[Seite 88↓]

LITERATURVERZEICHNIS

Aghajanian GK, Sprouse JS, Sheldon P, Rasmussen K (1990). Electrophysiology of the central serotonin system: receptor subtypes and transducer mechanisms. Ann. N. Y. Acad. Sci. 600:93-103

Allen AR, Singh A, Zhuang ZP, Kung MP, Kung HF, Lucki I (1997). The 5-HT 1A receptor antagonist p-MPPI blocks responses mediated by postsynaptic and presynaptic 5-HT1A receptors. Pharmacol. Biochem. Behav. 57:301-307

Anderson CD, Pasquier DA, Forbes WB, Morgane PJ (1977). Locus coeruleus-to-dorsal raphe input examined by electrophysiological and morphological methods. Brain Res. Bull. 2: 209-221

Apter JT, Allen LA (1999). Buspirone: future directions . J. Clin. Psychophamacol. 19:86-93

Ase AR, Reader TA, Hen R, Riad M, Descarries L (2000). Altered serotonin and dopamine metabolism in the CNS of serotonin 5-HT1A or 5-HT1B receptor knockout mice. J. Neurochem. 75:2415-2426

Assie MB, Koek W (1996). Effects of 5-HT1A receptor antagonists on hippocampal 5-hydroxytryptamine levels: (S)-WAY100135, but not WAY100635, has partial agonist properties. Eur. J. Pharmacol. 304:15-21

Azmitia EC, Dolan K, Whitaker-Azmitia PM (1990). S-100 β but not NGF, EGF, insulin or calmodulin is a CNS serotonergic growth factor. Brain Res. 516:354-356

Azmitia EC (2001). Modern views on an ancient chemical: Serotonin effects on cell proliferation, maturation, and apoptosis. Brain Res. Bull. 56:413-424

Azmitia EC, Rubinstein VJ, Strafaci JA, Rios JC, Whitaker-Azmitia PM (1995). 5-HT 1A agonist and dexamethasone reversal of para-chloroamphetamine induced loss of MAP-2 and synaptophysin immunoreactivity in adult rat brain. Brain Res. 677:181-192

Azmitia EC, Whitaker-Azmitia PM, Kheck N, Gannon P (1996). The cellular localization of the 5-HT1A receptor in primate cortex, hippocampus and brainstem neurons and glial cells. Neuropsychopharmacology 14:35-46


[Seite 89↓]

Azmitia PM, Murphy R Azmitia EC (1990). Stimulation of astroglial 5-HT1A receptors releases the serotonergic growth factor, protein S-100, and alters astroglial morphology . Brain Res. 528:155-158

Baraban JM, Aghajanian GK (1980). Suppression of firing activity of 5-HT neurons in the dorsal raphe by alpha-adrenoceptor antagonists. Neuropharmacology. 19: 355-363

Baraban JM, Aghajanian GK (1981). Noradrenergic innervation of serotonergic neurons in the dorsal raphe: demonstration by electron microscopic autoradiography . Brain Res. 204:1-11

Barnes NM, Sharp T (1999). A review of central 5-HT receptors and their function . Neuropharmacology 38:1083-1152

Bendotti C, Cole SE, Gobbi M, Hohmann C, Reeves RH (2002). Overexpression of S100beta in transgenic mice does not protect from serotonergic denervation induced by 5,7-dihydroxytryptamine. J. Neurosci. Res. 67:501-510

Benloucif S, Keegan MJ, Galloway MP (1993). Serotonin-facilitated dopamine release in vivo: pharmacological characterization. J. Pharmacol. Exp. Ther. 265:373-377

Benloucif S, Galloway MP (1991). Facilitation of dopamine release in vivo by serotonin agonists: studies with microdialysis. Eur. J. Pharmacol. 200:1-8

Bhattacharyya A, Oppenheim RW, Prevette D, Moore BW, Brackenbury R, Ratner N (1992). S100 is present in developing chicken neurons and Schwann cells and promotes motor neuron survival in vivo . J. Neurobiol. 23:451-466

Blier P, de Montigny C (1987). Modification of 5-HT neuron properties by sustained administration of the 5-HT1A agonist gepirone: electrophysiological studies in the rat brain. Synapse 1:470-480

Borella A, Bindra M, Whitaker-Azmitia PM (1997). Role of the 5-HT 1A receptor in development of the neonatal rat brain: preliminary behavioral studies. Neuropharmacology 36:445-450

Briner K, Dodel RC (1998). New approaches to rapid onset antidepress ants. Curr. Pharm. Res. 4:291-302

Briscoe J, Sussel L, Serup P, Hartigan-O’Connor D, Jessell T M, Rubenstein JLR, Ericson J (1999). Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature 398: 622 - 627


[Seite 90↓]

Ceci A, Baschirotto A, Borsini F (1994). The inhibitory effect of 8-OH-DPAT on the firing activity of dorsal raphe serotoninergic neurons in rats is attenuated by lesion of the frontal cortex. Neuropharmacology 33:709-713

Chen N-H, Reith MEA (1995). Monoamine interactions measured by microdialysis in the ventral tegmental area of rats treated systemically with (±)-8-hydroxy-2-(di-n­propylamino) tetralin. J. Neurochem. 64:1585-97

Dahlström A, Fuxe K ( 1964 ): Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in cell bodies of brain stem neurons. Acta Physiol. Scand. 62, Suppl 232:1-55

Daval G, Verge D, Becerril A, Gozlan H, Sampinato U, Hamon M (1987). Transient expression of 5-HT1A receptor binding sites in some areas of the rat CNS during postnatal development. Int. J. Dev. Neurosci. 5:171-180

De Deurwaerdere P, L'hirondel M, Bonhomme N, Lucas G, Cheramy A, Spampinato U (1997). Serotonin stimulation of 5-HT4 receptors indirectly enhances in vivo dopamine release in the rat striatum . J. Neurochem. 68:195-203

De Vry (1995). 5-HT1A receptor agonists: recent developments and controversial issues . Psychopharmacology 121:1-26

Di Porzio U, Zuddas A, Cosenza-Murphy DB, Barker JL (1990). Early appearance of tyrosine hydroxylase immunoreactive cells in the mesencephalon of mouse embryos . Int. J. Dev. Neurosci. 8:523-532

Done CJ, Sharp T (1994). Biochemical evidence for the regulation of central noradrenergic activity by 5-HT1A and 5-HT2 receptors. microdialysis studies in the awake and anaesthetized rat. Neuropharmacology 33:411-421

Ferron A, Descarries L, Reader TA (1982). Altered neuronal responsiveness to biogenic amines in rat cerebral cortex after serotonin denervation or depletion. Brain Res. 231:93-108

Galter D, Unsicker K (2000). Sequential activation of the 5-HT1A serotonin receptor and Trk B induces the serotonergic neuronal phenotype. Mol. Cell. Neurosci. 15:446-455

Gingrich JA, Hen R (2000). Commentary: The broken mouse: the role of development, plasticity and enviroment in the interpretation of phenotypic changes in knockout mice. Curr. Opin. Neurobiol. 10:146-152


[Seite 91↓]

Gingrich JA, Hen R (2001). Dissecting the role of the serotonin system in neuropsychiatric disorders using knockout mice . Psychophamacology 155:1-10

Glowinski J, Iversen LL (1966). Regional studies of catecholamines in the rat brain. I. The disposition of [3H ]norepinephrine, [3H] dopamine and [3H] dopa in various regions of the brain. J. Neurochem. 13:655-669

Gobert A, Rivet J-M, Audinot V, Newman-Tancerdi A, Cistarelli L, Millan MJ (1998). Simultaneous quantification of serotonin, dopamin, and noradrenalin levels in single frontal cortex dialysates of freely-moving rats reveals a complex pattern of reciprocal auto- and heteroreceptor-mediated control of release. Neuroscience 84:413-429

Goridis C, Rohrer H (2002). Specification of catecholaminergic and serotonergic neurons. Nat. Rev. Neurosci. 3:531-541

Gozlan H, Thibault S, Laporte AM, Lima L, Hamon M (1995). The selective 5-HT 1A antagonist radioligand [3H]WAY 100635 labels both G-protein-coupled and free 5-HT 1A receptors in rat brain membranes. Eur. J. Pharmacol. 288:173-186

Gross C, Santarelli L, Brunner D, Zhuang XX, Hen R (2000). Altered fear circuits in 5-HT 1A receptor KO mice. Biol. Psychiatry 48:1157-1163

Gross C, Zhuang XX, Stark K, Ramboz S, Oosting R, Kirby L, Santarelli L, Beck S, Hen R (2002). Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature 416:396-400

Haddjeri N, de Montigny C, Blier P (1997). Modulation of the firing activity of noradrenergic neurons in the rat locus coeruleus by the 5-hydroxytryptamine system. Br. J. Pharmacol. 120: 865-875

Hajós-Korcsok É, Sharp T (1996). 8-OH-DPAT-induced release of hippocampal noradrenaline in vivo: evidence for a role of both 5-HT 1A and dopamine D1 receptors. Eur. J. Pharmacol. 314:285-291

Hajós M, Hajós -Korcsok E, Sharp T (1999a). Role of the medial prefrontal cortex in 5-HT 1A receptor-induced inhibition of 5-HT neuronal activity in the rat. Br. J. Pharmacol. 126:1741-1750


[Seite 92↓]

Hajós-Korcsok É, Sharp T (1999b). Effect of 5-HT (1A) receptor ligands on Fos-like immunoreactivity in rat brain: evidence for activation of noradrenergic transmission. Synapse 34:145-153

Hamano K, Iwasaki N, Takeya T, Takita H (1996). A quantitative analysis of rat central nervous system myelinsation using the immunohistochemical method for MBP. Dev. Brain Res. 93:18-22

Hamon M (1997). The Main Features of Central 5-HT 1A Receptors. , Göthert M (Eds.) . Serotoninergic neurons and 5-HT receptors in the CNS , Springer -Verlag, Berlin, Germany, S.238-268

Handley SL (1995). 5-Hydroxytryptamine pathways in anxiety and its treatment. Pharmacol. Ther. 66:103-48

Haring JH, Hagan A, Olson J, Rodgers B (1993). Hippocampal serotonin levels influence the expression of S100 beta detected by immunocytochemistry. Brain Res. 631:119-123

He M, Sibille E, Benjamin D, Toth M, Shippenberg T (2001). Differential effects of 5-HT 1A receptor deletion upon basal and fluoxetine-evoked 5-HT concentrations as revealed by in vivo microdialysis . Brain Res. 902: 11-17

Heisler LK, Chu H-M, Brennan TJ, Danao JA, Bajwa P, Parsons LH, Tecott LH (1998). Elevated anxiety and antidepressant-like responses in serotonin 5-HT 1A receptor mutant mice. Proc. Natl. Acad. Sci. USA 95:15049-15054

Herregodts P, Velkeniers B, Ebinger G, Michotte Y, Vanhaelst L, Hooghe-Peters E (1990). Development of monoaminergic neurotransmitters in fetal and postnatal rat brain: analysis by HPLC with elektrochemical detection. J. Neurochem. 55:774-779

Hery F, Boulenguez P, Semont A, Hery M, Pesce G, Becquet D, Faudon M, Deprez P, Fache M-P (1999). Identification and role of serotonin 5-HT 1A and 5-HT 1B receptors in primary cultures of rat embryonic rostral raphe nucleus neurons. J. Neurochem. 72:1791-1801

Hillion J, Catelon J, Raid M, Hamon M, De Vitry F (1994). Neuronal localization of 5-HT 1A receptor mRNA and protein in rat embryonic brain stem cultures. Dev. Brain Res. 79: 195-202


[Seite 93↓]

Hjorth S, Sharp T (1991). Effect of the 5-HT 1A receptor agonist 8-OH-DPAT on the release of 5-HT in dorsal and median raphe-innervated rat brain regions as measured by in vivo microdialysis . Life Sci. 48:1779-1786

Hoyer D, Martin GR (1996). Classification and nomenclature of 5-HT receptors: a comment on current issues. Behav. Brain Res. 73:263-268

Hynes M, Rosenthal A (1999). Specification of dopaminergic and serotonergic neurons in the vertebrate CNS. Curr. Opin. Neurobiol. 9:26-36

Isobe T, Okuyama T (1981).The amino acid sequence of the tryptophan-containing subunit (alpha-subunit) of bovine brain S-100 protein. J. Neurochem. 37:522-524

Iyer RN, Bradberry CW (1996). Serotonin-mediated increase in prefrontal cortex dopamine release: pharmacological characterization. J. Pharmacol. Exp. Ther. 277: 40-47

Jacobowitz DM, Abbott LC (1997). Chemoarchitectonic atlas of the developing mouse brain. CRC Press, Boca Raton, USA

Jacobs BL, Azmitia EC (1992). Structure and function of the brain serotonin system. Physiol. Rev. 72:165-229

Jolas T, Schreiber R, Laporte AM, Chastanet M, De Vry J, Glaser T, Adrien J, Hamon M (1995). Are postsynaptic 5-HT 1A receptors involved in the anxiolytic effects of 5-HT 1A receptor agonists and in their inhibitory effects on the firing of serotonergic neurons in the rat? J. Pharmacol. Exp. Ther. 272: 920-929

Kennett GA, Marcou M, Dourish CT, Curzon G (1987). Single administration of 5-HT 1A agonists decreases 5-HT 1A presynatic, but not postsynaptic receptor-mediated responses: relationship to antidepressant-like action. Eur. J. Pharmacol. 138:53-60

Kia HK, Brisorgueil MJ, Hamon M, Calas A, Verge D (1996a). Ultrastructural localization of 5-hydroxytryptamine 1A receptors in the rat brain. J. Neurosci. Res. Dec. 46 :697-708

Kia HK, Miquel M-C, Brisorgueil MJ, Daval G, Riad M, El Mestikawy S, Hamon M, Verge D (1996b). Immunocytochemical Localization of Sertonin 1A Receptors in the Rat Central Nervous System. J. Comp. Neurol. 365:289-305

Kligman D, Marshak DR (1985). Purification and characterization of a neurite extension factor from bovine brain. Proc. Natl. Acad. Sci. USA 82:7136-7139


[Seite 94↓]

Kligman D, Hilt DC (1988). The S100 protein family. Trends Biochem. Sci. 13:437-43

Knobelman DA, Hen R, Blendy JA, Lucki I (2001b). Regional patterns of compensation following genetic deletion of either 5-Hydroxytryptamine 1A or 5-Hydroxytryptamine 1B receptor in the Mouse . J. Phamacol. .Exp. Ther. 298:1092-1100

Knobelman DA, Hen R, Lucki I (2001a). Genetic regulation of extracellular Serotonin by 5-Hydroxytryptamin 1A and 5- Hydroxytryptamin 1B autoreceptors in different brain regions. J. Pharmacol. Exp. Ther. 298:1083-1091

Knobelman DA, Kung HF, Lucki I (2000). Regulation of extracellular concentrations of 5-hydroxytryptamine (5-HT) in mouse striatum by 5-HT 1A and 5-HT 1B receptors. J. Pharmacol. Exp. Ther. 292:1111-1117

Kreiss DS, Lucki I (1994). Differential regulation of serotonin (5-HT) release in the striatum and hippocampus by 5-HT 1A Autorezeptors of the dorsal and median raphe nuclei. J. Pharmacol. Exp. Ther. 290:1268-1279

Kusserow H, Davies B, Hörtnagl H, Voigt I, Stroh T, Bert B, Deng DR, Fink H, Veh RW, Theuring F (2003). Reduced anxiety-related behaviour in transgenic mice overexpressing serotonin 1A receptors. Neuroscience. (zur Publikation eingereicht)

Lauder JM (1990). Ontogeny of the Sertonergic System in the Rat: Serotonin as a Developmental Signal. Ann. N.Y.Acad Sci. 600:297-313

Lauder JM, Liu J, Grayson DR (2000). In utero exposure to serotonergic drugs alters neonatal expression of 5-HT 1A receptor transcripts: a quantitative RT-PCR study. Int. J. Dev. Neurosci. 18:171-176

Lavdas AA, Blue ME, Lincoln J, Parnavelas JG (1997). Serotonin promotes the differentiation of glutamate neurons in organotypic slice cultures of the developing cerebral cortex . J. Neurosci. 17:7872-80

Leger L, Descarries L (1978). Serotonin nerve terminals in the locus coeruleus of adult rat: a radioautographic study. Brain Res. 145:1-13

Lauder JM, Bloom FE (1974). Ontogeny of monoamine neurons in the locus coerules, raphe nuclei and substantia nigra of the rat. I. Cell differentiation. J. Comp. Neurol. 155:469-482

Lauder JM, Krebs H (1978). Serotonin as a differentiation signal in early neurogenesis. Dev. Neurosci. 1:15-30


[Seite 95↓]

Lauder JM, Wallace JA, Krebs H, Petrusz P, McCarthy K (1982). In viro and in vitro development of serotonergic neurons. Brain Res. Bull. 9:605-625

Lauder JM, Wallace JA, Wilkie MB, DiNome A, Krebs H (1983). Roles for serotonin in neurogenesis. Monogr. Neural Sci. 9:3-10.

Lidov HGW, Molliver ME (1982a). Immunohistochemical study of the development of serotonergic neurons in the rat CNS. Brain Res. Bull. 9:559-604

Lidov HGW, Molliver ME (1982b). An immunohistochemical study of serotonin neuron development in the rat: ascending pathways and terminal fields. Brain Res. Bull. 8: 389-430

Liu J, Lauder JM (1992). Serotonin promotes region-specific glial influences on cultured serotonin and dopamine neurons. Glia 5:306-317

Lucas JJ, Hen R (1995). New players in the 5-HT receptor field: genes and knockouts. Trends Pharmacol. Sci. 16:246-252

Lucki I, Singh A, Kreiss DS (1994). Antidepressant-like behavioral effects of serotonin receptor agonists. Neurosci. Biobehav. Rev. 18:85-95

Marshak DR (1990). S100 beta as a neurotrophic factor. Prog. Brain Res. 86:169-181

McRae-Degueurce A, Berod A, Mermet A, Keller A, Chouvet G, Joh TH, Pujol JF (1982). Alterations in tyrosine hydroxylase activity elicited by raphe nuclei lesions in the rat locus coeruleus: evidence for the involvement of serotonin afferents . Brain Res. 235:285-301

Miquel MC, Doucet E, Riad M, Adrien J, Verge D, Hamon M (1992). Effect of the selective lesion of serotoninergic neurons on the regional distribution of 5-HT 1A receptor mRNA in the rat brain. Mol. Brain Res. 14: 357-362

Molliver ME (1987). Serotonergic neuronal systems: What their anatomic organization tells us about function. J. Clin. Psychopharmacol. 7:3-23

Mongeau R, Blier P, de Montigny C (1997). The serotonergic and noradrenergic systems of the hippocampus: their interactions and the effects of antidepressant treatments. Brain Res. Rev. 23:145-195

Moore BW (1965). A soluble protein characteristic of the nervous system. Biochem. Biophys. Res. Commun. 19:739-44


[Seite 96↓]

Muller CM, Akhavan AC, Bette M (1993). Possible role of S-100 in glia-neuronal signalling involved in activity-dependent plasticity in the developing mammalian cortex. J. Chem. Neuroanat. 6:215-227

Murphy DL, Wichems C, Li Q, Heils A (1999). Molecular manipulations as tools for enhancing our understanding of 5-HTneurotransmission. Trends Pharmacol. Sci. 20:246-252

Nishi M, Kawata M, Azmitia EC (2000). Trophic interactions between brain - derived neurotrophic factor and S100 β on culture serotonergic neurons. Brain Res. 868:113-118

Nishiyama N, Takemura M, Takeda T, Itohara S (2002). Normal development of serotonergic neurons in mice lacking S100 β . Neurosci. Lett. 321:49-52

Parks CL, Robinson PS, Sibille E, Shenk T, Toth M (1998). Increased anxiety of mice lacking the serotonin 1A receptor . Proc. Natl. Acad. Sci. USA 95:10734-10739

Parsons LH, Kerr TM, Tecott LH (2001). 5-HT 1A receptor mutant mice exhibit enhanced tonic, stress-induced and fluoxetine-induced serotonergic neurotransmission. J. Neurochem. 77: 607-617

Pazos A, Palacios M (1985). Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1receptors. Brain Res. 346:205-230

Phillips TJ, Hen R, Crabbe JC (1999). Complications associated with genetic background effects in research using knockout mice. Psychopharmacology 147:5-7

Pickel VM, Joh TH, Reis DJ (1977). A serotonergic innervation of noradrenergic neurons in nucleus locus coeruleus: demonstration by immunocytochemical localization of the transmitter specific enzymes tyrosine and tryptophan hydroxylase. Brain Res. 131:197-214

Pompeiano M, Palacios JM, Mengod G (1992). Distribution and cellular localization of mRNA coding for 5-HT 1A receptor in the rat brain: correlation with receptor binding. J. Neurosci. 12:440-453

Povlock SL, Amara SG (1997). The structure and function of norepinephrine, dopamine, and serotonin transporters, , In: Reith MEA (Eds.) : Neurotransmitter transporters – structure, function, and regulation, Humana Press, Totowa-New Yersey, USA, pp.1-28

Prisco S, Pagannone S, Esposito E (1994). Serotonin-dopamine interaction in the rat ventral tegmental area: an electrophysiological study in vivo . J. Pharmacol. Exp. Ther. 271:83-90


[Seite 97↓]

Radja F, Laporte A, Daval G, Verge D, Gozlan H, Hamon M (1991). Autoradiography of serotonin receptor subtypes in the CNS. Neuochem. Int. 18:1-15

Ramboz S, Oosting R, Amara DA, Kung HF, Blier P, Mendelsohn M, Mann JJ, Brunner D, Hen R (1998). Serotonin receptor 1A knockout: An animal model of anxiety-related disorder. Proc. Natl. Acad. Sci. USA 95:14476-14481

Raymond JR, Mukhin YV, Gettys TW, Garnovskaya MN (1999). The recombinant 5-HT 1A receptor: G protein coupling and signalling pathways. Br. J. Pharmacol. 127:1751-64

Riad M, Emerit MB, Hamon M (1994). Neurotrophic effects of ipsapirone and other 5-HT 1A receptor agonists on septal cholinergic neurons in culture. Dev. Brain Res. 82:245-258

Richer M, Hen R, Blier P (2002). Modification of serotonin neuron properties in mice lacking 5-HT 1A receptors. Eur. J. Pharmacol. 435:195-203

Roberts C, Price GW, Middlemiss DN (2001). Ligands for the investigation of 5-HT autoreceptor function. Brain Res. Bull. 56:463-469

Role LW, Kelly JP (1991). The Brain Stem: Cranial Nerve Nuclei and the Monoaminergic Systems. In: Kandel ER, Schwartz J, Jessell (Eds.) Principles of neural science. Prentice-Hall International Inc. East Norwalk,USA. pp. 693-699

Rubenstein JLR (1998). Development of Serotonergic Neurons and Their Projections. Biol. Psychiatry 44:145-150

Saito H, Murai S, ABE E, Masuda Y, Itoh T (1992). Rapid and Simultaneous Assay of Monoamine Neurotransmitters and Their Metabolites in Discrete Brain Areas of Mice by HPLC with Coulometric Detection. Pharmcol. Biochem. Behav. 42:351-356

Saudou F, Hen R (1994). 5-Hydroxytryptamine receptor subtypes in vertebrates and invertebrates . Neurochem. Int 25:503-532

Sharp T, Hjorth S (1990). Application of brain microdialyse to study the pharmacology of the 5-HT 1A autorezeptor . J. Neurosci. Methods 34:83-90

Shemer AV, Azmitia EC, Whitaker-Azmitia PM (1991). Dose-related effects of prenatal 5-methoxytryptamine (5-MT) on development of serotonin terminal density and behavior .Dev. Brain Res. 59:59-63


[Seite 98↓]

Sibille E, Hen R (2001). Combining genetic and genomic approaches to study mood disorders. Eur. Neuropsychopharmacology 11:413-421

Sikich L, Hickok JM, Todd RD (1990). 5-HT 1A receptors control neurite branching during development. Dev. Brain Res. 56:269-74

Sommermeyer H, Schreiber R, Greuel JM, De Vry J, Glaser T (1993). Anxiolytic effects of the 5-HT 1A receptor agonist ipsapirone in the rat: neurobiological correlates. Eur. J. Pharmacol. 240:29-37

Sotelo C, Cholley B, El Mestikawy S, Gozlan H, Hamon M (1990). Direct immunohistochemical evidence of the existence of 5-HT 1A autoreceptors on serotoninergic neurons in the midbrain raphe nuclei. Eur. J. Neurosci. 2:1144-1154

Sperk G (1982). Simultaneuous determination of serotonin, 5-hydroxyindoleacetic acid, 3,4-dihydroxyphenylacetic acid and homovanillic acid by high performance liquid chromatography with electrochemical detection. J. Neurochem. 38:840-843

Sperk G, Berger M, Hortnagl H, Hornykiewicz O (1981). Kainic acid-induced changes of serotonin and dopamine metabolism in the striatum and substantia nigra of the rat. Eur. J. Pharmacol. 74:279-86

Sprouse JS, Aghajanian GK (1988). Responses of hippocampal pyramidal cells to putative serotonin 5-HT1A and 5-HT1B agonists: a comparative study with dorsal raphe neurons. Neuropharmacology 27:707-715

Steindler DA, Trosko BK (1989). Two types of locus coeruleus neurons born on different embryonic days in the mouse. Anat. Embryol. 179:423-34

Suzuki M, Matsuda T, Asano S, Somboonthum P, Takuma K, Baba A (1995). Increase of noradrenaline release in the hypothalamus of freely moving rat by postsynaptic 5-hydroxytryptamine 1A receptor activation. Br. J. Pharmacol. 115:703-711

Szabo ST, Blier P (2001). Effects of the selective norepinephrine reuptake inhibitor reboxetine on norepinephrine and serotonin transmission in the rat hippocampus. Neuropsychopharmacology 25:845-857

Szabo ST, de Montigny C, Blier P (1999). Modulation of noradrenergic neuronal firing by selective serotonin reuptake blockers. Br. J. Pharmacol. 126:568-571


[Seite 99↓]

Szabo ST, de Montigny C, Blier P (2000). Progressive attenuation of the firing activity of locus coeruleus noradrenergic neurons by sustained administration of selective serotonin reuptake inhibitors. Int. J. Neuropsychopharmacol. 3:1-11

Tanda G, Carboni E, Frau R, Di Chiara G (1994). Increase of extracellular dopamine in the prefrontal cortex: A trait of drugs with antidepressant potential? Psychopharmacology 115: 285-288

Thielen RJ, Fangon NB, Frazer A (1996). 4-(2'-Methoxyphenyl)-1-[2'-[N-(2"-pyridinyl)-p­iodobenzamido]ethyl] piperazine and 4-(2'-methoxyphenyl)-1-[2'-[N-(2"-pyridinyl)-p­ fluorobenzamido]ethyl] piperazine, two new antagonists at pre- and postsynaptic serotonin- 1A receptors . J. Pharmacol. Exp. Ther. 277:661-670

Toth M (2003). 5-HT 1A Receptor knockout mouse as a genetic model of anxiety . Eur. J. Pharmacol. 463:177-184

Ueda S, Gu XF, Whitaker-Azmitia PM, Naruse I, Azmitia EC (1994). Neuro-glial neurotrophic interaction in the S-100 β retarded mutant mouse (Polydactyly Nagoya). I. Immunocytochemical and neurochemical studies. Brain Res. 633:275-283

Ueda S, Kokotos Leonardi ET, Bell J 3rd, Azmitia EC (1995). Serotonergic sprouting into transplanted C-6 gliomas is blocked by S-100 beta antisense gene. Mol. Brain Res 29:365-368

Van Eldik LJ, Zimmer DB (1987). Secretion of S100 β from rat C6 glioma. Brain Res. 436:367-370

Van Eldik LJ, Christie-Pope B, Bolin LM, Shooter EM, Whetsell WO Jr (1991). Neurotrophic activity of S-100 beta in cultures of dorsal root ganglia from embryonic chick and fetal rat.Brain Res. 542:280-285

Veenstra-Vander Weele J, Anderson GM, Cook Jr, EH (2000). Pharmacogenetics and the serotonin system: initial studies and future directions. Eur. J. Pharmacol. 410:165-181

Verge D, Daval G, Patey A, Gozlan H, el Mestikawy S, Hamon M (1985). Presynaptic 5-HT autoreceptors on serotonergic cell bodies and/or dendrites but not terminals are of the 5-HT 1A subtype. Eur. J. Pharmacol. 113:463-464


[Seite 100↓]

Verge D, Daval G, Marcinkiewicz M, Patey A, el Mestikawy S, Gozlan H, Hamon M (1986). Quantitative autoradiography of multiple 5-HT 1 receptor subtypes in the brain of control or 5,7-dihydroxytryptamine-treated rats. J. Neurosi. 6:3474-3482

Voorn P, Kalsbeek A, Jorritsma-Byham B, Groenewegen HJ (1988). The pre- and postnatal development of the dopaminergic cell groups in the ventral mesencephalon and the dopaminergic innervation of the striatum of the rat. Neuroscience 25:857-887

Whitaker-Azmitia PM (2001). Serotonin and brain development: Role in human developmental dieases. Brain Res. Bull. 56:479-485

Whitaker-Azmitia PM, Azmitia EC (1986). Autoregulation of fetal serotonergic neuronal development: role of high affinity serotonin receptors. Neurosci. Lett. 67:307-385

Whitaker-Azmitia PM, Azmitia EC (1994). Astroglial 5-HT 1A receptors and S-100 beta in development and plasticity. Perspect. Dev. Neurobiol. 2:233-238

Whitaker-Azmitia PM, Borella A, Raio N (1995 ). Serotonin depletion in the adult rat causes loss of the dendritic marker MAP-2: A new animal model of schizophrenia? Neuropsychopharmacology 12:269-272

Whitaker-Azmitia PM, Druseb M, Walkerc P, Lauderd JM (1996). Serotonin as a developmental signal. Behav. Brain Res. 73:19-29

Whitaker-Azmitia PM, Murphy R, Azmitia EC (1990). Stimulation of astroglial 5-HT 1A receptors releases the serotonergic growth factor, protein S-100, and alters astroglial morphology . Brain Res. 528:155-158

Winningham-Major F, Staecker JL, Barger SW, Coats S, Van Eldik LJ (1989). Neurite extension and neuronal survival activities of recombinant S100 beta proteins that differ in the content and position of cysteine residues . J. Cell Biol. 109:3063-3071

Yi SJ, Gifford AN, Johnson KM (1991). Effect of cocaine and 5-HT 3 receptor antagonists on 5-HT-induced [3H] dopamine release from rat striatal synaptosomes. Eur. J. Pharmacol. 199:185-189

Yoshioka M, Matsumoto M, Numazawa R, Togashi H, Smith CB, Saito H (1995). Changes in the regulation of 5-hydroxytryptamine release by alpha2-adrenoceptors in the rat hippocampus after long-term desipramine treatment. Eur. J. Pharmacol. 294:565-570


[Seite 101↓]

Zhuang XX, Gross C, Santarelli L, Compan V, Trillat A-C, Hen R (1999). Altered emotional states in knockout mice lacking 5-HT 1A or 5-HT 1B Receptors. Neuropsychophamacology 21:52-60


© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 3.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am:
03.02.2004