: 1-20.

72. Itoh, N., and S. Nagata (1993). A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen. J Biol Chem 268: 10932-10937.

73. Chinnaiyan, A.M., K. O'Rourke, M. Tewari, and V.M. Dixit (1995). FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81: 505-512.

74. Boldin, M.P., T.M. Goncharov, Y.V. Goltsev, and D. Wallach (1996). Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85: 803-815.

75. Hu, S., C. Vincenz, J. Ni, R. Gentz, and V.M. Dixit (1997). I-FLICE, a novel inhibitor of tumor necrosis factor receptor-1- and CD-95-induced apoptosis. J Biol Chem 272: 17255-17257.

76. Irmler, M., M. Thome, M. Hahne, P. Schneider, K. Hofmann, V. Steiner, J.L. Bodmer, M. Schroter, K. Burns, C. Mattmann, D. Rimoldi, L.E. French, and J. Tschopp (1997). Inhibition of death receptor signals by cellular FLIP. Nature 388: 190-195.

77. Opstelten, D. (1996). B lymphocyte development and transcription regulation in vivo. Adv Immunol 63: 197-268.

78. Cambier, J.C., C.M. Pleiman, and M.R. Clark (1994). Signal transduction by the B cell antigen receptor and its coreceptors. Annu Rev Immunol 12: 457-486.

79. Lutz, C., B. Ledermann, V.M. Kosco, A.F. Ochsenbein, R.M. Zinkernagel, G. Kohler, and F. Brombacher (1998). IgD can largely substitute for loss of IgM function in B cells. Nature 393: 797-801.

80. Reth, M., and J. Wienands (1997). Initiation and processing of signals from the B cell antigen receptor. Annu Rev Immunol 15: 453-479.

81. DeFranco, A.L. (1997). The complexity of signaling pathways activated by the BCR. Curr Opin Immunol 9: 296-08.


82. Scott, D.W., D. Livnat, J. Whitin, S.B. Dillon, R. Snyderman, and C.A. Pennell (1987). Lymphoma models for B cell activation and tolerance. V. Anti-Ig mediated growth inhibition is reversed by phorbol myristate acetate but does not involve changes in cytosolic free calcium. J Mol Cell Immunol 3: 109-120.

83. Bonnefoy, B.N., A. Munshi, I. Yron, S. Wu, T.L. Collins, M. Deckert, B.T. Shalom, L. Giampa, E. Herbert, J. Hernandez, N. Meller, C. Couture, and A. Altman (1996). Vav: function and regulation in hematopoietic cell signaling. Stem Cells 14: 250-268.

84. Bustelo, X.R., and M. Barbacid (1992). Tyrosine phosphorylation of the vav proto-oncogene product in activated B cells. Science 256: 1196-1199.

85. Yamanashi, Y., M. Okada, T. Semba, T. Yamori, H. Umemori, S. Tsunasawa, K. Toyoshima, D. Kitamura, T. Watanabe, and T. Yamamoto (1993). Identification of HS1 protein as a major substrate of protein-tyrosine kinase(s) upon B-cell antigen receptor-mediated signaling. Proc Natl Acad Sci U S A 90: 3631-3635.

86. Benhamou, L.E., P.A. Cazenave, and P. Sarthou (1990). Anti-immunoglobulins induce death by apoptosis in WEHI-231 B lymphoma cells. Eur J Immunol 20: 1405-1407.

87. LoCascio, N.J., G. Haughton, L.W. Arnold, and R.B. Corley (1984). Role of cell surface immunoglobulin in B-lymphocyte activation. Proc Natl Acad Sci U S A 81: 2466-2469.

88. Scott, D.W., D. Livnat, C.A. Pennell, and P. Keng (1986). Lymphoma models for B cell activation and tolerance. III. Cell cycle dependence for negative signalling of WEHI-231 B lymphoma cells by anti-mu. J Exp Med 164: 156-164.

89. Joseph, L.F., S. Ezhevsky, and D.W. Scott (1995). Lymphoma models for B-cell activation and tolerance: anti-immunoglobulin M treatment induces growth arrest by preventing the formation of an active kinase complex which phosphorylates retinoblastoma gene product in G1. Cell Growth Differ 6: 51-57.

90. Ales, M.J., D.W. Scott, R.P. Phipps, J.E. Casnellie, G. Kroemer, C. Martinez, and L. Pezzi (1992). Cross-linking of surface IgM or IgD causes differential biological effects in spite of overlap in tyrosine (de)phosphorylation profile. Eur J Immunol 22: 845-850.

91. Fischer, G., S.C. Kent, L. Joseph, D.R. Green, and D.W. Scott (1994). Lymphoma models for B cell activation and tolerance. X. Anti-mu-mediated growth arrest and apoptosis of murine B cell lymphomas is prevented by the stabilization of myc. J Exp Med 179: 221-228.

92. McCormack, J.E., V.H. Pepe, R.B. Kent, M. Dean, R.A. Marshak, and G.E. Sonenshein (1984). Specific regulation of c-myc oncogene expression in a murine B-cell lymphoma. Proc Natl Acad Sci U S A 81: 5546-5550.

93. Mapara, M.Y., P. Weinmann, K. Bommert, P.T. Daniel, R. Bargou, and B. Dorken (1995). Involvement of NAK-1, the human nur77 homologue, in surface IgM-mediated apoptosis in Burkitt lymphoma cell line BL41. Eur J Immunol 25: 2506-2510.

94. Liu, Z.G., S.W. Smith, K.A. McLaughlin, L.M. Schwartz, and B.A. Osborne (1994). Apoptotic signals delivered through the T-cell receptor of a T-cell hybrid require the immediate-early gene nur77. Nature 367: 281-284.

95. Bargou, R.C., K. Bommert, P. Weinmann, P.T. Daniel, C. Wagener, M.Y. Mapara, and B. Dörken (1995). Induction of Bax-alpha precedes apoptosis in a human B lymphoma cell line: potential role of the bcl-2 gene family in surface IgM-mediated apoptosis. Eur J Immunol 25: 770-775.

96. Sambrock, J., E.F. Fritsch, and T. Maniatis (1989). "Molecular cloning: a laboratory manual". Cold Sprin Harbor Laboratory Press.

97. Kroczek, R.A. (1993). Southern and northern analysis. J Chromatogr 618: 133-145.

98. Feinberg, A.P., and B. Vogelstein (1984). "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem 137: 266-267.

99. Saiki, R.K., D.H. Gelfand, S. Stoffel, S.J. Scharf, R. Higuchi, G.T. Horn, K.B. Mullis, and H.A. Erlich (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487-491.


100. Klose, J., and U. Kobalz (1995). Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis 16: 1034-1059.

101. Brockstedt, E., A. Rickers, S. Kostka, A. Laubersheimer, B. Dörken, B. Wittmann-Liebold, K. Bommert, and A. Otto (1998). Identification of Apoptosis-associated Proteins in a Human Burkitt Lymphoma Cell Line. Cleavage of hnRNP A1 by Caspase 3. J Biol Chem. 273: 28107.

102. Eckerskorn, C., P. Jungblut, W. Mewes, J. Klose, and F. Lottspeich (1988). Identification of mouse brain proteins after two-dimensional electrophoresis and electroblotting by microsequence analysis and amino acid composition analysis. Electrophoresis 9: 830-838.

103. Otto, A., B. Thiede, E.C. Muller, C. Scheler, L.B. Wittmann, and P. Jungblut (1996). Identification of human myocardial proteins separated by two-dimensional electrophoresis using an effective sample preparation for mass spectrometry. Electrophoresis 17: 1643-1650.

104. Schreiber, E., P. Matthias, M.M. Muller, and W. Schaffner (1989). Rapid detection of octamer binding proteins with 'mini-extracts', prepared from a small number of cells. Nucleic Acids Res 17: 6419.

105. Craig, R.W. (1995). The bcl-2 gene family. Semin Cancer Biol 6: 35-43.

106. Nagata, S., and P. Golstein (1995). The Fas death factor. Science 267: 1449-1456.

107. Koopman, G., C.P. Reutelingsperger, G.A. Kuijten, R.M. Keehnen, S.T. Pals, and M.H. van Oers (1994). Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84: 1415-1420.

108. Rao, L., D. Perez, and E. White (1996). Lamin proteolysis facilitates nuclear events during apoptosis. J Cell Biol: 1441-1455.

109. Gosser, Y.Q., T.K. Nomanbhoy, B. Aghazadeh, D. Manor, C. Combs, R.A. Cerione, and M.K. Rosen (1997). C-terminal binding domain of Rho GDP-dissociation inhibitor directs N-terminal inhibitory peptide to GTPases. Nature 387: 814-818.

110. Zhang, S., J. Han, M.A. Sells, J. Chernoff, U.G. Knaus, R.J. Ulevitch, and G.M. Bokoch (1995). Rho family GTPases regulate p38 mitogen-activated protein kinase through the downstream mediator Pak1. J Biol Chem 270: 23934-23936.

111. Coso, O.A., M. Chiariello, J.C. Yu, H. Teramoto, P. Crespo, N. Xu, T. Miki, and J.S. Gutkind (1995). The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 81: 1137-1146.

112. Danley, D.E., T.H. Chuang, and G.M. Bokoch (1996). Defective Rho GTPase regulation by IL-1 beta-converting enzyme-mediated cleavage of D4 GDP dissociation inhibitor. J Immunol 157: 500-503.

113. Burd, C.G., and G. Dreyfuss (1994). RNA binding specificity of hnRNP A1: significance of hnRNP A1 high-affinity binding sites in pre-mRNA splicing. Embo J 13: 1197-04.

114. Gorlach, M., C.G. Burd, D.S. Portman, and G. Dreyfuss (1993). The hnRNP proteins. Mol Biol Rep 18: 73-78.

115. Gorlach, M., C.G. Burd, and G. Dreyfuss (1994). The determinants of RNA-binding specificity of the heterogeneous nuclear ribonucleoprotein C proteins. J Biol Chem 269: 23074-23078.

116. Takimoto, M., T. Tomonaga, M. Matunis, M. Avigan, H. Krutzsch, G. Dreyfuss, and D. Levens (1993). Specific binding of heterogeneous ribonucleoprotein particle protein K to the human c-myc promoter, in vitro. J Biol Chem 268: 18249-18258.

117. Waterhouse, N., S. Kumar, Q. Song, P. Strike, L. Sparrow, G. Dreyfuss, E.S. Alnemri, G. Litwack, M. Lavin, and D. Watters (1996). Heteronuclear ribonucleoproteins C1 and C2, components of the spliceosome, are specific targets of interleukin 1beta-converting enzyme-like proteases in apoptosis. J Biol Chem 271: 29335-29341.

118. Izaurralde, E., A. Jarmolowski, C. Beisel, I.W. Mattaj, G. Dreyfuss, and U. Fischer (1997). A role for the M9 transport signal of hnRNP A1 in mRNA nuclear export. J Cell Biol 137: 27-35.

119. Saffer, J.D., S.P. Jackson, and M.B. Annarella (1991). Developmental expression of Sp1 in the mouse. Mol Cell Biol 11: 2189-2199.


120. Kadonaga, J.T., A.J. Courey, J. Ladika, and R. Tjian (1988). Distinct regions of Sp1 modulate DNA binding and transcriptional activation. Science 242: 1566-1570.

121. Kadonaga, J.T., K.R. Carner, F.R. Masiarz, and R. Tjian (1987). Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell 51: 1079-1090.

122. Na, S., T.H. Chuang, A. Cunningham, T.G. Turi, J.H. Hanke, G.M. Bokoch, and D.E. Danley (1996). D4-GDI, a substrate of CPP32, is proteolyzed during Fas-induced apoptosis. J Biol Chem 271: 11209-11313.

123. Faleiro, L., R. Kobayashi, H. Fearnhead, and Y. Lazebnik (1997). Multiple species of CPP32 and Mch2 are the major active caspases present in apoptotic cells. Embo J 16: 2271-2281.

[Titelseite] [1] [2] [3] [4] [5] [6] [7] [Bibliographie] [Anhang] [Abkürzungsverzeichnis] [Selbständigkeitserklärung] [Lebenslauf] [Danksagung] [Anhang]

© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.

DiDi DTD Version 1.1
a subset from ETD-ML Version 1.1
Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML - Version erstellt am:
Fri Nov 26 14:02:57 1999