Agarraberes, F. A. and Dice, J. F. (2001). Protein translocation across membranes. Biochim. Biophys. Acta 1513: 1 – 24

Aguilar-Bryan, L., Nichols, C. G., Wechsler, S. W., Clement IV, J. P., Boyd III, A. E., Gonzales, G., Herrera, H., Nguy, K., Bryan, J. and Nelson, D. A. (1995). Cloning of the β cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science 268: 423 – 426

Ames, G. F.-L., Mimura, C. S. and Shyamala, V. ( 1990 ). Bacterial periplasmic permeases belong to a family of transport proteins operating from Escherichia coli to human: traffic ATPases. FEMS Microbiol. Rev. 75: 429 – 446

Ames, G. F.-L., Liu, C. E., Joshi, A. K. and Nikaido, K. (1996). Liganded and unliganded receptors interact with equal affinity with the membrane complex of periplasmic permeases, a subfamily of traffic ATPases. J. Biol. Chem. 271: 14264 – 14270

Babcock, M. J. and Kendrick, K. E. (1988). Cloning of DNA involved in sporulation of Streptomyces griseus. J. Bacteriol. 170: 2802 – 2808.

Bergmeyer, H. U. (1974). Methods of enzymatic analysis, 3rd ed. Wiley-VCH, Weinheim, Germany.

Bertram, R., Schlicht, M., Mahr, K., Nothaft, H., Saier, M. H. and Titgemeyer, F. (2004). In silico and transcriptional analysis of carbohydrate uptake systems of Streptomyces coelicolor A3(2). J. Bacteriol. 186:1362 – 1373

Bohl, E., Shuman, H. A. and Boos, W. (1995). Mathematical treatment of the kinetics of binding protein dependent transport systems reveals that both the substrate loaded and unloaded binding proteins interact with the membrane components. J. Theor. Biol. 172:83 – 94

Boos, W. and Lucht, J. M. (1996). Periplasmic binding-protein-dependent ABC-transporters. In: Escherichia coli and Salmonella typhimurium: cellular and molecular biology, pp. 1175 – 1209 . Neidhardt, F. C. et al., (ed.) 2nd ed. ASM Press, Washington D. C.

Boos, W. and Shuman, H. (1998). Maltose/maltodextrin system in Escherichia coli : transport, metabolism and regulation. Microbiol. Mol. Biol. Rev.62: 204 – 229

Brooker, R. J. (1990). The lactose permease of Escherichia coli . Res. Microbiol.141:309 – 316

Brunkhorst, C. (1998).Vergleichende Untersuchungen zum Maltose-Transport bei Escherichia coli K12 und Actinoplanes sp. Diplomarbeit, Humboldt-Universität zu Berlin

Brunkhorst, C., Andersen, C. and Schneider, E. (1999).Acarbose, a pseudooligosaccharide, is transported but not metabolized by the maltose/maltodextrin system of Escherichia coli. J. Bacteriol. 181: 2612 – 2619

Casadaban, M. J. (1976). Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage Lambda and Mu. J. Mol. Biol.104: 541 - 555

Castanié, M. P., Bergès, H., Oreglia, J., Prère, M. F., Fayet, O. (1997). A set of pBR322-compatible plasmids allowing the testing of chaperone-assisted folding of proteins overexpressed in Escherichia coli . Analytical Biochemistry254: 150 - 152.

Collins, F. S. (1992). Cystic fibrosis: molecular biology and therapeutic implications. Science 256: 774 – 779

Daugherty, D. L., Rozema, D., Hanson, P. E. and Gellman, S. H. (1998). Artificial chaperone-assisted refolding of citrate synthase. J. Biol. Chem. 273: 33961 – 33971

Dassa, E. and Bouige, P. (2001). The ABC of ABCs: a phylogenetic and functional classification of ABC systems in living organisms. Res. Microbiol.152: 211 – 229

Dean, D. A., Hor, L.-I., Shuman, H. A. and Nikaido, H. (1992). Interaction between maltose binding protein and the membrane associated maltose transporter complex in Escherichia coli . Mol. Microbiol.6: 2033 - 2040

Dean, D. A., Reizer, J., Nikaido, H. and Saier, M. H. (1990). Regulation of the maltose transport system of Escherichia coli by the glucose-specific enzyme III of the phosphoenolpyruvate-sugar phosphotransferase system. Characterization of inducer exclusion-resistant mutants and reconstitution of inducer exclusion in proteoliposomes. J. Biol. Chem. 265: 21005 – 21010

Death, A. and Ferenci, T. (1993). The importance of the binding protein dependent Mgl system to the transport of glucose in Escherichia coli growing on low sugar concentrations. Res. Microbiol.144: 529 – 537

De Bernardez Clark, E. (1998). Refolding of recombinant proteins. Curr. Opin. Biotechnol.9: 157 – 163.

De Bernardez Clark, E. (2001). Protein refolding for industrial processes. Curr. Opin. Biotechnol.12: 202 – 207.

Decker, K., Peist, R., Reidl, J., Kossmann, M., Brand, B. and Boos, W. (1993). Maltose and maltotriose can be formed endogenously in Escherichia coli from glucose and glucose-1-phosphate independently of enzymes of the maltose system. J. Bacteriol. 175: 5655 – 5665.

Degwert, U., van Hülst, R., Pape, H., Herrold, R. E., Beale, J. M., Keller, P. J., Lee, J. P. and Floss, H. G. (1987). Studies on the biosynthesis of the α -glucosidase inhibitor acarbose: valienamine, a m-C 7 N unit not derived from shikimate pathway. J. Antibiot. 40: 855 – 861

Diaz-Guardamino, U. P. M. (2000).Untersuchungen zum Einbau des Stickstoffes in der Acarviose-Einheit der Acarbose bei Actinoplanes sp. 50/110: die Aminotransferase AcbV. Dissertation, Bergische Universität Gesamthochschule Wuppertal

Distler, J., Mansouri, K. and Piepersberg, W. (1985). Streptomycin biosynthesis in Streptomyces griseus. II: Adjacent genomic location of biosynthetic genes and one of two streptomycin resistance genes. FEMS Microbiol. Lett. 30: 151 – 154.

Doumith, M., Weingarten, P., Wehmeier, U. F., Salah-Bey, K., Benhamou, B., Capdevilla, C., Michel, J.-M., Piepersberg, W. and Raynal, M.-C. (2000). Analysis of genes involved in 6-deoxyhexose biosynthesis and transfer in Saccharopolyspora erythraea . Mol. Gen. Genet. 264: 477 – 485

Drepper, A. (1997).Charakterisierung und mögliche Funktion ungewöhnlicher Kinasen des Acarbose Produzenten Actinoplanes sp. Dissertation, Institut für Mikrobiologie, WWU Münster

Drepper, A. and Pape, H. (1996). Acarbose 7-phosphotransferase from Actinoplanes sp.: purification, properties and possible physiological function. J. Antibiot.49: 664 – 668

Dulley, J. R. and Grieve, P. A. (1975). A simple technique for eliminating interference by detergents in the Lowry methods of protein determination. Anal. Biochem.64: 136 – 141.

Economou, A. (1999). Following the leader: bacterial protein export through the Sec pathway. Trends in Microbiol. 7: 315 – 319

Ehrmann, M. and Boos, W. (1987). Identification of endogenous inducers of the mal regulon of Escherichia coli . J. Bacteriol. 169: 3539 – 3545.

Elferink, M. G. L., Albers, S.-V., Konings, W. N. and Driessen, A. J. M. (2001). Sugar transport in Sulfolobus solfataricus is mediated by two families of binding protein-dependent ABC-transporters. Mol. Microbiol.39: 1494 – 1503

Elvers, D. (2002). Biochemische Charakterisierung der ABC-Transportproteine AcbF, AcbG und MsiK aus Actinoplanes sp. Diplomarbeit, Humboldt-Universität zu Berlin

Fekkes, P. and Driessen, A. J. M. (1999). Protein targeting to the bacterial cytoplasmic membrane. Microbiol. Mol. Biol. Rev.63: 161 – 173

Ferenci, T. and Klotz, U. (1978). Affinity chromatography of the periplasmic maltose binding protein of Escherichia coli . FEBS Lett.94: 213 – 217

Fetch, E. E. and Davidson, A. L. (2002). Vanadate-catalysed photocleavage of the signature motif of an ATP binding cassette (ABC) transporter. Pro. Natl. Acad. Sci.99: 9685 – 9690

Frommer, W., Puls, W. and Schmidt, D. (1977b). Process for the production of a saccharase inhibitor. German patent DE 2209834 (US patent 4,019,960)

Frommer, W., Puls, W., Schaefer, D. and Schmidt, D. (1975). Glucoside-hydrolase enzyme inhibitors. German patent DE 2064092 (US patent 3,876,766)

Frommer, W., Junge, B., Keup, U., Müller, L. and Schmidt, D. (1977a). Amino sugar derivatives. German patent DE 2347782 (US patent 4,062,950)

Goldsmith, E. J., Fletterick, R. J. and Withers, S. G. (1987). The three dimensional structure of acarbose bound to glycogen phosphorylase. J. Biol. Chem. 262:1449 – 1455

Gottesman, M. M. and Ambudkar, S. V. (2001). Overview: ABC transporters and human disease. J. Bioenerg. Biomembr. 33: 453 – 458

Gottesman, M. M. and Pastan, I. (1993). Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu. Rev. Biochem. 62: 385 – 427

Gräfe, U. (1992).Biochemie der Antibiotika: Sruktur-Biosynthese-Wirkmechanismus. Spektrum Akademischer Verlag, Heidelberg-Berlin-New York

Greller, G., Horlacher, R., DiRuggiero, J. and Boos, W. (1999). Molecular and biochemical analysis of MalK, the ATP-hydrolyzing subunit of the trehalose/maltose transport system of the hyperthermophilic Archaeon Thermococcus litoralis . J. Biol. Chem.274: 20259 – 20264

Hall, J. A., Gehring, K. and Nikaido, H. (1997a). Two modes of ligand binding in maltose-binding protein of Escherichia coli . Correlation with the structure of ligands and the structure of binding protein. J. Biol. Chem. 272: 17605 – 17609

Hall, J. A., Ganesan, A. K., Chen, J. and Nikaido, H. (1997c). Two modes of the ligand binding in maltose binding protein of Escherichia coli . Functional significance in active transport. J. Biol. Chem. 272: 17615 – 17622

Hall, J. A., Thorgeirsson, T. E., Liu, J., Shin, Y.-K. and Nikaido, H. (1997b). Two modes of ligand binding in maltose-binding protein of Escherichia coli . Electron paramagnetic resonance study of ligand-induced global conformational changes by site-directed spin labeling. J. Biol. Chem. 272: 17610 – 17614

Hamaker, K. H., Liu, J., Seely, R. J., Ladisch, C. M. and Ladisch, M. R. (1996). Chromatography for rapid buffer exchange and refolding of secretory leukocyte protease inhibitor. Biotechnol. Prog. 12: 184 – 189.

Hanahan, D. (1983). Studies on transformation of Escherichia coli with plasmids.J. Mol. Biol.166: 557 – 580.

Harwood, C. R. and Cutting, S. M. (1990). Molecular biological methods for Bacillus. John Wiley & sons, Ltd.

Heiker, F. R., Böshagen, H., Junge, B., Müller, L. and Stoltefuß, J. (1981).Studies designed to localize the essential structural unit of glycoside-hydrolase inhibitors of the acarbose type. In: Creutzfeld, W. (ed): first international symposium on acarbose, pp. 137 – 141, Amsterdam: Excerpta Medica

Hekstra, D. and Tommassen, J. (1993). Functional exchangeability of the ABC-proteins of the periplasmic binding protein-dependent transport system Ugp and Mal of Escherichia coli . J. Bacteriol. 175: 6546 – 6552

Hemker, M. (1997).Pseudooligosaccharide und Stärkestoffwechsel bei Actinoplanes sp.. Dissertation, Bergische Universität Gesamthochschule Wuppertal

Hemker, M., Stratmann, A., Goeke, K., Schröder, W., Lenz, J., Piepersberg, W. and Pape, H.(2001). Identification, cloning, expression and characterisation of the extracellular acarbose-modifying glycosyltransferase AcbD from Actinoplanes sp. Strain SE50. J. Bacteriol. 183: 4484 – 4492

Herrmann, A. (2000).Identifizierung und Charakterisierung eines Bindeprotein-abhängigen MaltoseTransportsystems bei dem extremophilen grampositiven Bakterium Alicyclobacillus acidocaldarius. Dissertation. Humboldt-Universität zu Berlin

Herrmann, A., Schlösser, A., Schmid, R. and Schneider, E. (1996). Biochemical identification of a lipoprotein with maltose-binding activity in the thermoacidophilic Gram-positive bacterium Alicyclobacillus acidocaldarius . Res. Microbiol. 147: 733 – 737

Higgins, C. F. (1992). ABC transporters: From microorganisms to man. Annu. Rev. Cell Biol. 8: 67 – 113

Hobson, A. C., Weatherwax, R. and Ames, G. F.-L. (1984). ATP-binding sites in the membrane components of the histidine permease, a periplasmic transport system. Proc. Natl. Acad. Sci. USA 81: 7333 – 7337

Hopwood, D. A. (1985). Genetic manipulation of Streptomyces: A laboratory manual. The John Innes Foundation, Norwich, England.

Horlacher, R. and Boos, W. (1997). Characterization of TreR, the major regulator of the Escherichia coli trehalose system. J. Biol. Chem. 272: 13026 – 13032

Horlacher, R., Xavier, K. B., Santos, H., DiRuggiero, J., Kossmann, M. and Boos, W. (1998). Archeal binding protein-dependent ABC transporter: molecular and biochemical analysis of the trehalose/maltose transport system of the hyperthermophilic Archaeon Thermococcus litoralis . J. Bacteriol. 180: 680 – 689

Hueck, C. J. and Hillen, W. (1995). Catabolite repression in Bacillus subtilis : a global regulatory mechanism for the Gram-positive bacteria? Mol. Microbiol. 15: 395 – 401

Hülsmann, A., Lurz, R., Scheffel, F. and Schneider, E. (2000). Maltose and maltodextrin transport in the thermoacidophilic Gram-positive bacterium Alicyclobacillus acidocaldarius is mediated by a high-affinity transport system that includes a maltose-binding protein tolerant to low pH. J. Bacteriol. 182: 6292 – 6301

Hurtubise, Y., Shareck, F., Kluepfel, D. and Morosoli, R. (1995). A cellulase/xylanase-negative mutant of Streptomyces lividans 1326 defective in cellobiose and xylobiose uptake is mutated in a gene encoding a protein homologous to ATP-binding proteins. Mol. Microbiol. 17: 367 – 377

Hyde, S. C., Emsley, P., Hartshorn, M. J., Mimmack, M. M., Gileadi, U., Pearce, S. R., Gallagher, M. P., Gill, D. R., Hubbard, R. E. and Higgins, C. F. (1990). Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature 346: 362 – 365

Jensen, P. R., Dwight, R. and Fenical, W. (1991). Distribution of Actinomycetes in near-shore tropical marine sediments. Appl. Environ. Microbiol. 4: 1102 – 1108

Jensen, J. B., Kent Peters, N. and Bhuvaneswari, T. V. (2002). Redundancy in periplasmic binding protein dependent transport systems for trehalose, sucrose and maltose in Sinorhizobium meliloti . J. Bacteriol. 184: 2978 – 2986

Kamionka, A. and Dahl, M. K. (2001). Bacillus subtilis contains a cyclodextrin-binding protein which is part of a putative ABC-transporter. FEMS Microbiol. Lett. 204: 55 - 60

Kempf, B., Gade, J. and Bremer, E. (1997). Lipoprotein from osmoregulated ABC transport system OpuA of Bacillus subtilis : Purification of the glycine betaine protein and characterization of a functional lipidless mutant. J. Bacteriol. 179: 6213 – 6220

Klein, W. and Boos, W. (1993). Induction of the λ receptor is essential for the effective uptake of trehalose in Escherichia coli . J. Bacteriol. 175: 1682 – 1686

Konings, S. M., Albers, S.-V., Konings, W. N. and Driessen, A. J. M. (2002). Sugar transport in (hyper)thermophilic archaea. Res. Microbiol. 153: 61 – 67

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.

Landmesser, H., Stein, A., Blüschke, B., Brinkmann, M., Hunke, S. and Schneider, E. (2002). Large-scale purification, dissociation and functional reassembly of the maltose ATP-binding cassette transporter (MalFGK 2 ) of Salmonella typhimurium . Biochem. Biophys. Acta 1565: 64 – 72

Lee, S., Sauerbrei, B., Niggemann, J. and Egelkrout, E. (1997). Biosynthetic studies on the alpha-glucosidase inhibitor acarbose in Actinoplanes sp.: source of the maltose unit. J. Antibiot. (Tokyo) 50: 954 – 960

Lengeler, J. W. (1993). Carbohydrate transport in bacteria under environmental conditions, a black box? Antonie van Leeuwenhoek 63: 275 – 288

Locher, K. P., Lee, A. T. and Rees, C. (2002). The E. coli BtuCD structure: A framework for ABC transporter architecture and mechanism. Science 296: 1091 – 1098

Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951). Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265 – 275.

Mar Carrió, M. and Villaverde, A. (2000). Protein aggregation as bacterial inclusion bodies is reversible. FEBS Letters 489: 29 – 33

Mar Carrió, M. and Villaverde, A. (2003). Role of molecular chaperones in inclusion body formation.FEBS Letters 537: 215 – 221

Martin, S. A. and Russell, J. B. (1987). Transport and phosphorylation of disaccharides by the ruminal bacterium Streptococcus bovis . Appl. Environ. Microbiol. 53: 2388 – 2393

Martin, G., Alloing, C. B. and Claverys, J.-P. (1989). The difficulty of cloning Streptococcus pneumoniae mal and ami loci in Escherichia coli : toxicity of malX and amiA gene products. Gene 80: 227 – 238

Merino, G. and Shuman, H. A. (1997). Unliganded maltose-binding protein triggers lactose transport in an Escherichia coli mutant with an alteration in the maltose transport system. J. Bacteriol. 179: 7687 – 7694

Middelberg, A.P.J. (2002). Preparative protein folding. Trends in Biotech.20: 437 – 443

Miller, J. H. (1972). Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.p. 354

Miller, J. H. (1992). A short course in bacterial genetics. A laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Miroux, B. and Walker, J. E. (1996). Over-production of proteins in Escherichia coli : Mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 260: 289 – 298.

Mogk, A., Tomoyasu, T., Goloubinoff, P., Rüdiger, S., Röder, D., Langen, H. and Bukau, B. (1999). Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J.18: 6934 – 6949.

Moore, J. T., Uppal, A., Maley, F. and Maley, G. F. (1993). Overcoming inclusion body formation in a high level expression system. Protein Expression Purif. 4: 160 - 163.

Mosser, J., Douar, A.-M., Sarde, C.-Q., Kioschis, P., Feil, R., Moser, H., Poustka, A. M., Mandel, J. L. and Aubourg, P. (1993). Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters. Nature 361: 726 – 730

Mourez, M., Hofnung, M. and Dassa, E. (1997). Subunit interaction in ABC transporters. A conserved sequence in hydrophobic membrane proteins of periplasmic permeases define sites of interaction with the helical domain of ABC subunits. EMBO J. 16: 3066 – 3077.

Müller, L. (1989). Chemistry, biochemistry and therapeutic potential of microbial α -glucosidase inhibitors, p.p. 109 – 116. InA. L. Demain, G. A. Somkuti, J. C. Hunter-Creva and H. W. Rossmoore (ed). Novel microbial products for medicine and agriculture. Elsevier Science Publishers, Amsterdam, The Netherlands

Müller, L., Junge, B., Frommer, W., Schmidt, D. D. and Truscheit, E. (1980). Acarbose (Bayg5421) and homologous α -glucosidase inhibitors from actinoplanaceae.InBrodbeck, U. (ed). Enzyme inhibitors. p.p. 109 – 122. Verlag Chemie, Weinheim

Nanavati, D., Noll, K. M. and Romano, A. H. (2002). Periplasmic maltose- and glucose-binding protein activities in cell-free extracts of Thermotoga maritima . Microbiol. 148: 3531 – 3537

Nelson, K. E., Eisen, J. A. and Fraser, C. M. (2001). Genome of Thermotoga maritima MSB8. In Methods in Enzymology, Hyperthermophilic Enzymes, part A, pp. 169 – 180. Edited by M. W. W. Adams and R. M. Kelly. San Diego, CA : Academic Press.

Nelson, K. E., Clayton, R. A., Gill, S. R. und 26 weitere Autoren (1999). Evidence for lateral gene transfer between archaea and bacteria from genome sequence of Thermotoga maritima . Nature 399: 323 – 329

Nielsen, H., Brunak, S. and von Heijne, G. (1999). Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Engineering 12: 3 – 9

Nieto, C., Espinosa, M. and Puyet, A. (1997). The maltose/maltodextrin regulon of Streptococcus pneumoniae . J. Biol. Chem. 272: 30860 – 30865

Nieto, C., Puyet, A. and Espinosa, M. (2001). MalR-mediated regulation of the Streptococcus pneumoniae malMP operon at promoter P M . J. Biol. Chem.276: 14946 – 14954

Nossal, N. G. and Heppel, L. A. (1966). The release of enzymes by osmotic shock from Escherichia coli in exponential phase. J. Biol. Chem. 241: 3055 – 3062.

Nothaft, H., Parche, S., Kamionka, A. and Titgemeyer, F. (2003). In vivo analysis of HPr reveals a fructose specific phosphotransferase system that confers high-affinity uptake in Streptomyces coelicolor . J. Bacteriol. 185:929 – 937

Obis, D., Guillot, A., Gripon, J.-C., Renault, P., Bolotin, A. and Mistou, M.-Y. (1999). Genetic and biochemical characterization of a high-affinity betaine uptake system (BusA) in Lactococcus lactis reveals a new functional organization within bacterial ABC transporters. J. Bacteriol. 181: 6238 – 6246

Oh, B. H., Pandit, J., Kang, C. H., Nikaido, K., Gokcen, S., Joshi, A. K., Ames, G. F.-L. and Kim, S. H. (1993). 3-dimensional structures of the periplasmic lysin/arginine/ornithine-binding protein with and without a ligand. J. Biol. Chem. 268: 17648 – 17649

Pajatsch, M., Gerhart, M., Peist, R., Horlacher, R., Boos, W. and Böck, A. (1998). The periplasmic cyclodextrin binding protein CymE from Klebsiella oxytoca and its role in maltodextrin and cyclodextrin transport. J. Bacteriol.180: 2630 – 2635

Parche, S., Schmid, R. and Titgemeyer, F. (1999). The phosphotransferase system (PTS) of Streptomyces coelicolor : Identification and biochemical analysis of a histidine phosphocarrier protein HPr encoded by the gene ptsH . Eur. J. Biochem. 265: 308 – 317.

Parenti, F. and Coronelli, C. (1979). Members of the genus Actinoplanes and their antibiotics. Ann. Rev. Microbiol.33: 389 – 411.

Pospiech, A. and Neumann, B. (1995). A versatile quick-prep of genomic DNA from Gram-positive bacteria. Trends in Genetics 11: 217 – 218.

Postma, P. W., Lengeler, J. W. and Jacobson, G. R. (1996). Phosphoenolpyruvate:carbohydrate phosphotransferase system. In: Escherichia coli and Salmonella: Cellular and Molecular Biology (ed. F. C. Neidhardt, R. Curtiss III, M. Riley, M. Schaechter and H. E. Umbarger), pp. 1149 – 1174. Washington, DC: American Society for Microbiology.

Puyet, A., Ibáñez, A. M. and Espinosa, M. (1993). Characterization of the Streptococcus pneumoniae maltosaccharide regulator MalR, a member of the LacI-GalR family of repressors displaying distinctive genetic features. J. Biol. Chem.268: 25402 – 25408

Quiocho, F. A. and Ledvina, P. S. (1996). Atomic structure and specifity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes. Mol. Microbiol. 20: 17 – 25

Quiocho, F. A., Spurlino, J. C. and Rodseth, L. E. (1997). Extensive features of tight oligosaccharide binding revealed in high-resolution structures of the maltodextrin transport/chemosensory receptor. Structure 5: 997 – 1015

Rauenbusch, E. and Schmidt, D. (1978). Verfahren zur Isolierung von (O{4,6-Dideoxy-4[1s-(1,4,6/5)-4,5,6-trihydroxy-3-hydroxymethyl-2-cyclohexen-1-yl]-amino- α -D-glucopyranosyl}-(1 4)-O- α -D-glucopyranosyl-(1 4)-D-Glukopyranose) aus Kulturbrühen. Deutsches Patent DE 2719912 (Process for isolating glucopyranose compound from culture broths; US patent 4,174,439)

Reizer, J., Hoischen, C., Titgemeyer, F., Rivolta, C., Rabus, R., Stülke, J., Karamata, D., Saier, M. H. and Hillen, W. (1998). A novel bacterial protein kinase that controls carbon catabolite repression. Mol. Microbiol. 27: 1157 – 1170

Richarme, G. and Kepes, A. (1983). Study of binding protein-ligand interaction by ammonium sulfate-assisted adsorption on cellulose esters filters. Biochim. Biophys. Acta 742: 16 – 24.

Roth, J. R. (1970). Genetic techniques in studies of bacterial metabolism. Methods Enzymol. 17: 3 - 35

Russell, R. R. B., Aduse-Opoku, J., Sutcliffe, I. C., Tao, L. and Ferretti, J. J. (1992). A binding protein dependent transport system in Streptococcus mutans responsible for multiple sugar metabolism. J. Biol. Chem. 267: 4631 – 4637

Saier, Jr., M. H. (2000). Families of transmembrane sugar transport proteins. Mol. Microbiol. 35: 699 – 710

Saier, Jr., M. H. and Reizer, J. (1994). The bacterial phosphotransferase system: new frontiers 30 years later. Mol. Microbiol. 13: 755 – 764

Saier, Jr., M. H., Chauvaux, S., Cook, G. M., Deutscher, J., Paulsen, I. T., Reizer, J. and Ye, J.-J. (1996). Catabolite repression and inducer control in Gram-positive bacteria. Microbiol. 142: 217 – 230

Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989).Molecular Cloning: A Laboratory Manual. 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Saurin, W., Hofnung, M. and Dassa, E. (1999). Getting in or out: early segregation between importers and exporters in the evolution of ATP-binding cassette (ABC) transporters. J. Mol. Evol. 48: 22 – 41

Schäfer, G. (1999). Acarbose-Stoffwechsel bei Actinoplanes sp.: Heterologe Expression von Genen (acbF, acbG, msiKA.spec.) eines potentiellen Zucker-Transporters in E. coli sowie Versuche zur Sekretion von Acarbose. Diplomarbeit, Humboldt-Universität zu Berlin

Schauder, S. and Bassler, B. L. (2001). The languages of bacteria. Genes & Development 15: 1468 – 1480

Scheffel, F. (2004).Untersuchung zu Struktur und Funktion von ABC-Transportern aus thermophilen Prokaryoten. Dissertation. Humboldt-Universität zu Berlin

Scheffel, F., Fleischer, R. and Schneider, E. (2004). Functional reconstitution of a maltose ATP-binding cassette transporter from the thermoacidophilic gram-positive bacterium Alicyclobacillus acidocaldarius . Biochim. Biophys. Acta 1656: 57 – 65

Schlösser, A. (1999). MsiK-dependent trehalose uptake in Streptomyces reticuli. FEMS Microbiol. Lett. 184: 187 – 192

Schlösser, A. and Schrempf, H. (1996). A lipid-anchored binding protein is a component of an ATP-dependent cellobiose/-triose transport system from the cellulose degrader Streptomyces reticuli . Eur. J. Biochem. 242: 332 – 338

Schlösser, A., Aldekamp, T. and Schrempf, H. (2000). Binding characteristics of CebR, the regulator of the ceb operon required for cellobiose/cellotriose uptake in Streptomyces reticuli . FEMS Microbiol. Lett. 190: 127 – 132

Schlösser, A., Kampers, T. and Schrempf, H. (1997). The Streptomyces ATP-binding component MsiK assists in cellobiose and maltose transport. J. Bacteriol. 179: 2092 – 2095

Schlösser, A., Weber, A. and Schrempf, H. (2001). Synthesis of the Streptomyces lividans maltodextrin ABC transporter depends on the presence of the regulator MalR. FEMS Microbiol. Lett. 196: 77 – 83

Schlösser, A., Jantos, J., Hackmann, K. and Schrempf, H. (1999). Characterization of the binding protein dependent cellobiose and cellotriose transport system of the cellulose degrader Streptomyces reticuli . Appl. Environ. Microbiol. 65: 2636 – 2643

Schmidt, D. D., Frommer, W., Junge, B., Müller, L., Wingender, W. and Truscheit, E. (1977). α -glucosidase inhibitors: new complex oligosaccharides of microbial origin. Naturwissenschaften 64: 535 – 536

Schneider, E. (2000). ABC-Transporter: Eine Proteinfamilie für den Transport chemischer Verbindungen über biologische Membranen.Chemie in unserer Zeit 2: 90 – 98

Schneider, E. (2001). ABC transporters catalyzing carbohydrate uptake. Res. Microbiol. 152: 303 – 310

Schneider, E. (2003). Import of solutes by ABC-transporters – the maltose and other systems. In: ABC proteins: From bacteria to man. Holland, E. B., Cole, S., Kuchler, K. and Higgins, C. (eds.) pp. 157 – 185, Elsevier, Amsterdam

Schneider, E. and Hunke, S. (1998). ATP-binding-cassette (ABC) transport systems: functional and structural aspects of the ATP-hydrolyzing subunits/domains. FEMS Microbiol. Rev. 22:1 – 20

Schneider, E. and Walter, C. (1991). A chimeric nucleotide-binding protein, encoded by a hisP-malK hybrid gene, is functional in maltose transport in Salmonella typhimurium . Mol. Microbiol.5: 1375 – 1383.

Schneider, E., Freundlieb, S., Tapio, S. and Boos, W. (1992). Molecular characterization of the MalT-dependent periplasmic α -amylase of Escherichia coli encoded by malS . J. Biol. Chem. 267: 5148 – 5154

Schneider, R. and Hantke, K. (1993). Iron-hydroxamate uptake systems in Bacillus subtilis : identification of a lipoprotein as part of a binding protein-dependent transport system. Mol. Microbiol. 8: 111 – 121

Schönert, S., Buder, T. and Dahl, M. K. (1998). Identification and enzymatic characterisation of the maltose inducible α -glucosidase MalL (sucrase-isomaltase-maltase) of Bacillus subtilis . J. Bacteriol. 180: 2574 – 2578

Schulz, G. E. (1996). Porins: general to specific, native to engineered passive pores. Curr. Opin. Struct. Biol. 6: 485 – 490

Schwartz, M. (1987). The maltose regulon. In: Escherichia coli and Salmonella typhimurium: Cellular and molecular biology, pp. 1482 – 1502. Neidhardt, F. C. et al., (ed.) 2nd ed. ASM Press, Washington D. C.

Schwermann, B., Pfau, K., Liliensiek, B., Schleyer, M., Fischer, T. and Bakker, E. P. (1994). Purification, properties and structural aspects of a thermoacidophilic α -amylase from Alicyclobacillus acidocaldarius ATCC 27009. Eur. J. Biochem.226: 981 – 991

Sharff, A. J., Rodseth, L. E., Spurlino, J. C. and Quiocho, F. A. (1992). Crystallographic evidence of a large ligand-induced hinge-twist motion between the two domains of the maltodextrin bindung protein involved in active transport and chemotaxis. Biochem. 31: 10657 – 10663

Shilton, B. H., Flocco, M. M., Nilson, M. and Mowbray, S. L. (1996). Conformational changes of three periplasmic receptors for bacterial chemotaxis and transport: the maltose-, glucose/galactose- and ribose-binding proteins. J. Mol. Biol.264: 350 – 363

Simonen, M. and Palva, I. (1993). Protein secretion in Bacillus species. Microbiol. Rev. 57: 109 – 137

Stolpe, T. (2001).Zur Bildung von Pseudooligosaccharidyl-Trehalosen durch Actinoplanes sp. Dissertation, Westfälische Wilhelms-Universität Münster

Stratmann, A. (1997).Identifizierung eines Acarbose-Biosynthesegenclusters in Actinoplanes sp. und Charakterisierung ausgewählter Enzyme des Acarbose-Stoffwechsels. Dissertation, Bergische Universität Gesamthochschule Wuppertal

Stratmann, A., Mahmud, T., Lee, S., Distler, J., Floss, H. G. and Piepersberg, W. (1999). The AcbC protein from Actinoplanes species is a C 7 -cyclitol synthase related to 3-dehydroquinate synthases and is involved in the biosynthesis of the α -glucosidase inhibitor acarbose. J. Biol. Chem.274: 10889 – 10896

Strokopytov, B., Penninga, D., Rozeboom, H. J., Kalk, K. H., Dijkhuizen, L. and Dijkstra, B. W. (1995). X-ray structure of cyclodextrin glycosyltransferase complexed with acarbose. Implications for the catalytic mechanism of glycosidases. Biochemistry 34: 2234 – 2240

Studier, F. W. (1991). Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J. Mol. Biol.219: 37 - 44

Studier, F. W. and Moffat, B. A. (1986). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189: 113 – 130

Stülke, J. and Hillen, W. (1999). Carbon catabolite repression in bacteria. Curr. Opin. Microbiol. 2: 195 – 201

Sutcliffe, I. C. and Russell, R. R. B. (1995). Lipoproteins of Gram-positive bacteria. J. Bacteriol. 177: 1123 – 1128

Sutcliffe, I. C., Tao, L., Ferretti, J. J. and Russell, R. R. B. (1993). MsmE, a lipoprotein involved in sugar transport in Streptococcus mutans . J. Bacteriol. 175: 1853 – 1855

Szmelcman, S., Schwartz, M., Silhavy, T. J. and Boos, W. (1976). Maltose transport in Escherichia coli K12. A comparison of transport kinetics in wild-type and λ –resistant mutants with the dissociation constants of the maltose binding protein as measured by fluorescence quenching. Eur. J. Biochem. 65: 13 – 19

Tam, R. and Saier, M. H. (1993). Structural, functional and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol. Rev. 57: 320 – 346

Tangney, M., Fleming, A. B., Jørgensen, P. L. and Priest, F. G. (1998). Regulation of maltose metabolism in stationary phase cultures of an asporogenous mutant of Bacillus licheniformis . J. Appl. Microbiol. 84: 201 – 206

Tangney, M., Smith, P., Priest, F. G. and Mitchell, W. J. (1992). Maltose transport in Bacillus licheniformis NCIB 6346. J. Gen. Microbiol.138: 1821 – 1827

Thomson, J., Liu, Y., Sturtevant, J. M. and Quiocho, F. A. (1998). A thermodynamic study of the binding of linear and cyclic oligosaccharides to the maltodextrin-binding protein of Escherichia coli . Biophys. Chem. 70: 101 – 108

Titgemeyer, F. and Hillen, W. (2002). Global control of sugar metabolism: a Gram-positive solution. Antonie van Leeuwenhoek82: 59 – 71

Titgemeyer, F., Walkenhorst, J., Reizer, J., Stuiver, M. H., Cui, X. and Saier, M. H., Jr. (1995). Identification and characterization of phosphoenolpyruvate:fructose phosphotransferase systems in three Streptomyces species. Microbiol. 141: 51 – 58

Tjalsma, H., Bolhuis, A., Jongbloed, J. D. H., Bron, S. and van Dijl, J. M. (2000). Signal peptide-dependent protein transport in Bacillus subtilis : a genome-based survey of the secretome. Microbiol. Mol. Biol. Rev. 64: 515 – 547

Towbin, H., Staehelin, T. and Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76: 4350-4354

Treptow, N. A. and Shuman, H. (1985). Genetic evidence for substrate and periplasmic-binding-protein recognition by the MalF and MalG proteins, cytoplasmic membrane components of the Escherichia coli maltose transport system. J. Bacteriol.163: 654 – 660

Truscheit, E., Frommer, W., Junge, B., Müller, L., Schmidt, D. D. and Wingender, W. (1981). Chemistry and biochemistry of α -glucosidase inhibitors. Angew. Chem. Int. Ed. 20: 744 – 761

van Wezel, G. P., White, J., Bibb, M. J. and Postma, P. W. (1997b). The malEFG gene cluster of Streptomyces coelicolor A3(2): characterization, disruption and transcriptional analysis. Mol. Gen. Genet. 254: 604 – 608

van Wezel, G. P., White, J., Young, P., Postma, P. W. and Bibb, M. J. (1997a). Substrate induction and glucose repression of maltose utilization by Streptomyces coelicolor A3(2) is controlled by malR , a member of a lacI galR family of regulatory genes. Mol. Microbiol.23: 537 – 549

Vobis, G. (1989). Section 28 Actinoplanetes. In: S. T. Williams, M. E. Sharp and J. G. Holt (eds): Bergey’s manual of systematic bacteriology, pp. 2418 – 2428.

Wachinger, G., Bronnenmeier, K., Staudenbauer, W. L. and Schrempf, H. (1989). Identification of a mycelium associated cellulase from Streptomyces reticuli . Appl. Environ. Microbiol. 55: 2653 – 2657

Walker, J. E., Saraste, M., Rundswick, M. J. and Gay, N. J. (1982). Distantly related sequences in the α - and β subunit of the ATP-synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1: 945 – 951

Walter, C. (1992). Molekularbiologische Untersuchungen zur Funktion der ATP-bindenden Untereinheit MalK des Maltose-Transportsystems aus Salmonella typhimurium. Dissertation, Universität Osnabrück.

Wassenberg, D., Liebl, W. and Jaenicke, R. (2000). Maltose-binding protein from the hyperthermophilic bacterium Thermotoga maritima : stability and binding properties. J. Mol. Biol.295: 279 – 288

Wehmeier, U. F. (2003). The biosynthesis and metabolism of acarbose in Actinoplanes SE50/110: A progress report. Biocat. Biotrans.21: 279 – 284

Wehmeier, U. F. and Piepersberg, W. (2004). Biotechnology and molecular biology of the α -glucosidase inhibitor acarbose. Appl. Microbiol. Biotechnol. 63: 613 – 625

Wilken, S., Schmees, G. and Schneider, E. (1996). A putative helical domain in the MalK subunit of the ATP binding-cassette transport system for maltose of Salmonella typhimurium (MalFGK 2 ) is crucial for interaction with MalF and MalG. A study using the LacK protein of Agrobacterium radiobacter as a tool. Mol. Microbiol. 22: 655 – 666

Wong, C., Sridhara, S., Bardwell, J. C. A. and Jakob, U. (2000). Heating greatly speeds Coomassie Blue staining and destaining. BioTechniques 28: 426 – 432.

Xavier, K. B., Martins, L. O., Peist, R., Kossmann, M., Boos, W. and Santos, H. (1996). High-affinity maltose/trehalose transport system in the hyperthermophilic archaeon Thermococcus litoralis . J. Bacteriol.178: 4773 – 4777

Yannisch-Perron, C., Vieira, J. and Messing, J. (1985). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103 – 119

Yoon, S.-H. and Robyt, J. F. (2002). Addition of maltodextrins to the nonreducing-end of acarbose by reaction of acarbose with cyclomaltohexaose and cyclomaltodextrin glucanyltransferase. Carb. Res.337: 509 – 516

Zielinski, F. (2003).MalR – der negative Regulator des Genclusters für den Stärkestoffwechsel aus dem grampositiven Bakterium Alicyclobacillus acidocaldarius. Diplomarbeit, Humboldt-Universität zu Berlin.

© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 4.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am: