Akerley, B. J., Rubin, E. J., Camilli, A., Lampe, D. J., Robertson, H. M., and Mekalanos, J. (1998 ) Systematic identification of essential genes by in vitro mariner mutagenesis. Proc. Natl. Acad. Sci. USA. 95, 8927-8932

Albareda, M., Dardanelli, M. S., Sousa, C., Megias, M., Temprano, F., and Navarro, D. N. R. (2006) Factors affecting the attachment of rhizospheric bacteria to bean and soybean roots. FEMS Microbiol. Lett259, 67-73

Ali, N.I., Siddiqui, I.A., Shaukat, S.S., and Zaki, M.J. (2002) Nematicidal activity of some strains of Pseudomonas spp. Soil Biol. Biochemis. 34, 1051 – 1058

Allison, C., Emody, L., Coleman, N., and Hughes, C. (1994). The role of swarm-cell differentiation and multicellular migration in the uropathogenicity of Proteus mirabilis . J. Infect Dis69, 1155-1158

Aloni, R., Aloni, E., Laghans, M., and Ullrich, C.I. (2006) Role of cytokinin and auxin in shaping root architecture: Regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann. Bot. 97, 883-93

Amati, G., Bisicchia, P., and Galizzi, A. (2004) DegU-P represses expression of the motility fla-che operon in Bacillus subtilis. J. Bacteriol186, 6003-6014

Antoun, H., and Kloepper, J. W., 2001 Plant growth-promoting rhizobacteria (PGPR), in: Encyclopedia of Genetics, Brenner, S. and Miller, J.H., eds., Academic Press, NY. 1447-1480

Ashour, J., and Hondalus M. K. (2003) Phenotypic mutants of the intracellular actinomycete Rhodococcus equi created by in vivo Himar1 transposon mutagenesis. J. Bacteriol185, 2644-2652

Atzhorn, R., Crozier, A.. Wheeler, C.T., and Sandberg G. (1988) Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta175, 532-538

Bais, H. P., Park S. W., Weir, T. L., Callaway, R. M. and J. M. Vivanco. (2004) How plants communicate using the underground information superhighway. Trends Plant Sci. 9, 26-32

Bais, H.P., Tiffany L.Weir, T.F., Perry, L.G., Gilroy, S., and Vivanco, J.M. (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Ann. Rev. Plant Biol. 57,233-66

Bano, N., and Musarrat, J. (2004) Characterization of a novel carbofuran degrading Pseudomonas sp. with collateral biocontrol and plant growth promoting potential. FEMS Microbiol. Lett. 231, 13-17

Basset, G.J.S., Quinlivan, E.P., Ravanel,S., Re´ beille, F., Nichols, B.P., Shinozaki, K., Seki, M., Lori C. Adams-Phillips, L. C., Giovannoni, J.J., Gregory, J.F. and Hanson, A.D. (2004) Folate synthesis in plants: The p-aminobenzoate branch is initiated by a bifunctional PabA-PabB protein that is targeted to plastidsProc. Natl. Acad. Sci. USA. 101(6), 1496-1501

Bastian, F., Cohen, A., Piccoli, P., Luna, V., Baraldi, R. and Bottini, R.(1998) Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically defined media. Plant Growth Regul. 24, 7-11

Benhamou, N., Kloepper, J.W., and Hallman, Q.A. Bastian, F., Cohen, A., Piccoli, P., Luna, V. (2002 ) Induction of defense related ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiol. 112, 919-929

Berg, G., Roskot, N., Steidle, A., Eberl L., Zock, A., and Smalla, K. (2002) Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl. Environ. Microbiol. 68, 3328-3338

Berg, G., Zachow, C., Lottmann, J., Götz, M., Costa, R., and Smalla, K. (2005) Impact of plant species and site on rhizosphere associated fungi antagonistic to Verticillium dahliae Kleb. Appl. Environ. Microbiol. 171, 4203-4213

Berg, G. (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 84, 11-18

Bloemberg, G. V., and Lugtenberg, B. J. J. (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Plant Biol. 4,343-350

Bolwerk, A., Lagopodi, A. L., Wijfjes, A. H., Lamers, G. E.,. Chin, A. W. T. F., Lugtenberg, B. J., and Bloemberg, G. V. (2003) Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici. Mol. Plant-Microbe Interact. 16, 983-993

Bordi, C., Butcher, B.G., Shi, Q., Hachmann, A., Peters, J.E., and Helmann J.D. (2008) In vitro mutagenesis of Bacillus subtilis by using a modified Tn7 transposon with an outward-facing inducible promoter. Appl. Environ. Microbiol74(11), 3419-25

Bourhy, P., Louvel, L., Girons, I.S., and Picardeau, M., (2005) Random insertional mutagenesis of Leptospira interrogans, the agent of leptospirosis, using a mariner transposon. J. Bacteriol187(9), 3255-3258

Branda, S. S., Pastor, J. E. G., Yehuda, S. B., Losick, R., and Kolter, R. (2001) Fruiting body formation by Bacillus subtilis. Proc. Natl. Acad. Sci. USA. 98(20), 11621-11626

Branda, S. S., Pastor, J. E. G., Dervyn, E., Ehrlich, S. D., Losick, R., and Kolter, R. (2004) Genes involved in formation of structured multicellular communities by Bacillus subtilis. J. Bacteriol186(12), 3970-3979

Branda, S. S., Vik, A., Friedman, L., and Kolter, R. (2005) Biofilms: the matrix revisited. Trends Microbiol. 13(1), 20-26

Branda, S. S., Chu, F., Kearns, D. B., Losick, R., and Kolter, R. (2006) A major protein component of the Bacillus subtilis biofilm matrix. Mol. Microbiol. 59(4), 1229-1238

Breton, Y. L., Mohapatra, N. P., and Haldenwang, W. G. (2006) In vivo random mutagenesis of Bacillus subtilis by use of tnylb-1, a mariner-based transposon. Appl. Environ. Microbiol, 72(1), 327-333

Chakraborty, U., Chakraborty, B., and Basnet, M. (2005) Plant growth promotion and induction of resistance in Camellia sinensis by Bacillus megaterium. J. Basic Microbiol. 46(3), 186-195

Chandler, M., and Mahillon, J. (2002) Insertion sequences revised. In Craig NL, Craigie R, Gellert M, Lambowitz AM, eds. Mobile DNA II. Washington, DC: ASM Press. 305-366

Chen, X.H., Vater, J., Piel, J., Franke, P., Scholz, R., Schneider, K., Koumoutsi, A., Hitzeroth, G., Grammel, N., Strittmatter, A.W., Gottschalk, G., Süssmuth, R.D., and Borriss, R. (2006) Structural and functional characterization of three polyketides synthase gene clusters in Bacillus amyloliquefaciens FZB42. J. Bacteriol188(11), 4024-4036

Chen, X. H., Koumoutsi, A., Scholz, R., Eisenreich, A.,Schneider, K., Heinemeyer, I., Morgenstern, B., Voss, B., Hess, W. R., Reva, O., Junge, H., Voigt, B., Jungblut, P. R., Vater, J., Süssmuth, R., Liesegang, H., Strittmatter, A., Gottschalk, G., and Borriss, R. (2007) Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nature Biotechnol. 25(9), 1007-1014

Chen, X.H., Koumoutsi, A., Scholz, R., Schneider, K., Vater, J., Süssmuth, R. Piel, J., and Borriss, R. (2009a) Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens . J. Biotechnol140, 27-37

Chen, X.H., Koumoutsi, A., Scholz, R., and Borriss, R. (2009b) More than anticipated - production of antibiotics and other secondary metabolites by Bacillus amyloliquefaciens FZB42. J. Mol. Microbio. Biotechnol. 16, 14-24

Chen, X.H., Scholz, R., Borriss, M., Junge, H., Mögel, G., Kunz, S., and Borriss, R. (2009c) Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease . J. Biotechnol. 140, 38-44

Chen, X.H. 2009. Whole genome analysis of the plant growth-promoting rhizobacteria Bacillus amyloliquefaciens FZB42 with focus on its secondary metabolites. Ph.D. dissertation. Humboldt-Universität zu Berlin, Berlin, Germany.

Choi, O., Kim, J., Kim, J.G., Jeong, Y., Moon, J. S., Park, C. S., and Hwang, I. (2008) Pyrroloquinoline quinone is a plant growth promotion factor produced by Pseudomonas fluorescens B16. Plant Physiol. 146, 657-668

Compant, S., Duffy, B., Nowak, J.,Clement, C., and Barka, E. A. (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71(9), 4951-4959

Conrath U, Pieterse C.M.J., and Mauch-Mani, B. (2002) Priming in plant-pathogen interactions. Trends Plant Sci. 7, 210-216

Costerton, J. W., Lewandowski, Z., De Beer, D., Caldwell, D., Korber, D., and James, G. (1994) Biofilms, the customized microniche. J. Bacteriol176, 2137-2142

Couillerot, O., Prigent-Combaret, C., Caballero-Mellado, J., Moenne-Loccoz, Y. (2009) Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens . Lett. Appl. Mirobiol.  48, 505-512

Cutting, S.M. and Vander Horn, P.B. (1990a): Molecular Biological Methods for Bacillus, Harwood C., Cutting S.M., Eds, Wiley Interscience, Chichister, United Kingdom

Cutting, S.M. and Van der Horn, P.B. (1990b) Genetic Analysis, Harwood C.R., Cutting S.M., Eds, Molecular biological methods for Bacillus pp. 27-74, Wiley Interscience, Chichister, United Kingdom

Danielsson, J., Reva, O., and Meijer, J. (2006) Protection of oilseed rape (Brassica napus) toward fungal pathogens by strains of plant-associated Bacillus amyloliquefaciens. Microb. Ecol. 54(1), 134-40

Davey, M. E., and O’Toole, G. A. (2000) Microbial biofilm: from ecology to molecular genetics. Microbiol. Mol. Biol. Rev. 64(4), 847-867

de Salamone, I.E.G., Hynes, R.K., and Nelson, L.M. (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can. J. Microbiol. 47(5), 404-411 

Dey R., Pal K.K., Bhatt D.M., and Chauhan, S.M. (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol. Res. 159371-394

Dieffenbach , C. W., and Gabriela S. Dveksler , G.S. (1995) PCR Primer: A Laboratory Manual. Cold Spring Harbor Laboratory Press

Dobbelaere, S., and Okon, Y. (2007) The plant growth promoting effects and plant responses. In: Elmerich C, Newton WE (eds) Nitrogen fixation: origins, applications and research progress. Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations, vol V. pp. 145-170, Heidelberg, Springer.

Emmert, E. A. B., and Handelsman, J. (1999) Biocontrol of plant disease: a (Gram) positive perspective. FEMS Microbiol. Lett. 171, 1-9

Flemming, H.C. 1993. Biofilms and environmental protection. Water Sci. Technol. 27, 1-10

Freiberg, C., Fellay, R., Bairoch, A., Broughton, W.J., Rosenthal, A., Perret, X., and Freiberg, C. (1997) Molecular basis of symbiosis between Rhizobium and legumes. Nature387, 394-401

Gardener, B. B. MS. (2004) Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathol. 94, 1252-1258

Gerhardson, B. 2002. Biological substitutes for pesticides. Trends Biotechnol. 20, 338-343

Glick, B. R., and Bashan, Y. (1997) Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotech. Adv. 15(2), 353-378

Glick, B.R. (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol. Lett. 251, 1-7

Glick, B.R., Cheng, Z., Czarny, J., and Duan, J. (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur. J. Plant Pathol. 119, 329-39

Guarino, E., Jime´nez-Sa´nchez, A., and Guzman, E.C. (2007) Defective ribonucleoside diphosphate reductase impairs replication fork progression in Escherichia coliJ. Bacteriol. 189(9), 3496-3501

Gutierrez-Manero, F.J., Ramos-Solano, B., Probanza, A., Mehouachi, J., Tadeo, F.R., and Talon, M. (2001) The plant-growth-promoting rhizobacteria Bacillus pumilis and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol. Plant. 111, 206-211

Haas, D., and De´fago, G. (2005) Biological control of soilborne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3, 307-319

Haft, D. H., Basu, M. K., and Mitchell, D. A. (2010) Expansion of ribosomally produced natural products: a nitrile hydratase- and Nif11-related precursor family. BMC Biol. 8, 70

Haggag, W. M., and Timmusk, S. (2007) Colonization of peanut roots by biofilm-forming Paenibacillus polymyxa initiates biocontrol against crown rot disease. J. Appl. Microbiol. 104, 961-969

Hall J.A., Peirson D., Ghosh S., and Glick B.R. (1996) Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Isr. J. Plant Sci. 44, 37-42

Halling, S. M., and Kleckner, N. (1982) A symmetrical six-base-pair target site sequence determines Tn10 insertion specificity. Cell. 28155-163

Hamon, M. A., Stanley, N. R., Britton, R. A., Grossman, A. D., and Lazazzera, B. A. (2004) Identification of AbrB-regulated genes involved in biofilm formation by Bacillus subtilis. Mol. Microbiol. 52 (3), 847-860

Hartl, D. L., Lohe, A. R., and Lazovskaya, E. R. (1997) Regulation of the transposable element mariner. Genetica. 100, 177-184

Hayes, F. (2003) Transposon - based strategies for microbial functional genomics and proteomics. Annu. Rev. Genet. 37, 3-29

Hontzeas. N., Saleema S., Saleh, S.S., and Glick, B.R. (2004) Induced by acc-deaminase-containing plant-growth-promoting bacteriaMol. Plant Microb. Interact . 17 (8), 865-871

Idriss, E. E., Makarewicz, O., Farouk, A., Rosner, K., Greiner, R., Bochow, H., Richter, T., and Borriss, R. (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiol. 148, 2097-2109

Idris, E. E., Iglesias, D. J., Talon, M., and Borriss, R. (2007) Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol. Plant Microb. Interact . 20(6), 619-626

Inbar, E., Green, S.J., Hadar, Y., and Minz, D. (2005) Competing factors of compost concentration and proximity to root affect the distribution of streptomycetes. Microbial Ecology. 50, 73-81

Jackson, M. B. (1993) Are plant hormones involved in root to shoot communication? Adv. Bot. Res. 19, 104-187

James, T.Y., Boulianne, R.P., Bottoli, A.P.F., Granado, J.D., Aebi, M., And Kües, U. (2001) The pab1 gene of Coprinus cinereus encodes a bifunctional protein for para-aminobenzoic acid (PABA) synthesis: implications for the evolution of fused PABA synthases , J. Basic Microbiol. 42(2), 91-103

Jiang, W., Yuna, D., Saleha, L., Bollinger Jr, J.M., and Krebsa, C. (2008) Formation and function of the Manganese(IV)/Iron(III) cofactor in Chlamydia trachomatis ribonucleotide reductase. Biochemistry. 47(52), 13736-13744

Joo, G.J., Kim, Y.M., Lee, I.J., Song, K.S., & Rhee, I.K. (2004Growth promotion of red pepper plug seedlings and the production of gibberellins by Bacillus cereus, Bacillus macroides and Bacillus pumilus. Biotechnol. Lett. 26, 487-491

Joo, G.J., Kim, Y.M., Kim, J.T., Rhee, I.K., Kim, J.H., and In-Jung Lee, I.J. (2005) Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J. Microbiol. 43(6), 510-515

Julien, B., and Fehd, R. (2003) Development of a mariner-based transposon for use in Sorangium cellulosum. App. Environ. Microbiol. 69(10), 6299-6301

Kamilova, F., Validov, S., Azarova, T., Mulders, I., and Ben Lugtenberg, B. (2005) Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ. Microbiol. 7 (11), 1809-1817

Katiyar, V., and Goel, R. (2004) Siderophore mediated plant growth promotion at low temperature by mutant of fluorescent pseudomonad. Plant Growth Regulation. 42, 239-244

Kearns, D. B., Chu, F., Rudner, R., and Losick, R. (2004) Genes governing swarming in Bacillus subtilis and evidence for a phase variation mechanism controlling surface motility. Mol. Microbiol. 52(2), 357-369

Kirov, M.S., Tassell, B.C., Semmler, A.B.T., O’Donovan, L.A., Rabaab, A.A.n and Shaw, J.G. 2002. Lateral flagella and swarming motility in Aeromonas Species. J. Bacteriol. 184, 547-555

Klein, K., Winkelmann, D., Hahn, M., Weber, T., and Marahiel, M.A. (2000) Molecular characterization of the transition state regulator AbrB from Bacillus stearothermophilus. Biochimi. Biophys. Acta. 1493(1-2), 82-90

Kloepper, J. W., Ryu, C.M., and Zhang, S. (2004) Induced systematic resistance and promotion of plant growth by Bacillus spp. Phytopathol. 94, 1259-1266

Kobayashi, K. (2007) Gradual activation of the response regulator DegU controls serial expression of genes for flagellum formation and biofilm formation in Bacillus subtilis. Mol. Microbiol. 66(2), 395-409

Koumoutsi, A., Chen, X. H., Henne, A., Liesegang, H., Hitzeroth, G., Franke, P., Vater, J., and Borriss, R. (2004) Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens Strain FZB42. J. Bacteriol. 186(4), 1084-1096

Kristich, C. J., Nguyen, V. T., Le, T., Barnes, A. M. T., Grindle, S., and Dunny, G. M. (2008) Development and use of an efficient system for random mariner transposon mutagenesis to identify novel genetic determinants of biofilm formation in the core Enterococcus faecalis genome. App. Environ. Microbiol. 74(11), 3377-3386

Kunst, F., and Rapoport, G. (1995) Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis, J. Bacteriol. 177(9), 2403-2407

Lampe, D. J., Akerley, B. J., Rubin, E. J., Mekalanos, J. J., and Robertson, H. M. (1999) Hyperactive transposase mutants of the Himar1 mariner transposon. Proc. Natl. Acad. Sci.. USA. 96, 11428-11433

Leach, A.W., and Mumford, J.D. (2008) Pesticide environmental accounting: a method for assessing the external costs of individual pesticide applications. Environ Pollut. 151, 139-47

Lee, S. W., Mitchell, D. A., Markley, A. L., Hensler, M. E., Gonzalez, D., Wohlrab, A., Dorrestein, P. C., Nizet, V., and Dixon, J. E. (2008) Discovery of a widely distributed toxin biosynthetic gene cluster. Proc. Natl. Acad. Sci. USA. 105, 5879–5884

Liu, Z.M., Tucker, A.M., Driskell, L.O., and Wood, D.O. (2007) Mariner-based transposon mutagenesis of Rickettsia prowazekii. App. Environ. Microbiol. 73(20), 6644-6649

Lockhart, W.L., Billeck, B.N., and Baron, C. L. (1989) Bioassays with a floating aquatic plant (Lemna minor) for effects of sprayed and dissolved glyphosate. Hydrobiologia. 188-189, 353-359

Loper, J. E., and Henkels, M. D. (1999) Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl. Environ. Microbiol. 65, 5357-5363

Louvel, H., Girons, I. S., and Picardeau, M. (2005) Isolation and characterization of FecA- and FeoB- mediated iron acquisition systems of the spirochete Leptospira biflexa by random insertional mutagenesis. J. Bacteriol. 187,3249-3254

Lucy, M., Reed, E., and Glick, B. R. (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie van Leeuwenhoek. 86, 1-25

Lugtenberg, B.J., Dekkers, L., and Bloemberg., G.V. (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu. Rev. Phytopathol. 39, 461-90

Lugtenberg, B. J. J., Chin-A-Woeng, F. C., and Bloemberg, G. V. (2002) Microbe-plant interactions: principles and mechanism. Antonie van Leeuwenhoek. 81, 373-383

Lugtenberg, B., and Kamilova, F. (2009) Plant-growth-promoting rhizobacteria, Annu. Rev. Microbiol. 63, 541-56

Maeder, U., Antelmann, H., Buder, T., Dahl, M. K., Hecker, M., and Homut, G. (2002) Bacillus subtilis functional genomics: genome-wide analysis of the DegS-DegU regulon by transcriptomics and proteomics. Mol. Genet. Genomics. 268, 455-467

Maier, T. M., Pechous, R., Casey, M., Zahrt, T. C., and Frank, D. W. (2006) In vivo Himar1-based transposon mutagenesis of Francisella tularensis. Appl. Environ. Microbiol. 72, 1878-1885

Makarewicz, O., Neubauer, S., Preusse, C., and Borriss, R. (2008) Transition state regulator abrB inhibits transcription of bacillus amyloliquefaciens FZB45 phytase through binding at two distinct sites located within the extended phyC promoter region. J. Bacteriol. 190(19), 6467-6474

Malhotra, M., and Srivastava, S. (2009) Stress-responsive indole-3-acetic acid biosynthesis by Azospirillum brasilense SM and its ability to modulate plant growth. Eur. J. Soil Biol. 45, 73 – 80

 Marilley, L., and Aragno, M. (1999) Phylogenetic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots. Appl. Soil Ecol. 13, 127-136

Merritt, P.M., Danhorn, T., and Fuqua, C. (2007) Motility and chemotaxis in Agrobacterium tumefaciens surface attachment and biofilm formation. J. Bacteriol. 189, 8005-8014

Mireles, J.R., Toguchi, A., and Harshey, R.M. (2001) Salmonella enterica serovar typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J. Bacteriol . 183, 5848-5854

Moch, C., O. Schrogel, and R. Allmansberger. (1998) The σ D-dependent transcription of the ywcG gene from Bacillus subtilis is dependent on an excess of glucose and glutamate. Mol. Microbiol. 27, 889 – 898

Moch, C., Schrogel, O., and Allmansberger, R. (2000) Transcription of the nfrA-ywcH operon from Bacillus subtilis is specifically induced in response to heat. J. Bacteriol. 182, 4384-4393

Morozova, O.V., Dubytska, L.P., Ivanova, L.B., Moreno, C.X., Bryksin, A.V., Sartakova, M.L., Dobrikova, E.Y., Godfrey, H.P., and Cabello, F.C. (2005) Genetic and physiological characterization of 23S rRNA and ftsJ  mutants of Borrelia burgdorferi isolated by mariner transposition. Gene. 357(1), 63-72 

Mostertz, J., Scharf, C., Hecker, M., and G. Homuth. 2004. Transcriptome and proteome analysis of Bacillus subtilis gene expression in response to superoxide and peroxide stress. Microbiol. 150, 497-512

Müller, H., Westendorf, C., Leitner, E., Chernin, L., Riedel, K., Schmidt, S., Eberl, L., and Berg, G. (2009) Quorum-sensing effects in the antagonistic rhizosphere bacterium Serratia plymuthica HRO-C48. FEMS Microbiol Ecol. 67, 468-467

Naumann, B., Eberius, M., and Appenroth, Klaus-J. (2007) Growth rate based dose-response relationships and EC-values of ten heavy metals using the duckweed growth inhibition test (ISO 20079) with Lemna minor L. clone St. J. Plant Physiol. 164, 1656-1664

Nielsen T.H., Christopheresen, C., Anthoni, U., and, Sørensen, J. (1999) Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. J. Appl. Microbiol. 87, 80-90

Nielsen T.H., Thrane, C., Christophersen, C., Anthoni, U., and Sørensen, J. (2000) Structure, production characteristics and fungal antagonism of tensin — a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96. J. Appl. Microbiol. 89, 992-1001

Oliveira, D.F., Carvalho, H.W.P., Nunes, A.S., Silva, G.H., Campos, V.P., Júnior, H.M.S. and Cavalheiro, A.J. (2009) The activity of amino acids produced by Paenibacillus macerans and from commercial sources against the root-knot nematode Meloidogyne exigua. Eur. J. Plant Pathol. 124, 57-63

Ollinger, J., Song, K. B., Antelmann, H., Hecker, M., and Helmann, J.D. (2006) Role of the fur regulon in iron transport in Bacillus subtilis. J. Bacteriol. 188(10), 3664-3673

Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J.L., and Thonart, P. (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9(4), 1084-1090

Ortiz-Castro, R., Valencia-Cantero, E., and Lopez-Bucio, J. (2008) Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signaling Behavior 3(4), 263-265

Overhage, J., Bains, M., Brazas, M. D., and Hancock, R. E. W. (2008) Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. J. Bacteriol. 190, 2671-2679

Perego, M., and Hoch J.A. (1991) Negative regulation of Bacillus subtilis sporulation by the spo0E gene product.  J. Bacteriol. 173(8) , 2514-2520

Persello-Cartieaux, F., Nussaume, L., and Robaglia, C. (2003) Tales from the underground: molecular plant-rhizobacteria interactions. Plant Cell Environ. 26, 189-199

Petit, M. A., Bruand, C., Janniere, L., and Ehrlich. S. D. (1990) Tn10-derived transposons active in Bacillus subtilis. J. Bacteriol. 172, 6736-6740

Petzke, L., and Luzhetskyy, A. (2009) In vivo Tn5-based transposon mutagenesis of Streptomycetes. Appl. Microbiol. Biotechnol. 83, 979-986

Peypoux, F., Bonmatin, J.M., and Wallach, J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol. 51, 553-563

Picardeau, M. (2010) Transposition of fly mariner elements into bacteria as a genetic tool for mutagenesis. Genetica. 138, 551-558

Ping, L., and Boland, W. (2004) Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci . 9(6), 263-6

Raaijmakers, J.M., Vlami, M., and de Souza, J.T. (2002) Antibiotic production by bacterial biocontrol agents. Antonie van Leeuwenhoek. 81, 537-547

Reva, O. N., Dixelius, C., Meijer, J., and Priest, F. G. (2004) Taxonomic characterization and plant colonizing abilities of some bacteria related to Bacillus amylolyquefaciens and Bacillus subtilis. FEMS Microbiol. Ecol. 48(2), 249-259

Reznikoff, W.S. (2003) Tn5 as a model for understanding DNA transposition. Mol. Microbiol.  47 (5), 1199-1206

Rholl, D., Trunck, L., and Schweizer, H.P. (2008) In vivo Himar1 transposon mutagenesis of Burkhoderia pseudomallei. Appl. Environ. Microbiol. 74, 7529-7535

Robertson, H. M. (1993) The mariner transposable element is widespread in insect. Nature. 362, 241-245

Rodriguez, H., and Fraga, R., (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17, 319-339

Rudrappa, T., Quinn, W. J., Wall, N. R. S., Bais, H. P. (2007) A degration product of the salicylic acid pathway triggers oxidative stress resulting in down-regulation of Bacillus subtilis biofilm formation on Arabidopsis thaliana roots. Planta. 226, 283-297

Ryu, C.M., Farag, M. A., Hu, C.H., Reddy, M.S., Wie, H.X., Pare, P. W., and Kloepper, J. W. (2003) Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. USA. 100(8), 4927-4932

Ryu, C.M., Farag, M. A., Hu, C.H., Reddy, M. S., Kloepper, J. W., and Pare, P. W. (2004) bacterial volatiles induce systemic resistence in Arabidopsis. Plant Physiology. 134, 1017-1026

Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989) Molecular Cloning: a Laboratory Manual, Cold Spring Harbor Laboratory, NY

Scholz, R .,  Molohon K.J .,  Nachtigall J .,  Vater J .,  Markley A.L .,  Süssmuth, R.D .,  Mitchell D.A ., and Borriss R. (2011) Plantazolicin, a novel microcin B17/streptolysin S-like natural product from Bacillus amyloliquefaciens FZB42. J. Bacteriol.   22, 215-224

Senesi, S., Celandroni, F., Salvetti, S., Beecher, D. J., Wong, A. C. L., and Ghelardi, E. (2002) Swarming motility in Bacillus cereus and characterization of a fliY mutant impaired in swarm cell differentiation. Microbiol. 148, 1785-1794

Siddiqui, I.A., Haas, D., and Heeb, S (2003) Extracellular protease of Pseudomonas fluorescens cha0, a biocontrol factor with activity against the root-knot nematode Meloidogyne incognita. Appl. Environ. Microbiol. 71(9), 5646-5649

Stanley, N. R., and Lazazzera, B. A. (2005) Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-ß-DL-glutamic acid production and biofilm formation . Mol. Microbiol. 57(4), 1143-1158

Stanley, N.R., Britton, R.A., Grossman, A.D., and Lazazzera, B. A. (2003) Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays . J. Bacteriol. 185, 1951-1957

Steenhoudt, O., and J. Vanderleyden (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol. Rev. 24(4), 487-506

Steinberg, F.M., Gershwin, M.E., and Ruckr, R.B. (1994) Dietary pyrroloquinoline quinone: growth and immune response in BALB/C mice. J. Nutr. 124, 744-753

Strauch, M.A., Ballar, P., Rowshan, A.J., and Zoller, K.L. (2005) The DNA-binding specificity of the Bacillus anthracis AbrB protein.  Microbiol. 151, 1751-1759

Strauch, M.A., Bobay, B.G., Cavanagh, J., Yao, F., Wilson,A., and Breton, Y.L. (2007) Abh and AbrB Control of Bacillus subtilis antimicrobial gene expression. J. Bacteriol. 189(21), 7720-7732

Streker, K., Freiberg, C., Labischinski, H., Hacker, J., and Ohlsen, K., (2005) Staphylococcus aureus NfrA (SA0367) is a flavin mononucleotide-dependent NADPH oxidase involved in oxidative stress responseJ. Bacteriol. 187, 2249-2256

Timusk,. S. (2003) Mechanism of action of the plant growth promoting bacterium Paenibacillus polymyxa. Dissertation. Acta Universitatis Upsaliensis. Uppsala 

van Loon, L.C., Bakker P.A.H.M., and Pierterse C.M.J. (1998) Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36, 453-483

van Peer, R., Niemann, G.J., and Schippers, B. (1991) Induced resistance and phytoalexin accumulation in biological control of fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathol81, 728-734

van Wees S.C.M., and Glazebrook, J. (2003) Loss of non-host resistance of Arabidopsis NahG to Pseudomonas syringae pv. Phaseolicola is due to degradation product of salicylic acid. Plant J. 33, 733-742

Vassilev, N., Vassileva, M., and Nikolaeva, I. (2006) Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol. Biotechnol. 71, 137-144

Verhamme, D. T., Kiley, T. B., and Wall, N. R. S. (2007) DegU co-ordinates multicelluler behaviour exhibited by Bacillus subtilis. Mol. Microbiol. 65(2), 554-568

Verstraeten, N., Braeken, K., Debkumari, B., Fauvart, M., Fransaer, J., Vermant, J., and Michiels, J. (2009) Living on a surface: swarming and biofilm formation. Trends Microbiol. 16(10), 496-506

Wandersman, C., and Delepelaire, P. (2004) Bacterial iron sources: from siderophores to hemophores. Annu. Rev. Microbiol. 58611-647

Wang, K., Conn, K., and Lazarovits, G. (2006) Involvement of quinolinate phosphoribosyl transferase in promotion of potato growth by a Burkhoderia Strain. App. Environ. Microbiol. 72(1), 760-768

Wang, Q., Frye, J.G., McClelland, M., and Harshey, R.M. (2004) Gene expression patterns during swarming in Salmonella typhimurium : genes specific to surface growth and putative new motility and pathogenicity genes. Mol. Microbiol. 52(1), 169-187

Wei, J.Z., Hale, K., Carta, L., Platzer, E., Cynthie Wong, C., Fang, S.C. and Aroian, R.V. (2003) Bacillus thuringiensis crystal proteins that target nematodes Proc. Natl. Acad. Sci. USA 100(5), 2760-2765

Welbaum, G., A. V. Sturz, Z. Dong, and J. Nowak. (2004) Fertilizing soil microorganisms to improve productivity of agroecosystems. Crit. Rev. Plant Sci. 23, 175-193

Wu, Qingmin., Pei, J., Turse, C., and Ficht, T. A. (2006) Mariner mutagenesis of Brucella melitensis reveals genes with previously uncharacterized roles in virulence and survival. BMC Microbiol. 6, 102

Yang, Y., Qi, M., and Mei, C. (2004) Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. Plant J. 40, 909-919

Yeung, A.T.Y., Torfs, A.C.W., Jamshidi, F., Bains, M., Wiegand, I., Hancock, R.E.W., and Overhage, J. (2009) Swarming of Pseudomonas aeruginosa is controlled by a broad spectrum of transcriptional regulators, including MetR. J. Bacteriol. 191(18), 5592-5602

Youngman, P. J., Perkins, J. B., and Sandman, K. (1985) Use of Tn917-mediated transcriptional gene fusions to lacZ and cat-86 for the identification and study of spo genes in Bacillus subtilis. In J. A. Hoch and P.Setlow (eds.), Molecular Biology of Microbial Differentiation. ASM Press, Washington, D.C. 47-54

Youngman, P. J., Perkins, J. B., and Losick, R. (1983) Genetic transposition and insertional mutagenesis in Bacillus subtilis with Streptococcus faecalis transposon Tn917. Proc. Natl. Acad. Sci. USA. 80, 2305-2309

Zhang, H., Kim, M.S., Krishnamachari, V., Payton, P., Sun, Y., Grimson, M., Farag, M.A., Ryu, C.M., Allen, R., Melo, I.S., and Pare, P.W. (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta226, 839-851

Zhang, J. K., Pritchett, M. A., Lampe, D. J., Robertson, H. M., and Metcalf, W. W. (2000) In vivo transposon mutagenesis of the methanogenic archaeon Methanosarcina acetivorans C2A using a modified version of the insect mariner-family transposable element Himar1. Proc. Natl. Acad. Sci. USA. 979665-9670

© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 4.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am: