[Seite 65↓]

Literaturverzeichnis

[1]

Pienta, K. J. und Esper, P. S. (1993): Risk factors for prostate cancer, Ann.Intern.Med. 118 [10], Seite 793-803.

[2]

Robert - Koch - Institut:Tumorregister.URL: www.rki.de/GBE/KREBS/KREBS.HTM?/GBE/KREBS/SCHAETZUNG/KREBSNEUERKRANKUNGEN1998.HTM&1

[3]

Jemal, A.; Tiwari, R. C.; Murray, T.; Ghafoor, A.; Samuels, A.; Ward, E.; Feuer, E. J. und Thun, M. J. (2004): Cancer statistics, 2004, CA Cancer J Clin. 54 [1], Seite 8-29.

[4]

Hankey, B. F.; Feuer, E. J.; Clegg, L. X.; Hayes, R. B.; Legler, J. M.; Prorok, P. C.; Ries, L. A.; Merrill, R. M. und Kaplan, R. S. (1999): Cancer surveillance series: interpreting trends in prostate cancer--part I: Evidence of the effects of screening in recent prostate cancer incidence, mortality, and survival rates, J Natl.Cancer Inst. 91 [12], Seite 1017-1024.

[5]

Chybowski, F. M.; Keller, J. J.; Bergstralh, E. J. und Oesterling, J. E. (1991): Predicting radionuclide bone scan findings in patients with newly diagnosed, untreated prostate cancer: prostate specific antigen is superior to all other clinical parameters, J Urol. 145 [2], Seite 313-318.

[6]

Smith, D. S. und Catalona, W. J. (1994): The nature of prostate cancer detected through prostate specific antigen based screening, J Urol. 152 [5 Pt 2], Seite 1732-1736.

[7]

Harlan, L.; Brawley, O.; Pommerenke, F.; Wali, P. und Kramer, B. (1995): Geographic, age, and racial variation in the treatment of local/regional carcinoma of the prostate, J Clin.Oncol. 13 [1], Seite 93-100.

[8]

Johansson, J. E.; Adami, H. O.; Andersson, S. O.; Bergstrom, R.; Krusemo, U. B. und Kraaz, W. (1989): Natural history of localised prostatic cancer. A population-based study in 223 untreated patients, Lancet 1 [8642], Seite 799-803.

[9]

Walsh, P. C.; Partin, A. W. und Epstein, J. I. (1994): Cancer control and quality of life following anatomical radical retropubic prostatectomy: results at 10 years, J Urol. 152 [5 Pt 2], Seite 1831-1836.

[10]

Deger, S.; Boehmer, D.; Turk, I.; Roigas, J.; Wernecke, K. D.; Wiegel, T.; Hinkelbein, W.; Dinges, S.; Budach, V. und Loening, S. A. (2002): High dose rate brachytherapy of localized prostate cancer, Eur.Urol. 41 [4], Seite 420-426.

[11]

Zincke, H.; Oesterling, J. E.; Blute, M. L.; Bergstralh, E. J.; Myers, R. P. und Barrett, D. M. (1994): Long-term (15 years) results after radical prostatectomy for clinically localized (stage T2c or lower) prostate cancer, J Urol. 152 [5 Pt 2], Seite 1850-1857.

[12]

Carlin, B. I. und Andriole, G. L. (2000): The natural history, skeletal complications, and management of bone metastases in patients with prostate carcinoma, Cancer 88 [12 Suppl], Seite 2989-2994.

[13]

Whitmore, W. F., Jr. (1984): Natural history and staging of prostate cancer, Urol.Clin.North Am. 11 [2], Seite 205-220.

[14]

Nagase, H. und Woessner, J. F., Jr. (1999): Matrix metalloproteinases, J Biol.Chem. 274 [31], Seite 21491-21494.

[15]

Vihinen, P. und Kahari, V. M. (2002): Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets, Int.J Cancer 99 [2], Seite 157-166.

[16]

Barrett, A. J.; Rawlings, N. D. und Woessner, J. F., Jr. (1998): Handbook of Proteolytic Enzymes, San Diego, 0-12-079370-9.

[17]

Sterchi, E. E. und Stöcker, W. (1999): Proteolytic Enzymes - Tools and Targets, Seite 1-11, Springer- Verlag, 3-540-61233-5.

[18]

Hulboy, D. L.; Rudolph, L. A. und Matrisian, L. M. (1997): Matrix metalloproteinases as mediators of reproductive function, Mol.Hum.Reprod. 3 [1], Seite 27-45.

[19]

Bullard, K. M.; Lund, L.; Mudgett, J. S.; Mellin, T. N.; Hunt, T. K.; Murphy, B.; Ronan, J.; Werb, Z. und Banda, M. J. (1999): Impaired wound contraction in stromelysin-1-deficient mice, Ann.Surg. 230 [2], Seite 260-265.

[20]

Alexander, C. M.; Hansell, E. J.; Behrendtsen, O.; Flannery, M. L.; Kishnani, N. S.; Hawkes, S. P. und Werb, Z. (1996): Expression and function of matrix metalloproteinases and their inhibitors at the maternal-embryonic boundary during mouse embryo implantation, Development 122 [6], Seite 1723-1736.

[21]

Gearing, A. J.; Beckett, P.; Christodoulou, M.; Churchill, M.; Clements, J.; Davidson, A. H.; Drummond, A. H.; Galloway, W. A.; Gilbert, R. und Gordon, J. L. (1994): Processing of tumour necrosis factor-alpha precursor by metalloproteinases, Nature 370 [6490], Seite 555-557.

[22]

Dubois, B.; Starckx, S.; Pagenstecher, A.; Oord, J.; Arnold, B. und Opdenakker, G. (2002): Gelatinase B deficiency protects against endotoxin shock, Eur.J Immunol 32 [8], Seite 2163-2171.

[23]

Kim, J.; Yu, W.; Kovalski, K. und Ossowski, L. (1998): Requirement for specific proteases in cancer cell intravasation as revealed by a novel semiquantitative PCR-based assay, Cell 94 [3], Seite 353-362.

[24]

Lochter, A.; Galosy, S.; Muschler, J.; Freedman, N.; Werb, Z. und Bissell, M. J. (1997): Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells, J Cell Biol. 139 [7], Seite 1861-1872.

[25]

Ala-Aho, R.; Johansson, N.; Baker, A. H. und Kahari, V. M. (2002): Expression of collagenase-3 (MMP-13) enhances invasion of human fibrosarcoma HT-1080 cells, Int.J Cancer 97 [3], Seite 283-289.

[26]

Bernhard, E. J.; Gruber, S. B. und Muschel, R. J. (1994): Direct evidence linking expression of matrix metalloproteinase 9 (92-kDa gelatinase/collagenase) to the metastatic phenotype in transformed rat embryo cells, Proc.Natl.Acad.Sci.U.S.A 91 [10], Seite 4293-4297.

[27]

Werb, Z. (1997): ECM and cell surface proteolysis: regulating cellular ecology, Cell 91 [4], Seite 439-442.

[28]

Johnson, L. L.; Pavlovsky, A. G.; Johnson, A. R.; Janowicz, J. A.; Man, C. F.; Ortwine, D. F.; Purchase, C. F.; White, A. D. und Hupe, D. J. (2000): A rationalization of the acidic pH dependence for stromelysin-1 (Matrix metalloproteinase-3) catalysis and inhibition, J Biol.Chem. 275 [15], Seite 11026-11033.

[29]

Borkakoti, N. (1998): Matrix metalloproteases: variations on a theme, Prog.Biophys.Mol.Biol. 70 [1], Seite 7-94.

[30]

Van Wart, H. E. und Birkedal-Hansen, H. (1990): The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family, Proc.Natl.Acad.Sci.U.S.A 87 [14], Seite 5578-5582.

[31]

Sato, H.; Takino, T.; Okada, Y.; Cao, J.; Shinagawa, A.; Yamamoto, E. und Seiki, M. (1994): A matrix metalloproteinase expressed on the surface of invasive tumour cells, Nature 370 [6484], Seite 61-65.

[32]

Cox, G.; Steward, W. P. und O'Byrne, K. J. (1999): The plasmin cascade and matrix metalloproteinases in non-small cell lung cancer, Thorax 54 [2], Seite 169-179.

[33]

Woolley, D. E.; Roberts, D. R. und Evanson, J. M. (1976): Small molecular weight beta 1 serum protein which specifically inhibits human collagenases, Nature 261 [5558], Seite 325-327.

[34]

Jiang, Y.; Goldberg, I. D. und Shi, Y. E. (2002): Complex roles of tissue inhibitors of metalloproteinases in cancer, Oncogene 21 [14], Seite 2245-2252.

[35]

Pavlaki, M. und Zucker, S. (2003): Matrix metalloproteinase inhibitors (MMPIs): the beginning of phase I or the termination of phase III clinical trials, Cancer Metastasis Rev. 22 [2-3], Seite 177-203.

[36]

Nuovo, G. J.; MacConnell, P. B.; Simsir, A.; Valea, F. und French, D. L. (1995): Correlation of the in situ detection of polymerase chain reaction- amplified metalloproteinase complementary DNAs and their inhibitors with prognosis in cervical carcinoma, Cancer Res. 55 [2], Seite 267-275.

[37]

Coussens, L. M. und Werb, Z. (1996): Matrix metalloproteinases and the development of cancer, Chem.Biol. 3 [11], Seite 895-904.

[38]

Goss, K. J.; Brown, P. D. und Matrisian, L. M. (1998): Differing effects of endogenous and synthetic inhibitors of metalloproteinases on intestinal tumorigenesis, Int.J.Cancer 78 [5], Seite 629-635.

[39]

Gasson, J. C.; Golde, D. W.; Kaufman, S. E.; Westbrook, C. A.; Hewick, R. M.; Kaufman, R. J.; Wong, G. G.; Temple, P. A.; Leary, A. C.; Brown, E. L. und . (1985): Molecular characterization and expression of the gene encoding human erythroid-potentiating activity, Nature 315 [6022], Seite 768-771.

[40]

DeClerck, Y. A. und Imren, S. (1994): Protease inhibitors: role and potential therapeutic use in human cancer, Eur.J Cancer 30A [14], Seite 2170-2180.

[41]

Wilson, C. L.; Heppner, K. J.; Labosky, P. A.; Hogan, B. L. und Matrisian, L. M. (1997): Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin, Proc.Natl.Acad.Sci.U.S.A 94 [4], Seite 1402-1407.

[42]

Khokha, R. und Denhardt, D. T. (1989): Matrix metalloproteinases and tissue inhibitor of metalloproteinases: a review of their role in tumorigenesis and tissue invasion, Invasion Metastasis 9 [6], Seite 391-405.

[43]

Hashimoto, K.; Kihira, Y.; Matuo, Y. und Usui, T. (1998): Expression of matrix metalloproteinase-7 and tissue inhibitor of metalloproteinase-1 in human prostate, J Urol. 160 [5], Seite 1872-1876.

[44]

Koop, S.; Khokha, R.; Schmidt, E. E.; MacDonald, I. C.; Morris, V. L.; Chambers, A. F. und Groom, A. C. (1994): Overexpression of metalloproteinase inhibitor in B16F10 cells does not affect extravasation but reduces tumor growth, Cancer Res. 54 [17], Seite 4791-4797.

[45]

Wojtowicz-Praga, S. M.; Dickson, R. B. und Hawkins, M. J. (1997): Matrix metalloproteinase inhibitors, Invest New Drugs 15 [1], Seite 61-75.

[46]

Grant, G. M.; Giambernardi, T. A.; Grant, A. M. und Klebe, R. J. (1999): Overview of expression of matrix metalloproteinases (MMP-17, MMP-18, and MMP-20) in cultured human cells, Matrix Biol. 18 [2], Seite 145-148.

[47]

Greene, G. F.; Kitadai, Y.; Pettaway, C. A.; von Eschenbach, A. C.; Bucana, C. D. und Fidler, I. J. (1997): Correlation of metastasis-related gene expression with metastatic potential in human prostate carcinoma cells implanted in nude mice using an in situ messenger RNA hybridization technique, Am.J Pathol. 150 [5], Seite 1571-1582.

[48]

Wilson, M. J.; Sellers, R. G.; Wiehr, C.; Melamud, O.; Pei, D. und Peehl, D. M. (2002): Expression of matrix metalloproteinase-2 and -9 and their inhibitors, tissue inhibitor of metalloproteinase-1 and -2, in primary cultures of human prostatic stromal and epithelial cells, J Cell Physiol 191 [2], Seite 208-216.

[49]

Zhang, J.; Jung, K.; Lein, M.; Kristiansen, G.; Rudolph, B.; Hauptmann, S.; Schnorr, D.; Loening, S. A. und Lichtinghagen, R. (2002): Differential expression of matrix metalloproteinases and their tissue inhibitors in human primary cultured prostatic cells and malignant prostate cell lines, Prostate 50 [1], Seite 38-45.

[50]

Li, H.; Fang, W. und Zheng, J. (1998): [Zymographic analysis of MMPs in human carcinoma cell lines with different metastasis potential], Zhonghua Bing.Li Xue.Za Zhi. 27 [5], Seite 341-343.

[51]

Powell, W. C.; Fingleton, B.; Wilson, C. L.; Boothby, M. und Matrisian, L. M. (1999): The metalloproteinase matrilysin proteolytically generates active soluble Fas ligand and potentiates epithelial cell apoptosis, Curr.Biol. 9 [24], Seite 1441-1447.

[52]

Sanchez-Sweatman, O. H.; Orr, F. W. und Singh, G. (2000): Human metastatic prostate PC3 cell lines degrade bone using matrix metalloproteinases [In Process Citation], Invasion Metastasis 18 [5-6], Seite 297-305.

[53]

Sternlicht, M. D.; Lochter, A.; Sympson, C. J.; Huey, B.; Rougier, J. P.; Gray, J. W.; Pinkel, D.; Bissell, M. J. und Werb, Z. (1999): The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis, Cell 98 [2], Seite 137-146.

[54]

Kolkhorst, V.; Sturzebecher, J. und Wiederanders, B. (1998): Inhibition of tumour cell invasion by protease inhibitors: correlation with the protease profile, J.Cancer Res.Clin.Oncol. 124 [11], Seite 598-606.

[55]

Codony-Servat, J.; Albanell, J.; Lopez-Talavera, J. C.; Arribas, J. und Baselga, J. (1999): Cleavage of the HER2 ectodomain is a pervanadate-activable process that is inhibited by the tissue inhibitor of metalloproteases-1 in breast cancer cells, Cancer Res. 59 [6], Seite 1196-1201.

[56]

Dong, J.; Opresko, L. K.; Dempsey, P. J.; Lauffenburger, D. A.; Coffey, R. J. und Wiley, H. S. (1999): Metalloprotease-mediated ligand release regulates autocrine signaling through the epidermal growth factor receptor, Proc.Natl.Acad.Sci U.S.A 96 [11], Seite 6235-6240.

[57]

Festuccia, C.; Bologna, M.; Vicentini, C.; Tacconelli, A.; Miano, R.; Violini, S. und Mackay, A. R. (1996): Increased matrix metalloproteinase-9 secretion in short-term tissue cultures of prostatic tumor cells, Int.J Cancer 69 [5], Seite 386-393.

[58]

Hamdy, F. C.; Fadlon, E. J.; Cottam, D.; Lawry, J.; Thurrell, W.; Silcocks, P. B.; Anderson, J. B.; Williams, J. L. und Rees, R. C. (1994): Matrix metalloproteinase 9 expression in primary human prostatic adenocarcinoma and benign prostatic hyperplasia, Br J Cancer 69 [1], Seite 177-182.

[59]

Knox, J. D.; Wolf, C.; McDaniel, K.; Clark, V.; Loriot, M.; Bowden, G. T. und Nagle, R. B. (1996): Matrilysin expression in human prostate carcinoma, Mol.Carcinog. 15 [1], Seite 57-63.

[60]

Stearns, M. und Stearns, M. E. (1996): Evidence for increased activated metalloproteinase 2 (MMP-2a) expression associated with human prostate cancer progression, Oncol.Res. 8 [2], Seite 69-75.

[61]

Stearns, M. E. und Stearns, M. (1996): Immunohistochemical studies of activated matrix metalloproteinase-2 (MMP-2a)expression in human prostate cancer, Oncol.Res. 8 [2], Seite 63-67.

[62]

Still, K.; Robson, C. N.; Autzen, P.; Robinson, M. C. und Hamdy, F. C. (2000): Localization and quantification of mRNA for matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) in human benign and malignant prostatic tissue, Prostate 42 [1], Seite 18-25.

[63]

Wood, M.; Fudge, K.; Mohler, J. L.; Frost, A. R.; Garcia, F.; Wang, M. und Stearns, M. E. (1997): In situ hybridization studies of metalloproteinases 2 and 9 and TIMP-1 and TIMP-2 expression in human prostate cancer, Clin.Exp.Metastasis 15 [3], Seite 246-258.

[64]

Festuccia, C.; Giunciuglio, D.; Guerra, F.; Villanova, I.; Angelucci, A.; Manduca, P.; Teti, A.; Albini, A. und Bologna, M. (1999): Osteoblasts modulate secretion of urokinase-type plasminogen activator (uPA) and matrix metalloproteinase-9 (MMP-9) in human prostate cancer cells promoting migration and matrigel invasion, Oncol.Res. 11 [1], Seite 17-31.

[65]

Hiraoka, N.; Allen, E.; Apel, I. J.; Gyetko, M. R. und Weiss, S. J. (1998): Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins, Cell 95 [3], Seite 365-377.

[66]

Masson, R.; Lefebvre, O.; Noel, A.; Fahime, M. E.; Chenard, M. P.; Wendling, C.; Kebers, F.; LeMeur, M.; Dierich, A.; Foidart, J. M.; Basset, P. und Rio, M. C. (1998): In vivo evidence that the stromelysin-3 metalloproteinase contributes in a paracrine manner to epithelial cell malignancy, J.Cell Biol. 140 [6], Seite 1535-1541.

[67]

McKerrow, J. H.; Bhargava, V.; Hansell, E.; Huling, S.; Kuwahara, T.; Matley, M.; Coussens, L. und Warren, R. (2000): A functional proteomics screen of proteases in colorectal carcinoma, Mol.Med. 6 [5], Seite 450-460.

[68]

Knox, J. D.; Bretton, L.; Lynch, T.; Bowden, G. T. und Nagle, R. B. (1998): Synthetic matrix metalloproteinase inhibitor, BB-94, inhibits the invasion of neoplastic human prostate cells in a mouse model, Prostate 35 [4], Seite 248-254.

[69]

Hofmann, U. B.; Westphal, J. R.; Zendman, A. J.; Becker, J. C.; Ruiter, D. J. und van Muijen, G. N. (2000): Expression and activation of matrix metalloproteinase-2 (MMP-2) and its co-localization with membrane-type 1 matrix metalloproteinase (MT1-MMP) correlate with melanoma progression, J Pathol. 191 [3], Seite 245-256.

[70]

Zervos, E. E.; Shafii, A. E. und Rosemurgy, A. S. (1999): Matrix metalloproteinase (MMP) inhibition selectively decreases type II MMP activity in a murine model of pancreatic cancer, J.Surg.Res. 81 [1], Seite 65-68.

[71]

Lokeshwar, B. L. (1999): MMP inhibition in prostate cancer, Ann.N.Y.Acad.Sci. 878, Seite 271-289.

[72]

Nemeth, J. A.; Yousif, R.; Herzog, M.; Che, M.; Upadhyay, J.; Shekarriz, B.; Bhagat, S.; Mullins, C.; Fridman, R. und Cher, M. L. (2002): Matrix metalloproteinase activity, bone matrix turnover, and tumor cell proliferation in prostate cancer bone metastasis, J Natl.Cancer Inst. 94 [1], Seite 17-25.

[73]

Sternlicht, M. D.; Bissell, M. J. und Werb, Z. (2000): The matrix metalloproteinase stromelysin-1 acts as a natural mammary tumor promoter, Oncogene 19 [8], Seite 1102-1113.

[74]

Fingleton, B. M.; Heppner Goss, K. J.; Crawford, H. C. und Matrisian, L. M. (1999): Matrilysin in early stage intestinal tumorigenesis, APMIS 107 [1], Seite 102-110.

[75]

Cockett, M. I.; Murphy, G.; Birch, M. L.; O'Connell, J. P.; Crabbe, T.; Millican, A. T.; Hart, I. R. und Docherty, A. J. (1998): Matrix metalloproteinases and metastatic cancer, Biochem.Soc.Symp. 63, Seite 295-313.

[76]

Parsons, S. L.; Watson, S. A.; Collins, H. M.; Griffin, N. R.; Clarke, P. A. und Steele, R. J. (1998): Gelatinase (MMP-2 and -9) expression in gastrointestinal malignancy, Br.J.Cancer 78 [11], Seite 1495-1502.

[77]

Lein, M.; Nowak, L.; Jung, K.; Koenig, F.; Schnorr, D. und Loening, S. A. (1998): [Metalloproteinases (MMP-1, MMP-3) and their inhibitors (TIMP) in blood plasma of patients with prostate carcinoma], Urologe A 37 [4], Seite 377-381.

[78]

Ahmad, A.; Hanby, A.; Dublin, E.; Poulsom, R.; Smith, P.; Barnes, D.; Rubens, R.; Anglard, P. und Hart, I. (1998): Stromelysin 3: an independent prognostic factor for relapse-free survival in node-positive breast cancer and demonstration of novel breast carcinoma cell expression, Am.J Pathol. 152 [3], Seite 721-728.

[79]

Reich, R.; Thompson, E. W.; Iwamoto, Y.; Martin, G. R.; Deason, J. R.; Fuller, G. C. und Miskin, R. (1988): Effects of inhibitors of plasminogen activator, serine proteinases, and collagenase IV on the invasion of basement membranes by metastatic cells, Cancer Res. 48 [12], Seite 3307-3312.

[80]

Davies, B.; Brown, P. D.; East, N.; Crimmin, M. J. und Balkwill, F. R. (1993): A synthetic matrix metalloproteinase inhibitor decreases tumor burden and prolongs survival of mice bearing human ovarian carcinoma xenografts [published erratum appears in Cancer Res 1993 Aug 1;53(15):3652], Cancer Res. 53 [9], Seite 2087-2091.

[81]

Santos, O.; McDermott, C. D.; Daniels, R. G. und Appelt, K. (1997): Rodent pharmacokinetic and anti-tumor efficacy studies with a series of synthetic inhibitors of matrix metalloproteinases, Clin.Exp.Metastasis 15 [5], Seite 499-508.

[82]

Shalinsky, D. R.; Brekken, J.; Zou, H.; Bloom, L. A.; McDermott, C. D.; Zook, S.; Varki, N. M. und Appelt, K. (1999): Marked antiangiogenic and antitumor efficacy of AG3340 in chemoresistant human non-small cell lung cancer tumors: single agent and combination chemotherapy studies, Clin.Cancer Res. 5 [7], Seite 1905-1917.

[83]

Bu, W.; Tang, Z. Y.; Sun, F. X.; Ye, S. L.; Liu, K. D.; Xue, Q.; Chen, J. und Gao, D. M. (1998): Effects of matrix metalloproteinase inhibitor BB-94 on liver cancer growth and metastasis in a patient-like orthotopic model LCI-D20, Hepatogastroenterology. 45 [22], Seite 1056-1061.

[84]

Giavazzi, R.; Garofalo, A.; Ferri, C.; Lucchini, V.; Bone, E. A.; Chiari, S.; Brown, P. D.; Nicoletti, M. I. und Taraboletti, G. (1998): Batimastat, a synthetic inhibitor of matrix metalloproteinases, potentiates the antitumor activity of cisplatin in ovarian carcinoma xenografts, CLIN.CANC.RES. 4/4 [985-992]-992.

[85]

Zervos, E. E.; Norman, J. G.; Gower, W. R.; Franz, M. G. und Rosemurgy, A. S. (1997): Matrix metalloproteinase inhibition attenuates human pancreatic cancer growth in vitro and decreases mortality and tumorigenesis in vivo, J.Surg.Res. 69 [2], Seite 367-371.

[86]

Sledge-GW, Jr; Qulali, M.; Goulet, R.; Bone, E. A. und Fife, R. (1995): Effect of matrix metalloproteinase inhibitor batimastat on breast cancer regrowth and metastasis in athymic mice, J.Natl.Cancer Inst. 87 [20], Seite 1546-1550.

[87]

Wang, X.; Fu, X.; Brown, P. D.; Crimmin, M. J. und Hoffman, R. M. (1994): Matrix metalloproteinase inhibitor BB-94 (batimastat) inhibits human colon tumor growth and spread in a patient-like orthotopic model in nude mice, Cancer Res. 54 [17], Seite 4726-4728.

[88]

Anderson, I. C.; Shipp, M. A.; Docherty, A. J. und Teicher, B. A. (1996): Combination therapy including a gelatinase inhibitor and cytotoxic agent reduces local invasion and metastasis of murine Lewis lung carcinoma, Cancer Res. 56 [4], Seite 715-718.

[89]

Macaulay, V. M.; O'Byrne, K. J.; Saunders, M. P.; Braybrooke, J. P.; Long, L.; Gleeson, F.; Mason, C. S.; Harris, A. L.; Brown, P. und Talbot, D. C. (1995): Phase I study of matrix metalloproteinase (MMP) inhibitor batimastat (BB-94) in patients with malignant pleural effusions., Br J Cancer 71(Suppl XXIV) [11(Abstr)].

[90]

Beattie, G. J., Young, H. A., and Smyth, J. F.:Phase I study of intraperitoneal metalloproteinase inhibitor BB-94 in patients with malignant ascites., 8th NCI-EORTC Symposium on New Drug Development, Amsterdam, March 1994.

[91]

Hidalgo, M. und Eckhardt, S. G. (2001): Development of matrix metalloproteinase inhibitors in cancer therapy, J Natl.Cancer Inst. 93 [3], Seite 178-193.

[92]

Rudek, M. A.; Figg, W. D.; Dyer, V.; Dahut, W.; Turner, M. L.; Steinberg, S. M.; Liewehr, D. J.; Kohler, D. R.; Pluda, J. M. und Reed, E. (2001): Phase I clinical trial of oral COL-3, a matrix metalloproteinase inhibitor, in patients with refractory metastatic cancer, J.Clin.Oncol. 19 [2], Seite 584-592.

[93]

Bayer Pharmaceutical Division:Bayer Halts Clinical Trials Evaluating MMPI.URL: www.bayerpharma-na.com/news/co0221.asp

[94]

Brown, P. D. und Giavazzi, R. (1995): Matrix metalloproteinase inhibition: a review of anti-tumour activity, Ann.Oncol. 6 [10], Seite 967-974.

[95]

Yip, D.; Ahmad, A.; Karapetis, C. S.; Hawkins, C. A. und Harper, P. G. (1999): Matrix metalloproteinase inhibitors: applications in oncology, Invest New Drugs 17 [4], Seite 387-399.

[96]

Heath, E. I. und Grochow, L. B. (2000): Clinical potential of matrix metalloprotease inhibitors in cancer therapy, Drugs 59 [5], Seite 1043-1055.

[97]

Coussens, L. M.; Fingleton, B. und Matrisian, L. M. (2002): Matrix metalloproteinase inhibitors and cancer: trials and tribulations, Science 295 [5564], Seite 2387-2392.

[98]

Aparicio, T.; Kermorgant, S.; Dessirier, V.; Lewin, M. J. und Lehy, T. (1999): Matrix metalloproteinase inhibition prevents colon cancer peritoneal carcinomatosis development and prolongs survival in rats, Carcinogenesis 20 [8], Seite 1445-1451.

[99]

Low, J. A.; Johnson, M. D.; Bone, E. A. und Dickson, R. B. (1996): The matrix metalloproteinase inhibitor batimastat (BB-94) retards human breast cancer solid tumor growth but not ascites formation in nude mice, Clin.Cancer Res. 2 [7], Seite 1207-1214.

[100]

Eccles, S. A.; Box, G. M.; Court, W. J.; Bone, E. A.; Thomas, W. und Brown, P. D. (1996): Control of lymphatic and hematogenous metastasis of a rat mammary carcinoma by the matrix metalloproteinase inhibitor batimastat (BB-94), Cancer Res. 56 [12], Seite 2815-2822.

[101]

Watson, S. A.; Morris, T. M.; Robinson, G.; Crimmin, M. J.; Brown, P. D. und Hardcastle, J. D. (1995): Inhibition of organ invasion by the matrix metalloproteinase inhibitor batimastat (BB-94) in two human colon carcinoma metastasis models, Cancer Res. 55 [16], Seite 3629-3633.

[102]

Taraboletti, G.; Garofalo, A.; Belotti, D.; Drudis, T.; Borsotti, P.; Scanziani, E.; Brown, P. D. und Giavazzi, R. (1995): Inhibition of angiogenesis and murine hemangioma growth by batimastat, a synthetic inhibitor of matrix metalloproteinases, J.Natl.Cancer Inst. 87 [4], Seite 293-298.

[103]

Chirivi, R. G.; Garofalo, A.; Crimmin, M. J.; Bawden, L. J.; Stoppacciaro, A.; Brown, P. D. und Giavazzi, R. (1994): Inhibition of the metastatic spread and growth of B16-BL6 murine melanoma by a synthetic matrix metalloproteinase inhibitor, Int.J.Cancer 58 [3], Seite 460-464.

[104]

Jimenez, R. E.; Hartwig, W.; Antoniu, B. A.; Compton, C. C.; Warshaw, A. L. und Fernandez-Del Castillo, C. (2000): Effect of matrix metalloproteinase inhibition on pancreatic cancer invasion and metastasis: an additive strategy for cancer control, Ann.Surg. 231 [5], Seite 644-654.

[105]

Erba, E.; Ronzoni, S.; Bassano, L.; Giavazzi, R. und D'Incalci, M. (1999): The metalloproteinase inhibitor batimastat (BB-94) causes cell cycle phase perturbations in ovarian cancer cells, Ann.Oncol. 10 [5], Seite 589-591.

[106]

Tonn, J. C.; Kerkau, S.; Hanke, A.; Bouterfa, H.; Mueller, J. G.; Wagner, S.; Vince, G. H. und Roosen, K. (1999): Effect of synthetic matrix-metalloproteinase inhibitors on invasive capacity and proliferation of human malignant gliomas in vitro, Int.J.Cancer 80 [5], Seite 764-772.

[107]

Stonelake, P. S.; Jones, C. E.; Neoptolemos, J. P. und Baker, P. R. (1997): Proteinase inhibitors reduce basement membrane degradation by human breast cancer cell lines, Br.J.Cancer 75 [7], Seite 951-959.

[108]

Parvathy, S.; Oppong, S. Y.; Karran, E. H.; Buckle, D. R.; Turner, A. J. und Hooper, N. M. (1997): Angiotensin-converting enzyme secretase is inhibited by zinc metalloprotease inhibitors and requires its substrate to be inserted in a lipid bilayer, Biochem.J. 327 ( Pt 1), Seite 37-43.

[109]

Beattie, G. J. und Smyth, J. F. (1998): Phase I study of intraperitoneal metalloproteinase inhibitor BB94 in patients with malignant ascites, Clin.Cancer Res. 4 [8], Seite 1899-1902.

[110]

Bramhall, S. R.; Hallissey, M. T.; Whiting, J.; Scholefield, J.; Tierney, G.; Stuart, R. C.; Hawkins, R. E.; McCulloch, P.; Maughan, T.; Brown, P. D.; Baillet, M. und Fielding, J. W. (2002): Marimastat as maintenance therapy for patients with advanced gastric cancer: a randomised trial, Br J Cancer 86 [12], Seite 1864-1870.

[111]

Lokeshwar, B. L.; Selzer, M. G.; Zhu, B. Q.; Block, N. L. und Golub, L. M. (2002): Inhibition of cell proliferation, invasion, tumor growth and metastasis by an oral non-antimicrobial tetracycline analog (COL-3) in a metastatic prostate cancer model, Int.J Cancer 98 [2], Seite 297-309.

[112]

Saad, F. Klotz L. Babaian R. Lacombe L. Champagne P. andDupont É.:Phase I/II trial on Æ-941 (Neovastat) in patients with metastatic refractory prostate cancer..URL: www.aeterna.com/aeterna/ang/search/search.asp?P=1&str=prostate

[113]

Wilding, G., Small, E, and Collier, M. (15-5-1999):A phase I pharmacokinetic evaluation of the matrix metalloprotease (MMP) inhibitor AG3340 in combination with mitoxantrone and prednisone in patients with advanced prostate cancer Atlanta, GA.URL: www.conference-cast.com/asco/abstract_frame.htm

[114]

Boasberg, P., Harbaugh, Eisenberger, M., Harris, J, Langleben, A., Ahmann, F., Roth.B., Berkheimer, M., and Rasmussen, H.:Marimastat in patients with hormone refractory prostate cancer: a dose-finding study. (Abstr. No. 1126).URL: www.conference-cast.com/asco/abstract_frame.htm

[115]

Eisenberger, M., Sinibaldi, V., Laufer, M., Carducci, M., Miller, C., Boasberg, P., Ahmann, F., and Roth.B. (2000):Phase-I/+ Pharmacokinetic Evaluation of Marimastat in Patients (PTS) with Advanced Prostate Cancer (PC): Identificataion of the Biologically Acitve Dose. (19).

[116]

Stone, K. R.; Mickey, D. D.; Wunderli, H.; Mickey, G. H. und Paulson, D. F. (1978): Isolation of a human prostate carcinoma cell line (DU 145), Int.J Cancer 21 [3], Seite 274-281.

[117]

Horoszewicz, J. S; Leong, S S.; Chu, T. M.; Wajsman, Z. L.; Friedman, M.; Papsidero, L.; Kim, U.; Chai, L. S.; Kakati, S.; Arya, S. k. und Sandberg, A. A. (1980): The LNCaP Cell Line - A New Model for Studies on Human Prostatic Carcinoma, Murphy, G. P., Models for Prostate Cancer , Seite 115-132, New York.

[118]

Kaighn, M. E.; Lechner, J. F.; Babcock, M. S.; Marnell, M.; Ohnuki, Y. und Narayan, K. S. (1980): The Pasadena Cell Lines, Murphy, G. P., Models for prostate Cancer , Seite 85-109, New York.

[119]

Lubaroff, D. M.; Canfield, L. und Reynolds, C. W. (1980): The Dunning Tumors, Murphy, G. P., Models for Prostate Cancer , Seite 243-263, New York.

[120]

Lucia, M. S.; Bostwick, D. G.; Bosland, M.; Cockett, A. T.; Knapp, D. W.; Leav, I.; Pollard, M.; Rinker, Schaeffer C.; Shirai, T. und Watkins, B. A. (1998): Workgroup I: rodent models of prostate cancer, Prostate 36 [1], Seite 49-55.

[121]

Wikstrom, P.; Lindh, G.; Bergh, A. und Damber, J. E. (1999): Alterations of transforming growth factor beta1 (TGF-beta1) and TGFbeta receptor expressions with progression in Dunning rat prostatic adenocarcinoma sublines, Urol.Res. 27 [3], Seite 185-193.

[122]

Blount, L. V. und Cooke, D. B., III (1996): Point mutations in the Ki-ras2 gene of codon 12 in the Dunning R-3327 Prostatic Adenocarcinoma system, Prostate 28 [1], Seite 44-50.

[123]

Rao, B. R.; Slotman, B. J.; Geldof, A. A. und Perez, C. A. (1991): Radiation sensitivity of Copenhagen rat prostatic carcinoma (R3327-AT and R3327-MATLyLu), Int.J.Radiat.Oncol.Biol.Phys. 20 [5], Seite 981-985.

[124]

Smolev, J. K.; Heston, W. D.; Scott, W. W. und Coffey, D. S. (1977): Characterization of the Dunning R3327H prostatic adenocarcinoma: an appropriate animal model for prostatic cancer, Cancer Treat.Rep. 61 [2], Seite 273-287.

[125]

Tennant, T. R.; Kim, H.; Sokoloff, M. und Rinker-Schaeffer, C. W. (2000): The Dunning model, Prostate 43 [4], Seite 295-302.

[126]

Garde, S. V.; Sheth, A. R.; Porter, A. T. und Pienta, K. J. (1993): A comparative study on expression of prostatic inhibin peptide, prostate acid phosphatase and prostate specific antigen in androgen independent human and rat prostate carcinoma cell lines, Cancer Lett. 70 [3], Seite 159-166.

[127]

Isaacs, J. T. (1996): The R-3327 System of Rat Prostatic Cancers, Urologic Oncology 2 [4], Seite 115-116.

[128]

Isaacs, J. T.; Yu, G. W. und Coffey, D. S. (1981): The characterization of a newly identified, highly metastatic variety of Dunning R 3327 rat prostatic adenocarcinoma system: the MAT LyLu tumor, Invest Urol. 19 [1], Seite 20-23.

[129]

Haggstrom, S.; Wikstrom, P.; Bergh, A. und Damber, J. E. (1998): Expression of vascular endothelial growth factor and its receptors in the rat ventral prostate and Dunning R3327 PAP adenocarcinoma before and after castration, Prostate 36 [2], Seite 71-79.

[130]

Steiner, M. S.; Zhou, Z. Z.; Tonb, D. C. und Barrack, E. R. (1994): Expression of transforming growth factor-beta 1 in prostate cancer, Endocrinology 135 [5], Seite 2240-2247.

[131]

Isaacs, J. T.; Isaacs, W. B.; Feitz, W. F. und Scheres, J. (1986): Establishment and characterization of seven Dunning rat prostatic cancer cell lines and their use in developing methods for predicting metastatic abilities of prostatic cancers, Prostate 9 [3], Seite 261-281.

[132]

Berridge, M. V.; Tan, A. S.; McCoy, K. D. und Wang, R. (1996): The Biochemical and Cellular Basis of Cell Proliferation Assays That Use Tetrazolium Salts, Biochemica 4, Seite 14-19.

[133]

Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro, Wolff A. und et, al (1991): Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines, J.Natl.Cancer Inst. 83 [11], Seite 757-766.

[134]

Plumb, J. A.; Milroy, R. und Kaye, S. B. (1989): Effects of the pH dependence of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide-formazan absorption on chemosensitivity determined by a novel tetrazolium-based assay, Cancer Res. 49 [16], Seite 4435-4440.

[135]

Romijn, J. C.; Verkoelen, C. F. und Schroeder, F. H. (1988): Application of the MTT assay to human prostate cancer cell lines in vitro: establishment of test conditions and assessment of hormone-stimulated growth and drug-induced cytostatic and cytotoxic effects, Prostate 12 [1], Seite 99-110.

[136]

Berridge, M. V. und Tan, A. S. (1993): Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction, Arch.Biochem.Biophys. 303 [2], Seite 474-482.

[137]

Skehan, P. (1998): Cytotoxicity and Cell Growth Assays, Celis, J. E., Cell Biology , Seite 313-318, 0-12-164726-9.

[138]

Bank, U.; Reinhold, D. und Ansorge, S. (1991): Messung der zellulären Aktivität mit Hilfe des MTT-Farbtests, Allerg Immunol 37, Seite 119-123.

[139]

Sieuwerts, A. M.; Klijn, J. G.; Peters, H. A. und Foekens, J. A. (1995): The MTT tetrazolium salt assay scrutinized: how to use this assay reliably to measure metabolic activity of cell cultures in vitro for the assessment of growth characteristics, IC50-values and cell survival, Eur.J.Clin.Chem.Clin.Biochem. 33 [11], Seite 813-823.

[140]

Freshney, R. I. (2000): Measurement of Viability and Cytotoxicity, Freshney, R. I., Culture of animal cells , 3. Auflage, Seite 287-307.

[141]

Holst-Hansen, C. und Brunner, N. (1998): MTT-Cell Proliferation Assay, Celis, J. E., Cell Biology , 2. Auflage, Seite 16-18, 0-12-164726-9.

[142]

Ravenna, L.; Lubrano, C.; Di, Silverio F.; Vacca, A.; Felli, M. P.; Maroder, M.; D'Eramo, G.; Sciarra, F.; Frati, L.; Gulino, A. und et, al (1995): Androgenic and antiandrogenic control on epidermal growth factor, epidermal growth factor receptor, and androgen receptor expression in human prostate cancer cell line LNCaP, Prostate 26 [6], Seite 290-298.

[143]

Watson, S. A.; Morris, T. M.; Parsons, S. L.; Steele, R. J. und Brown, P. D. (1996): Therapeutic effect of the matrix metalloproteinase inhibitor, batimastat, in a human colorectal cancer ascites model, Br.J.Cancer 74 [9], Seite 1354-1358.

[144]

Hanglow, A. C.; Lugo, A.; Walsky, R.; Finch-Arietta, M.; Lusch, L.; Visnick, M. und Fotouhi, N. (1993): Peptides based on the conserved predomain sequence of matrix metalloproteinases inhibit human stromelysin and collagenase, Agents Actions 39 Spec No, Seite C148-C150.

[145]

Jung, K.; Nowak, L.; Lein, M.; Priem, F.; Schnorr, D. und Loening, S. A. (1997): Matrix metalloproteinases 1 and 3, tissue inhibitor of metalloproteinase-1 and the complex of metalloproteinase-1/tissue inhibitor in plasma of patients with prostate cancer, Int.J Cancer 74 [2], Seite 220-223.

[146]

Baker, T.; Tickle, S.; Wasan, H.; Docherty, A.; Isenberg, D. und Waxman, J. (1994): Serum metalloproteinases and their inhibitors: markers for malignant potential, Br J Cancer 70 [3], Seite 506-512.

[147]

Boasberg, P., Harbaugh, B., Roth, B., Eisenberger, M., Langleben, A., Allen, R., and Rasmussen, H.:Marimastat, a novel matrix metalloproteinse inhibitor in patients with hormone-refractory prostate cancer (15).URL: www.asco.org/ac/1,1003,_12-002489-00_18-001996-00_19-009282-00_28-00RESULTPAGE,00.asp

[148]

Shaffer, D. R. und Scher, H. I. (2003): Prostate cancer: a dynamic illness with shifting targets, Lancet Oncol. 4 [7], Seite 407-414.

[149]

Matsuura, E.; Umehara, F.; Hashiguchi, T.; Fujimoto, N.; Okada, Y. und Osame, M. (2000): Marked increase of matrix metalloproteinase 9 in cerebrospinal fluid of patients with fungal or tuberculous meningoencephalitis, J Neurol.Sci. 173 [1], Seite 45-52.

[150]

Zucker, S.; Hymowitz, M.; Conner, C.; Zarrabi, H. M.; Hurewitz, A. N.; Matrisian, L.; Boyd, D.; Nicolson, G. und Montana, S. (1999): Measurement of matrix metalloproteinases and tissue inhibitors of metalloproteinases in blood and tissues. Clinical and experimental applications, Ann.N.Y.Acad.Sci. 878, Seite 212-227.

[151]

Jiang, Y.; Wang, M.; Celiker, M. Y.; Liu, Y. E.; Sang, Q. X.; Goldberg, I. D. und Shi, Y. E. (2001): Stimulation of mammary tumorigenesis by systemic tissue inhibitor of matrix metalloproteinase 4 gene delivery, Cancer Res. 61 [6], Seite 2365-2370.

[152]

Hanemaaijer, R.; Verheijen, J. H.; Maguire, T. M.; Visser, H.; Toet, K.; McDermott, E.; O'Higgins, N. und Duffy, M. J. (2000): Increased gelatinase-A and gelatinase-B activities in malignant vs. benign breast tumors, Int.J Cancer 86 [2], Seite 204-207.

[153]

Kuniyasu, H.; Troncoso, P.; Johnston, D.; Bucana, C. D.; Tahara, E.; Fidler, I. J. und Pettaway, C. A. (2000): Relative expression of type IV collagenae, E-cadherin, and vascular endothelial growth factor/vascular permeability factor in prostatectomy specimens distinguishes organ-confined from pathologically advanced prostate cancers [In Process Citation], Clin.Cancer Res. 6 [6], Seite 2295-2308.

[154]

Nakanishi, K.; Kawai, T.; Sato, H.; Aida, S.; Kasamatsu, H.; Aurues, T. und Ikeda, T. (2000): Expression of matrix metalloproteinase-2 (MMP-2) and of membrane-type-1-matrix metalloproteinase (MT1-MMP) in transitional cell carcinoma of the upper urinary tract, Hum.Pathol. 31 [2], Seite 193-200.

[155]

Maatta, M.; Soini, Y.; Liakka, A. und Autio-Harmainen, H. (2000): Differential expression of matrix metalloproteinase (MMP)-2, MMP-9, and membrane type 1-MMP in hepatocellular and pancreatic adenocarcinoma: implications for tumor progression and clinical prognosis, Clin.Cancer Res. 6 [7], Seite 2726-2734.

[156]

Upadhyay, J.; Shekarriz, B.; Nemeth, J. A.; Dong, Z.; Cummings, G. D.; Fridman, R.; Sakr, W.; Grignon, D. J. und Cher, M. L. (1999): Membrane type 1-matrix metalloproteinase (MT1-MMP) and MMP-2 immunolocalization in human prostate: change in cellular localization associated with high-grade prostatic intraepithelial neoplasia, Clin.Cancer Res. 5 [12], Seite 4105-4110.

[157]

Vaisanen, A.; Kallioinen, M.; Taskinen, P. J. und Turpeenniemi, Hujanen T. (1998): Prognostic value of MMP-2 immunoreactive protein (72 kD type IV collagenase) in primary skin melanoma, J.Pathol. 186 [1], Seite 51-58.

[158]

Bando, E.; Yonemura, Y.; Endou, Y.; Sasaki, T.; Taniguchi, K.; Fujita, H.; Fushida, S.; Fujimura, T.; Nishimura, G.; Miwa, K. und Seiki, M. (1998): Immunohistochemical study of MT-MMP tissue status in gastric carcinoma and correlation with survival analyzed by univariate and multivariate analysis, Oncol.Rep. 5 [6], Seite 1483-1488.

[159]

Etoh, T.; Inoue, H.; Yoshikawa, Y.; Barnard, G. F.; Kitano, S. und Mori, M. (2000): Increased expression of collagenase-3 (MMP-13) and MT1-MMP in oesophageal cancer is related to cancer aggressiveness, Gut 47 [1], Seite 50-56.

[160]

Moser, P. L.; Kieback, D. G.; Hefler, L.; Tempfer, C.; Neunteufel, W. und Gitsch, G. (1999): Immunohistochemical detection of matrix metalloproteinases (MMP) 1 and 2, and tissue inhibitor of metalloproteinase 2 (TIMP 2) in stage IB cervical cancer, Anticancer Res. 19 [5C], Seite 4391-4393.

[161]

Yamashita, K.; Tanaka, Y.; Mimori, K.; Inoue, H. und Mori, M. (2004): Differential expression of MMP and uPA systems and prognostic relevance of their expression in esophageal squamous cell carcinoma, Int.J Cancer 110 [2], Seite 201-207.

[162]

Chenard, M. P.; O'Siorain, L.; Shering, S.; Rouyer, N.; Lutz, Y.; Wolf, C.; Basset, P.; Bellocq, J. P. und Duffy, M. J. (1996): High levels of stromelysin-3 correlate with poor prognosis in patients with breast carcinoma, Int.J Cancer 69 [6], Seite 448-451.

[163]

Jones, J. L.; Glynn, P. und Walker, R. A. (1999): Expression of MMP-2 and MMP-9, their inhibitors, and the activator MT1-MMP in primary breast carcinomas, J Pathol. 189 [2], Seite 161-168.

[164]

Powe, D. G.; Brough, J. L.; Carter, G. I.; Bailey, E. M.; Stetler-Stevenson, W. G.; Turner, D. R. und Hewitt, R. E. (1997): TIMP-3 mRNA expression is regionally increased in moderately and poorly differentiated colorectal adenocarcinoma, Br J Cancer 75 [11], Seite 1678-1683.

[165]

Joo, Y. E.; Seo, K. S.; Kim, H. S.; Rew, J. S.; Park, C. S. und Kim, S. J. (2000): Expression of tissue inhibitors of metalloproteinases (TIMPs) in gastric cancer, Dig.Dis.Sci 45 [1], Seite 114-121.

[166]

Michael, M.; Babic, B.; Khokha, R.; Tsao, M.; Ho, J.; Pintilie, M.; Leco, K.; Chamberlain, D. und Shepherd, F. A. (1999): Expression and prognostic significance of metalloproteinases and their tissue inhibitors in patients with small-cell lung cancer, J Clin.Oncol. 17 [6], Seite 1802-1808.

[167]

Kossakowska, A. E.; Urbanski, S. J. und Edwards, D. R. (1991): Tissue inhibitor of metalloproteinases-1 (TIMP-1) RNA is expressed at elevated levels in malignant non-Hodgkin's lymphomas, Blood 77 [11], Seite 2475-2481.

[168]

McCarthy, K.; Maguire, T.; McGreal, G.; McDermott, E.; O'Higgins, N. und Duffy, M. J. (1999): High levels of tissue inhibitor of metalloproteinase-1 predict poor outcome in patients with breast cancer, Int.J Cancer 84 [1], Seite 44-48.

[169]

Zeng, Z. S.; Cohen, A. M.; Zhang, Z. F.; Stetler-Stevenson, W. und Guillem, J. G. (1995): Elevated tissue inhibitor of metalloproteinase 1 RNA in colorectal cancer stroma correlates with lymph node and distant metastases, Clin.Cancer Res. 1 [8], Seite 899-906.

[170]

Holten-Andersen, M. N.; Stephens, R. W.; Nielsen, H. J.; Murphy, G.; Christensen, I. J.; Stetler-Stevenson, W. und Brunner, N. (2000): High preoperative plasma tissue inhibitor of metalloproteinase-1 levels are associated with short survival of patients with colorectal cancer, Clin.Cancer Res. 6 [11], Seite 4292-4299.

[171]

Ylisirnio, S.; Hoyhtya, M. und Turpeenniemi-Hujanen, T. (2000): Serum matrix metalloproteinases -2, -9 and tissue inhibitors of metalloproteinases -1, -2 in lung cancer--TIMP-1 as a prognostic marker, Anticancer Res. 20 [2B], Seite 1311-1316.

[172]

Davidson, B.; Goldberg, I.; Kopolovic, J.; Lerner-Geva, L.; Gotlieb, W. H.; Ben Baruch, G. und Reich, R. (1999): MMP-2 and TIMP-2 expression correlates with poor prognosis in cervical carcinoma--a clinicopathologic study using immunohistochemistry and mRNA in situ hybridization, Gynecol.Oncol. 73 [3], Seite 372-382.

[173]

Tutton, M. G.; George, M. L.; Eccles, S. A.; Burton, S.; Swift, R. I. und Abulafi, A. M. (2003): Use of plasma MMP-2 and MMP-9 levels as a surrogate for tumour expression in colorectal cancer patients, Int.J Cancer 107 [4], Seite 541-550.

[174]

Lein, M.; Jung, K.; Laube, C.; Hubner, T.; Winkelmann, B.; Stephan, C.; Hauptmann, S.; Rudolph, B.; Schnorr, D. und Loening, S. A. (2000): Matrix-metalloproteinases and their inhibitors in plasma and tumor tissue of patients with renal cell carcinoma, Int.J Cancer 85 [6], Seite 801-804.

[175]

Giannelli, G.; Erriquez, R.; Fransvea, E.; Daniele, A.; Trerotoli, P.; Schittulli, F.; Grano, M.; Quaranta, M. und Antonaci, S. (2004): Proteolytic imbalance is reversed after therapeutic surgery in breast cancer patients, Int.J Cancer 109 [5], Seite 782-785.

[176]

Rudolph-Owen, L. A.; Chan, R.; Muller, W. J. und Matrisian, L. M. (1998): The matrix metalloproteinase matrilysin influences early-stage mammary tumorigenesis, Cancer Res. 58 [23], Seite 5500-5506.

[177]

Witty, J. P.; Wright, J. H. und Matrisian, L. M. (1995): Matrix metalloproteinases are expressed during ductal and alveolar mammary morphogenesis, and misregulation of stromelysin-1 in transgenic mice induces unscheduled alveolar development, Mol.Biol.Cell 6 [10], Seite 1287-1303.

[178]

Albini, A.; Melchiori, A.; Santi, L.; Liotta, L. A.; Brown, P. D. und Stetler, Stevenson WG (1991): Tumor cell invasion inhibited by TIMP-2 [see comments], J.Natl.Cancer Inst. 83 [11], Seite 775-779.

[179]

Baker, A. H.; George, S. J.; Zaltsman, A. B.; Murphy, G. und Newby, A. C. (1999): Inhibition of invasion and induction of apoptotic cell death of cancer cell lines by overexpression of TIMP-3, Br.J.Cancer 79 [9-10], Seite 1347-1355.

[180]

Buck, T. B.; Yoshiji, H.; Harris, S. R.; Bunce, O. R. und Thorgeirsson, U. P. (1999): The effects of sustained elevated levels of circulating tissue inhibitor of metalloproteinases-1 on the development of breast cancer in mice, Ann.N Y.Acad.Sci 878, Seite 732-735.

[181]

Guedez, L.; McMarlin, A. J.; Kingma, D. W.; Bennett, T. A.; Stetler-Stevenson, M. und Stetler-Stevenson, W. G. (2001): Tissue inhibitor of metalloproteinase-1 alters the tumorigenicity of Burkitt's lymphoma via divergent effects on tumor growth and angiogenesis, Am.J Pathol. 158 [4], Seite 1207-1215.

[182]

Yoshiji, H.; Buck, T. B.; Harris, S. R.; Ritter, L. M.; Lindsay, C. K. und Thorgeirsson, U. P. (1998): Stimulatory effect of endogenous tissue inhibitor of metalloproteinases-1 (TIMP-1) overexpression on type IV collagen and laminin gene expression in rat mammary carcinoma cells, Biochem.Biophys.Res.Commun. 247 [3], Seite 605-609.

[183]

Gross, J. und Lapiere, C. M. (1962): Collagenolytic Activity in Amphibian Tissues: A Tissue Culture Assay, Proc.Natl.Acad.Sci.U.S.A 48, Seite 1014-1022.

[184]

Cheng, L.; Mantile, G.; Pauly, R.; Nater, C.; Felici, A.; Monticone, R.; Bilato, C.; Gluzband, Y. A.; Crow, M. T.; Stetler, Stevenson W. und Capogrossi, M. C. (1998): Adenovirus-mediated gene transfer of the human tissue inhibitor of metalloproteinase-2 blocks vascular smooth muscle cell invasiveness in vitro and modulates neointimal development in vivo, Circulation 98 [20], Seite 2195-2201.

[185]

Melchiori, A.; Albini, A.; Ray, J. M. und Stetler-Stevenson, W. G. (1992): Inhibition of tumor cell invasion by a highly conserved peptide sequence from the matrix metalloproteinase enzyme prosegment, Cancer Res. 52 [8], Seite 2353-2356.

[186]

Itoh, T.; Tanioka, M.; Yoshida, H.; Yoshioka, T.; Nishimoto, H. und Itohara, S. (1998): Reduced angiogenesis and tumor progression in gelatinase A-deficient mice, Cancer Res. 58 [5], Seite 1048-1051.

[187]

Nabeshima, K.; Inoue, T.; Shimao, Y.; Kataoka, H. und Koono, M. (1999): Cohort migration of carcinoma cells: differentiated colorectal carcinoma cells move as coherent cell clusters or sheets, Histol.Histopathol. 14 [4], Seite 1183-1197.

[188]

Nabeshima, K.; Inoue, T.; Shimao, Y.; Okada, Y.; Itoh, Y.; Seiki, M. und Koono, M. (2000): Front-cell-specific expression of membrane-type 1 matrix metalloproteinase and gelatinase A during cohort migration of colon carcinoma cells induced by hepatocyte growth factor/scatter factor, Cancer Res. 60 [13], Seite 3364-3369.

[189]

Legrand, C.; Gilles, C.; Zahm, J. M.; Polette, M.; Buisson, A. C.; Kaplan, H.; Birembaut, P. und Tournier, J. M. (1999): Airway epithelial cell migration dynamics. MMP-9 role in cell-extracellular matrix remodeling, J Cell Biol. 146 [2], Seite 517-529.

[190]

Moses, M. A. (1997): The regulation of neovascularization of matrix metalloproteinases and their inhibitors, Stem.Cells 15 [3], Seite 180-189.

[191]

Yu, Q. und Stamenkovic, I. (2000): Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis, Genes Dev. 14 [2], Seite 163-176.

[192]

Bergers, G.; Brekken, R.; McMahon, G.; Vu, T. H.; Itoh, T.; Tamaki, K.; Tanzawa, K.; Thorpe, P.; Itohara, S.; Werb, Z. und Hanahan, D. (2000): Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis, Nat.Cell Biol. 2 [10], Seite 737-744.

[193]

Cornelius, L. A.; Nehring, L. C.; Harding, E.; Bolanowski, M.; Welgus, H. G.; Kobayashi, D. K.; Pierce, R. A. und Shapiro, S. D. (1998): Matrix metalloproteinases generate angiostatin: effects on neovascularization, J.Immunol. 161 [12], Seite 6845-6852.

[194]

Fernandez, H. A.; Kallenbach, K.; Seghezzi, G.; Grossi, E.; Colvin, S.; Schneider, R.; Mignatti, P. und Galloway, A. (1999): Inhibition of endothelial cell migration by gene transfer of tissue inhibitor of metalloproteinases-1, J Surg.Res. 82 [2], Seite 156-162.

[195]

Murphy, A. N.; Unsworth, E. J. und Stetler-Stevenson, W. G. (1993): Tissue inhibitor of metalloproteinases-2 inhibits bFGF-induced human microvascular endothelial cell proliferation, J Cell Physiol 157 [2], Seite 351-358.

[196]

Anand-Apte, B.; Pepper, M. S.; Voest, E.; Montesano, R.; Olsen, B.; Murphy, G.; Apte, S. S. und Zetter, B. (1997): Inhibition of angiogenesis by tissue inhibitor of metalloproteinase-3, Invest Ophthalmol.Vis.Sci 38 [5], Seite 817-823.

[197]

Yoshiji, H.; Harris, S. R.; Raso, E.; Gomez, D. E.; Lindsay, C. K.; Shibuya, M.; Sinha, C. C. und Thorgeirsson, U. P. (1998): Mammary carcinoma cells over-expressing tissue inhibitor of metalloproteinases-1 show enhanced vascular endothelial growth factor expression, Int.J Cancer 75 [1], Seite 81-87.

[198]

Yamada, E.; Tobe, T.; Yamada, H.; Okamoto, N.; Zack, D. J.; Werb, Z.; Soloway, P. D. und Campochiaro, P. A. (2001): TIMP-1 promotes VEGF-induced neovascularization in the retina, Histol.Histopathol. 16 [1], Seite 87-97.

[199]

Newell, K. J.; Matrisian, L. M. und Driman, D. K. (2002): Matrilysin (matrix metalloproteinase-7) expression in ulcerative colitis-related tumorigenesis, Mol.Carcinog. 34 [2], Seite 59-63.

[200]

Yamamoto, H.; Iku, S.; Adachi, Y.; Imsumran, A.; Taniguchi, H.; Nosho, K.; Min, Y.; Horiuchi, S.; Yoshida, M.; Itoh, F. und Imai, K. (2003): Association of trypsin expression with tumour progression and matrilysin expression in human colorectal cancer, J Pathol. 199 [2], Seite 176-184.

[201]

Baker, E. A. und Leaper, D. J. (2003): The plasminogen activator and matrix metalloproteinase systems in colorectal cancer: relationship to tumour pathology, Eur.J Cancer 39 [7], Seite 981-988.

[202]

Murray, G. I.; Duncan, M. E.; O'Neil, P.; Melvin, W. T. und Fothergill, J. E. (1996): Matrix metalloproteinase-1 is associated with poor prognosis in colorectal cancer, Nat.Med 2 [4], Seite 461-462.

[203]

Davidson, B.; Goldberg, I.; Kopolovic, J.; Lerner-Geva, L.; Gotlieb, W. H.; Weis, B.; Ben Baruch, G. und Reich, R. (1999): Expression of matrix metalloproteinase-9 in squamous cell carcinoma of the uterine cervix-clinicopathologic study using immunohistochemistry and mRNA in situ hybridization, Gynecol.Oncol. 72 [3], Seite 380-386.

[204]

Sheu, B. C.; Hsu, S. M.; Ho, H. N.; Lien, H. C.; Huang, S. C. und Lin, R. H. (2001): A novel role of metalloproteinase in cancer-mediated immunosuppression, Cancer Res. 61 [1], Seite 237-242.

[205]

Sheu, B. C.; Lien, H. C.; Ho, H. N.; Lin, H. H.; Chow, S. N.; Huang, S. C. und Hsu, S. M. (2003): Increased expression and activation of gelatinolytic matrix metalloproteinases is associated with the progression and recurrence of human cervical cancer, Cancer Res. 63 [19], Seite 6537-6542.

[206]

Martignetti, J. A.; Aqeel, A. A.; Sewairi, W. A.; Boumah, C. E.; Kambouris, M.; Mayouf, S. A.; Sheth, K. V.; Eid, W. A.; Dowling, O.; Harris, J.; Glucksman, M. J.; Bahabri, S.; Meyer, B. F. und Desnick, R. J. (2001): Mutation of the matrix metalloproteinase 2 gene (MMP2) causes a multicentric osteolysis and arthritis syndrome, Nat.Genet. 28 [3], Seite 261-265.

[207]

Trudel, D.; Fradet, Y.; Meyer, F.; Harel, F. und Tetu, B. (2003): Significance of MMP-2 expression in prostate cancer: an immunohistochemical study, Cancer Res. 63 [23], Seite 8511-8515.

[208]

Lichtinghagen, R.; Musholt, P. B.; Stephan, C.; Lein, M.; Kristiansen, G.; Hauptmann, S.; Rudolph, B.; Schnorr, D.; Loening, S. A. und Jung, K. (2003): mRNA expression profile of matrix metalloproteinases and their tissue inhibitors in malignant and non-malignant prostatic tissue, Anticancer Res. 23 [3B], Seite 2617-2624.

[209]

Jung, K.; Krell, H. W.; Ortel, B.; Hasan, T.; Romer, A.; Schnorr, D.; Loening, S. A. und Lein, M. (2003): Plasma matrix metalloproteinase 9 as biomarker of prostate cancer progression in Dunning (Copenhagen) rats, Prostate 54 [3], Seite 206-211.


© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 3.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am:
02.03.2005