[1] Marsh, M. und Helenius, A. (2006): Virus entry: open sesame, Cell, (Band 124), No. 4, Seite 729-40

[2] Salonen, A.; Ahola, T. und Kaariainen, L. (2005): Viral RNA replication in association with cellular membranes, Curr Top Microbiol Immunol, (Band 285), Seite 139-73

[3] Hogle, J. M. (2002): Poliovirus cell entry: common structural themes in viral cell entry pathways, Annu Rev Microbiol, (Band 56), Seite 677-702

[4] Chandran, K.; Sullivan, N. J.; Felbor, U.; Whelan, S. P. und Cunningham, J. M. (2005): Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection, Science, (Band 308), No. 5728, Seite 1643-5

[5] Qiu, Z.; Hingley, S. T.; Simmons, G.; Yu, C.; Das Sarma, J.; Bates, P. und Weiss, S. R. (2006): Endosomal proteolysis by cathepsins is necessary for murine coronavirus mouse hepatitis virus type 2 spike-mediated entry, J Virol, (Band 80), No. 12, Seite 5768-76

[6] Simmons, G.; Gosalia, D. N.; Rennekamp, A. J.; Reeves, J. D.; Diamond, S. L. und Bates, P. (2005): Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry, Proc Natl Acad Sci U S A, (Band 102), No. 33, Seite 11876-81

[7] Mothes, W.; Boerger, A. L.; Narayan, S.; Cunningham, J. M. und Young, J. A. (2000): Retroviral entry mediated by receptor priming and low pH triggering of an envelope glycoprotein, Cell, (Band 103), No. 4, Seite 679-89

[8] Pelkmans, L.; Kartenbeck, J. und Helenius, A. (2001): Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER, Nat Cell Biol, (Band 3), No. 5, Seite 473-83

[9] Marsh, M. und Bron, R. (1997): SFV infection in CHO cells: cell-type specific restrictions to productive virus entry at the cell surface, J Cell Sci, (Band 110 ( Pt 1)), Seite 95-103

[10] Dohner, K. und Sodeik, B. (2005): The role of the cytoskeleton during viral infection, Curr Top Microbiol Immunol, (Band 285), Seite 67-108

[11] Marsh, M. und Helenius, A. (1989): Virus entry into animal cells, Adv Virus Res, (Band 36), Seite 107-51

[12] Damico, R. L.; Crane, J. und Bates, P. (1998): Receptor-triggered membrane association of a model retroviral glycoprotein, Proc Natl Acad Sci U S A, (Band 95), No. 5, Seite 2580-5

[13] Hernandez, L. D.; Peters, R. J.; Delos, S. E.; Young, J. A.; Agard, D. A. und White, J. M. (1997): Activation of a retroviral membrane fusion protein: soluble receptor-induced liposome binding of the ALSV envelope glycoprotein, J Cell Biol, (Band 139), No. 6, Seite 1455-64

[14] Rust, M. J.; Lakadamyali, M.; Zhang, F. und Zhuang, X. (2004): Assembly of endocytic machinery around individual influenza viruses during viral entry, Nat Struct Mol Biol, (Band 11), No. 6, Seite 567-73

[15] Ehrlich, M.; Boll, W.; Van Oijen, A.; Hariharan, R.; Chandran, K.; Nibert, M. L. und Kirchhausen, T. (2004): Endocytosis by random initiation and stabilization of clathrin-coated pits, Cell, (Band 118), No. 5, Seite 591-605

[16] Kirkham, M.; Fujita, A.; Chadda, R.; Nixon, S. J.; Kurzchalia, T. V.; Sharma, D. K.; Pagano, R. E.; Hancock, J. F.; Mayor, S. und Parton, R. G. (2005): Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles, J Cell Biol, (Band 168), No. 3, Seite 465-76

[17] Le Blanc, I.; Luyet, P. P.; Pons, V.; Ferguson, C.; Emans, N.; Petiot, A.; Mayran, N.; Demaurex, N.; Faure, J.; Sadoul, R.; Parton, R. G. und Gruenberg, J. (2005): Endosome-to-cytosol transport of viral nucleocapsids, Nat Cell Biol, (Band 7), No. 7, Seite 653-664

[18] Abrami, L.; Lindsay, M.; Parton, R. G.; Leppla, S. H. und van der Goot, F. G. (2004): Membrane insertion of anthrax protective antigen and cytoplasmic delivery of lethal factor occur at different stages of the endocytic pathway, J Cell Biol, (Band 166), No. 5, Seite 645-51

[19] Anderson, H. A.; Chen, Y. und Norkin, L. C. (1996): Bound simian virus 40 translocates to caveolin-enriched membrane domains, and its entry is inhibited by drugs that selectively disrupt caveolae, Mol Biol Cell, (Band 7), No. 11, Seite 1825-34

[20] Kartenbeck, J.; Stukenbrok, H. und Helenius, A. (1989): Endocytosis of simian virus 40 into the endoplasmic reticulum, J Cell Biol, (Band 109), No. 6 Pt 1, Seite 2721-9

[21] Stang, E.; Kartenbeck, J. und Parton, R. G. (1997): Major histocompatibility complex class I molecules mediate association of SV40 with caveolae, Mol Biol Cell, (Band 8), No. 1, Seite 47-57

[22] Coyne, C. B. und Bergelson, J. M. (2006): Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions, Cell, (Band 124), No. 1, Seite 119-31

[23] Pietiainen, V. M.; Marjomaki, V.; Heino, J. und Hyypia, T. (2005): Viral entry, lipid rafts and caveosomes, Ann Med, (Band 37), No. 6, Seite 394-403

[24] Sieczkarski, S. B. und Whittaker, G. R. (2002): Dissecting virus entry via endocytosis, J Gen Virol, (Band 83), No. Pt 7, Seite 1535-45

[25] Hofmann, H.; Geier, M.; Marzi, A.; Krumbiegel, M.; Peipp, M.; Fey, G. H.; Gramberg, T. und Pohlmann, S. (2004): Susceptibility to SARS coronavirus S protein-driven infection correlates with expression of angiotensin converting enzyme 2 and infection can be blocked by soluble receptor, Biochem Biophys Res Commun, (Band 319), No. 4, Seite 1216-21

[26] Sanchez-San Martin, C.; Lopez, T.; Arias, C. F. und Lopez, S. (2004): Characterization of rotavirus cell entry, J Virol, (Band 78), No. 5, Seite 2310-8

[27] Nash, T. C. und Buchmeier, M. J. (1996): Spike glycoprotein-mediated fusion in biliary glycoprotein-independent cell-associated spread of mouse hepatitis virus infection, Virology, (Band 223), No. 1, Seite 68-78

[28] Nash, T. C. und Buchmeier, M. J. (1997): Entry of mouse hepatitis virus into cells by endosomal and nonendosomal pathways, Virology, (Band 233), No. 1, Seite 1-8.

[29] Katen, L. J.; Januszeski, M. M.; Anderson, W. F.; Hasenkrug, K. J. und Evans, L. H. (2001): Infectious entry by amphotropic as well as ecotropic murine leukemia viruses occurs through an endocytic pathway, J Virol, (Band 75), No. 11, Seite 5018-26

[30] Mizzen, L.; Hilton, A.; Cheley, S. und Anderson, R. (1985): Attenuation of murine coronavirus infection by ammonium chloride, Virology, (Band 142), No. 2, Seite 378-88

[31] Axelsson, M. A.; Karlsson, N. G.; Steel, D. M.; Ouwendijk, J.; Nilsson, T. und Hansson, G. C. (2001): Neutralization of pH in the Golgi apparatus causes redistribution of glycosyltransferases and changes in the O-glycosylation of mucins, Glycobiology, (Band 11), No. 8, Seite 633-44

[32] Gallagher, T. M.; Escarmis, C. und Buchmeier, M. J. (1991): Alteration of the pH dependence of coronavirus-induced cell fusion: effect of mutations in the spike glycoprotein, J Virol, (Band 65), No. 4, Seite 1916-28

[33] Ohuchi, M.; Cramer, A.; Vey, M.; Ohuchi, R.; Garten, W. und Klenk, H. D. (1994): Rescue of vector-expressed fowl plague virus hemagglutinin in biologically active form by acidotropic agents and coexpressed M2 protein, J Virol, (Band 68), No. 2, Seite 920-6

[34] Marsh, M. und Pelchen-Matthews, A. (2000): Endocytosis in viral replication, Traffic, (Band 1), No. 7, Seite 525-32

[35] Sandvig, K.; Olsnes, S.; Petersen, O. W. und van Deurs, B. (1987): Acidification of the cytosol inhibits endocytosis from coated pits, J Cell Biol, (Band 105), No. 2, Seite 679-89

[36] Drose, S. und Altendorf, K. (1997): Bafilomycins and concanamycins as inhibitors of V-ATPases and P-ATPases, J Exp Biol, (Band 200), No. Pt 1, Seite 1-8

[37] Bayer, N.; Schober, D.; Prchla, E.; Murphy, R. F.; Blaas, D. und Fuchs, R. (1998): Effect of bafilomycin A1 and nocodazole on endocytic transport in HeLa cells: implications for viral uncoating and infection, J Virol, (Band 72), No. 12, Seite 9645-55

[38] Blanchard, E.; Belouzard, S.; Goueslain, L.; Wakita, T.; Dubuisson, J.; Wychowski, C. und Rouille, Y. (2006): Hepatitis C virus entry depends on clathrin-mediated endocytosis, J Virol, (Band 80), No. 14, Seite 6964-72

[39] Glomb-Reinmund, S. und Kielian, M. (1998): The role of low pH and disulfide shuffling in the entry and fusion of Semliki Forest virus and Sindbis virus, Virology, (Band 248), No. 2, Seite 372-81

[40] Perez, L. und Carrasco, L. (1994): Involvement of the vacuolar H(+)-ATPase in animal virus entry, J Gen Virol, (Band 75 ( Pt 10)), Seite 2595-606

[41] Tscherne, D. M.; Jones, C. T.; Evans, M. J.; Lindenbach, B. D.; McKeating, J. A. und Rice, C. M. (2006): Time- and temperature-dependent activation of hepatitis C virus for low-pH-triggered entry, J Virol, (Band 80), No. 4, Seite 1734-41

[42] Vlasak, M.; Goesler, I. und Blaas, D. (2005): Human rhinovirus type 89 variants use heparan sulfate proteoglycan for cell attachment, J Virol, (Band 79), No. 10, Seite 5963-70

[43] Yonezawa, A.; Cavrois, M. und Greene, W. C. (2005): Studies of ebola virus glycoprotein-mediated entry and fusion by using pseudotyped human immunodeficiency virus type 1 virions: involvement of cytoskeletal proteins and enhancement by tumor necrosis factor alpha, J Virol, (Band 79), No. 2, Seite 918-26

[44] Diaz-Griffero, F.; Jackson, A. P. und Brojatsch, J. (2005): Cellular uptake of avian leukosis virus subgroup B is mediated by clathrin, Virology, (Band 337), No. 1, Seite 45-54

[45] Sieczkarski, S. B. und Whittaker, G. R. (2002): Influenza virus can enter and infect cells in the absence of clathrin-mediated endocytosis, J Virol, (Band 76), No. 20, Seite 10455-64

[46] Sun, X.; Yau, V. K.; Briggs, B. J. und Whittaker, G. R. (2005): Role of clathrin-mediated endocytosis during vesicular stomatitis virus entry into host cells, Virology, (Band 338), No. 1, Seite 53-60

[47] Wang, L. H.; Rothberg, K. G. und Anderson, R. G. (1993): Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation, J Cell Biol, (Band 123), No. 5, Seite 1107-17

[48] Nash, T. C.; Gallagher, T. M. und Buchmeier, M. J. (1995): MHVR-independent cell-cell spread of mouse hepatitis virus infection requires neutral pH fusion, Adv Exp Med Biol, (Band 380), Seite 351-7

[49] Niemann, H.; Boschek, B.; Evans, D.; Rosing, M.; Tamura, T. und Klenk, H. D. (1982): Post-translational glycosylation of coronavirus glycoprotein E1: inhibition by monensin, Embo J, (Band 1), No. 12, Seite 1499-504

[50] Yu, G. Y. und Lai, M. M. (2005): The ubiquitin-proteasome system facilitates the transfer of murine coronavirus from endosome to cytoplasm during virus entry, J Virol, (Band 79), No. 1, Seite 644-8

[51] Denison, M. R.; Kim, J. C. und Ross, T. (1995): Inhibition of coronavirus MHV-A59 replication by proteinase inhibitors, Adv Exp Med Biol, (Band 380), Seite 391-7

[52] Choi, K. S.; Aizaki, H. und Lai, M. M. (2005): Murine coronavirus requires lipid rafts for virus entry and cell-cell fusion but not for virus release, J Virol, (Band 79), No. 15, Seite 9862-71

[53] Chu, J. J. und Ng, M. L. (2004): Infectious entry of West Nile virus occurs through a clathrin-mediated endocytic pathway, J Virol, (Band 78), No. 19, Seite 10543-55

[54] Thorp, E. B. und Gallagher, T. M. (2004): Requirements for CEACAMs and cholesterol during murine coronavirus cell entry, J Virol, (Band 78), No. 6, Seite 2682-92

[55] Smith, A. E. und Helenius, A. (2004): How viruses enter animal cells, Science, (Band 304), No. 5668, Seite 237-42

[56] Pelkmans, L. und Helenius, A. (2003): Insider information: what viruses tell us about endocytosis, Curr Opin Cell Biol, (Band 15), No. 4, Seite 414-22

[57] Nawa, M.; Takasaki, T.; Yamada, K.; Kurane, I. und Akatsuka, T. (2003): Interference in Japanese encephalitis virus infection of Vero cells by a cationic amphiphilic drug, chlorpromazine, J Gen Virol, (Band 84), No. Pt 7, Seite 1737-41

[58] Matlin, K. S.; Reggio, H.; Helenius, A. und Simons, K. (1981): Infectious entry pathway of influenza virus in a canine kidney cell line, J Cell Biol, (Band 91), No. 3 Pt 1, Seite 601-13

[59] Hofmann, H.; Hattermann, K.; Marzi, A.; Gramberg, T.; Geier, M.; Krumbiegel, M.; Kuate, S.; Uberla, K.; Niedrig, M. und Pohlmann, S. (2004): S protein of severe acute respiratory syndrome-associated coronavirus mediates entry into hepatoma cell lines and is targeted by neutralizing antibodies in infected patients, J Virol, (Band 78), No. 12, Seite 6134-42

[60] Huss, M.; Ingenhorst, G.; Konig, S.; Gassel, M.; Drose, S.; Zeeck, A.; Altendorf, K. und Wieczorek, H. (2002): Concanamycin A, the specific inhibitor of V-ATPases, binds to the V(o) subunit c, J Biol Chem, (Band 277), No. 43, Seite 40544-8

[61] Rodal, S. K.; Skretting, G.; Garred, O.; Vilhardt, F.; van Deurs, B. und Sandvig, K. (1999): Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles, Mol Biol Cell, (Band 10), No. 4, Seite 961-74

[62] Earp, L. J.; Delos, S. E.; Park, H. E. und White, J. M. (2005): The many mechanisms of viral membrane fusion proteins, Curr Top Microbiol Immunol, (Band 285), Seite 25-66

[63] Chan, D. C. und Kim, P. S. (1998): HIV entry and its inhibition, Cell, (Band 93), No. 5, Seite 681-4

[64] Sodroski, J. G. (1999): HIV-1 entry inhibitors in the side pocket, Cell, (Band 99), No. 3, Seite 243-6

[65] Weissenhorn, W.; Hinz, A. und Gaudin, Y. (2007): Virus membrane fusion, FEBS Lett,

[66] Heinz, F. X. und Allison, S. L. (2001): The machinery for flavivirus fusion with host cell membranes, Curr Opin Microbiol, (Band 4), No. 4, Seite 450-5

[67] Lescar, J.; Roussel, A.; Wien, M. W.; Navaza, J.; Fuller, S. D.; Wengler, G.; Wengler, G. und Rey, F. A. (2001): The Fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH, Cell, (Band 105), No. 1, Seite 137-48

[68] Chen, J.; Lee, K. H.; Steinhauer, D. A.; Stevens, D. J.; Skehel, J. J. und Wiley, D. C. (1998): Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation, Cell, (Band 95), No. 3, Seite 409-17

[69] Skehel, J. J. und Wiley, D. C. (2000): Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin, Annu Rev Biochem, (Band 69), Seite 531-69

[70] Carr, C. M. und Kim, P. S. (1993): A spring-loaded mechanism for the conformational change of influenza hemagglutinin, Cell, (Band 73), No. 4, Seite 823-32

[71] Weissenhorn, W.; Dessen, A.; Calder, L. J.; Harrison, S. C.; Skehel, J. J. und Wiley, D. C. (1999): Structural basis for membrane fusion by enveloped viruses, Mol Membr Biol, (Band 16), No. 1, Seite 3-9

[72] Baker, K. A.; Dutch, R. E.; Lamb, R. A. und Jardetzky, T. S. (1999): Structural basis for paramyxovirus-mediated membrane fusion, Mol Cell, (Band 3), No. 3, Seite 309-19

[73] Weissenhorn, W.; Calder, L. J.; Wharton, S. A.; Skehel, J. J. und Wiley, D. C. (1998): The central structural feature of the membrane fusion protein subunit from the Ebola virus glycoprotein is a long triple-stranded coiled coil, Proc Natl Acad Sci U S A, (Band 95), No. 11, Seite 6032-6

[74] Weissenhorn, W.; Carfi, A.; Lee, K. H.; Skehel, J. J. und Wiley, D. C. (1998): Crystal structure of the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain, Mol Cell, (Band 2), No. 5, Seite 605-16

[75] Weissenhorn, W.; Dessen, A.; Harrison, S. C.; Skehel, J. J. und Wiley, D. C. (1997): Atomic structure of the ectodomain from HIV-1 gp41, Nature, (Band 387), No. 6631, Seite 426-30

[76] Kielian, M. und Rey, F. A. (2006): Virus membrane-fusion proteins: more than one way to make a hairpin, Nat Rev Microbiol, (Band 4), No. 1, Seite 67-76

[77] Lamb, R. A.; Paterson, R. G. und Jardetzky, T. S. (2006): Paramyxovirus membrane fusion: lessons from the F and HN atomic structures, Virology, (Band 344), No. 1, Seite 30-7

[78] Heldwein, E. E.; Lou, H.; Bender, F. C.; Cohen, G. H.; Eisenberg, R. J. und Harrison, S. C. (2006): Crystal structure of glycoprotein B from herpes simplex virus 1, Science, (Band 313), No. 5784, Seite 217-20

[79] Roche, S.; Bressanelli, S.; Rey, F. A. und Gaudin, Y. (2006): Crystal structure of the low-pH form of the vesicular stomatitis virus glycoprotein G, Science, (Band 313), No. 5784, Seite 187-91

[80] Allison, S. L.; Schalich, J.; Stiasny, K.; Mandl, C. W.; Kunz, C. und Heinz, F. X. (1995): Oligomeric rearrangement of tick-borne encephalitis virus envelope proteins induced by an acidic pH, J Virol, (Band 69), No. 2, Seite 695-700

[81] Rey, F. A.; Heinz, F. X.; Mandl, C.; Kunz, C. und Harrison, S. C. (1995): The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution, Nature, (Band 375), No. 6529, Seite 291-8

[82] Ahn, A.; Gibbons, D. L. und Kielian, M. (2002): The fusion peptide of Semliki Forest virus associates with sterol-rich membrane domains, J Virol, (Band 76), No. 7, Seite 3267-75.

[83] Levine, A.J. (1993) Das Influenza-A-Virus. und in: Viren: Diebe, Mörder und Piraten. Spektrum Akademischer Verlag, 184 (1993): Das Influenza-A-Virus, Spektrum Akademischer Verlag,

[84] White, J. M. (1992): Membrane fusion, Science, (Band 258), No. 5084, Seite 917-24

[85] Wiley, D. C. und Skehel, J. J. (1987): The structure and function of the hemagglutinin membrane glycoprotein of influenza virus, Annu Rev Biochem, (Band 56), Seite 365-94

[86] Puri, A.; Booy, F. P.; Doms, R. W.; White, J. M. und Blumenthal, R. (1990): Conformational changes and fusion activity of influenza virus hemagglutinin of the H2 and H3 subtypes: effects of acid pretreatment, J Virol, (Band 64), No. 8, Seite 3824-32

[87] Wilson, I. A.; Skehel, J. J. und Wiley, D. C. (1981): Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution, Nature, (Band 289), No. 5796, Seite 366-73

[88] Stuart, D. (1994): Virus structure. Docking mission accomplished, Nature, (Band 371), No. 6492, Seite 19-20

[89] Huang, Q.; Opitz, R.; Knapp, E. W. und Herrmann, A. (2002): Protonation and stability of the globular domain of influenza virus hemagglutinin, Biophys J, (Band 82), No. 2, Seite 1050-8

[90] Bottcher, C.; Ludwig, K.; Herrmann, A.; van Heel, M. und Stark, H. (1999): Structure of influenza haemagglutinin at neutral and at fusogenic pH by electron cryo-microscopy, FEBS Lett, (Band 463), No. 3, Seite 255-9

[91] Godley, L.; Pfeifer, J.; Steinhauer, D.; Ely, B.; Shaw, G.; Kaufmann, R.; Suchanek, E.; Pabo, C.; Skehel, J. J.; Wiley, D. C. und et al. (1992): Introduction of intersubunit disulfide bonds in the membrane-distal region of the influenza hemagglutinin abolishes membrane fusion activity, Cell, (Band 68), No. 4, Seite 635-45

[92] Kemble, G. W.; Bodian, D. L.; Rose, J.; Wilson, I. A. und White, J. M. (1992): Intermonomer disulfide bonds impair the fusion activity of influenza virus hemagglutinin, J Virol, (Band 66), No. 8, Seite 4940-50

[93] Ludwig, K. (2000): Die dreidimensionale Struktur des Influenzavirus-Hämagglutinin im membranfusionsaktiven Zustand , Dissertation,

[94] Spruce, A. E.; Iwata, A. und Almers, W. (1991): The first milliseconds of the pore formed by a fusogenic viral envelope protein during membrane fusion, Proc Natl Acad Sci U S A, (Band 88), No. 9, Seite 3623-7

[95] Earp, L. J.; Hernandez, L. D.; Delos, S. E. und White, J. M. (2003): Receptor-activated binding of viral fusion proteins to target membranes, Methods Enzymol, (Band 372), Seite 428-40

[96] Eckert, D. M. und Kim, P. S. (2001): Mechanisms of viral membrane fusion and its inhibition, Annu Rev Biochem, (Band 70), Seite 777-810.

[97] Blumenthal, R.; Sarkar, D. P.; Durell, S.; Howard, D. E. und Morris, S. J. (1996): Dilation of the influenza hemagglutinin fusion pore revealed by the kinetics of individual cell-cell fusion events, J Cell Biol, (Band 135), No. 1, Seite 63-71

[98] Markovic, I.; Leikina, E.; Zhukovsky, M.; Zimmerberg, J. und Chernomordik, L. V. (2001): Synchronized activation and refolding of influenza hemagglutinin in multimeric fusion machines, J Cell Biol, (Band 155), No. 5, Seite 833-44

[99] Markovic, I.; Pulyaeva, H.; Sokoloff, A. und Chernomordik, L. V. (1998): Membrane fusion mediated by baculovirus gp64 involves assembly of stable gp64 trimers into multiprotein aggregates, J Cell Biol, (Band 143), No. 5, Seite 1155-66

[100] Danieli, T.; Pelletier, S. L.; Henis, Y. I. und White, J. M. (1996): Membrane fusion mediated by the influenza virus hemagglutinin requires the concerted action of at least three hemagglutinin trimers, J Cell Biol, (Band 133), No. 3, Seite 559-69

[101] Matsuyama, S.; Delos, S. E. und White, J. M. (2004): Sequential roles of receptor binding and low pH in forming prehairpin and hairpin conformations of a retroviral envelope glycoprotein, J Virol, (Band 78), No. 15, Seite 8201-9

[102] Gallaher, W. R. (1996): Similar structural models of the transmembrane proteins of Ebola and avian sarcoma viruses, Cell, (Band 85), No. 4, Seite 477-8

[103] Hernandez, L. D. und White, J. M. (1998): Mutational analysis of the candidate internal fusion peptide of the avian leukosis and sarcoma virus subgroup A envelope glycoprotein, J Virol, (Band 72), No. 4, Seite 3259-67

[104] Gomara, M. J.; Mora, P.; Mingarro, I. und Nieva, J. L. (2004): Roles of a conserved proline in the internal fusion peptide of Ebola glycoprotein, FEBS Lett, (Band 569), No. 1-3, Seite 261-6

[105] Gallaher, W. R.; Ball, J. M.; Garry, R. F.; Griffin, M. C. und Montelaro, R. C. (1989): A general model for the transmembrane proteins of HIV and other retroviruses, AIDS Res Hum Retroviruses, (Band 5), No. 4, Seite 431-40

[106] Peisajovich, S. G. und Shai, Y. (2003): Viral fusion proteins: multiple regions contribute to membrane fusion, Biochim Biophys Acta, (Band 1614), No. 1, Seite 122-9

[107] Rafalski, M.; Ortiz, A.; Rockwell, A.; van Ginkel, L. C.; Lear, J. D.; DeGrado, W. F. und Wilschut, J. (1991): Membrane fusion activity of the influenza virus hemagglutinin: interaction of HA2 N-terminal peptides with phospholipid vesicles, Biochemistry, (Band 30), No. 42, Seite 10211-20

[108] Sainz, B., Jr.; Rausch, J. M.; Gallaher, W. R.; Garry, R. F. und Wimley, W. C. (2005): Identification and characterization of the putative fusion peptide of the severe acute respiratory syndrome-associated coronavirus spike protein, J Virol, (Band 79), No. 11, Seite 7195-206

[109] Bosch, M. L.; Earl, P. L.; Fargnoli, K.; Picciafuoco, S.; Giombini, F.; Wong-Staal, F. und Franchini, G. (1989): Identification of the fusion peptide of primate immunodeficiency viruses, Science, (Band 244), No. 4905, Seite 694-7

[110] Freed, E. O.; Myers, D. J. und Risser, R. (1990): Characterization of the fusion domain of the human immunodeficiency virus type 1 envelope glycoprotein gp41, Proc Natl Acad Sci U S A, (Band 87), No. 12, Seite 4650-4

[111] White, J.; Kielian, M. und Helenius, A. (1983): Membrane fusion proteins of enveloped animal viruses, Q Rev Biophys, (Band 16), No. 2, Seite 151-95

[112] Gallaher, W. R. (1987): Detection of a fusion peptide sequence in the transmembrane protein of human immunodeficiency virus, Cell, (Band 50), No. 3, Seite 327-8

[113] Horvath, C. M. und Lamb, R. A. (1992): Studies on the fusion peptide of a paramyxovirus fusion glycoprotein: roles of conserved residues in cell fusion, J Virol, (Band 66), No. 4, Seite 2443-55

[114] Durell, S. R.; Martin, I.; Ruysschaert, J. M.; Shai, Y. und Blumenthal, R. (1997): What studies of fusion peptides tell us about viral envelope glycoprotein-mediated membrane fusion (review), Mol Membr Biol, (Band 14), No. 3, Seite 97-112

[115] Pritsker, M.; Rucker, J.; Hoffman, T. L.; Doms, R. W. und Shai, Y. (1999): Effect of nonpolar substitutions of the conserved Phe11 in the fusion peptide of HIV-1 gp41 on its function, structure, and organization in membranes, Biochemistry, (Band 38), No. 35, Seite 11359-71

[116] Ruiz-Arguello, M. B.; Goni, F. M.; Pereira, F. B. und Nieva, J. L. (1998): Phosphatidylinositol-dependent membrane fusion induced by a putative fusogenic sequence of Ebola virus, J Virol, (Band 72), No. 3, Seite 1775-81

[117] Delos, S. E.; Gilbert, J. M. und White, J. M. (2000): The central proline of an internal viral fusion peptide serves two important roles, J Virol, (Band 74), No. 4, Seite 1686-93

[118] Hernandez, L. D.; Hoffman, L. R.; Wolfsberg, T. G. und White, J. M. (1996): Virus-cell and cell-cell fusion, Annu Rev Cell Dev Biol, (Band 12), Seite 627-61.

[119] Ito, H.; Watanabe, S.; Sanchez, A.; Whitt, M. A. und Kawaoka, Y. (1999): Mutational analysis of the putative fusion domain of Ebola virus glycoprotein, J Virol, (Band 73), No. 10, Seite 8907-12

[120] Martin, I. und Ruysschaert, J. M. (2000): Common properties of fusion peptides from diverse systems, Biosci Rep, (Band 20), No. 6, Seite 483-500

[121] Martin, I. I.; Ruysschaert, J. und Epand, R. M. (1999): Role of the N-terminal peptides of viral envelope proteins in membrane fusion, Adv Drug Deliv Rev, (Band 38), No. 3, Seite 233-255

[122] White, J. M. (1990): Viral and cellular membrane fusion proteins, Annu Rev Physiol, (Band 52), Seite 675-97

[123] Skehel, J. J.; Cross, K.; Steinhauer, D. und Wiley, D. C. (2001): Influenza fusion peptides, Biochem Soc Trans, (Band 29), No. Pt 4, Seite 623-6

[124] Garry, R. F. und Dash, S. (2003): Proteomics computational analyses suggest that hepatitis C virus E1 and pestivirus E2 envelope glycoproteins are truncated class II fusion proteins, Virology, (Band 307), No. 2, Seite 255-65

[125] Heinz, F. X. und Allison, S. L. (2003): Flavivirus structure and membrane fusion, Adv Virus Res, (Band 59), Seite 63-97

[126] Tamm, L. K. und Han, X. (2000): Viral fusion peptides: a tool set to disrupt and connect biological membranes, Biosci Rep, (Band 20), No. 6, Seite 501-18

[127] Tamm, L. K.; Han, X.; Li, Y. und Lai, A. L. (2002): Structure and function of membrane fusion peptides, Biopolymers, (Band 66), No. 4, Seite 249-60

[128] Han, X.; Bushweller, J. H.; Cafiso, D. S. und Tamm, L. K. (2001): Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin, Nat Struct Biol, (Band 8), No. 8, Seite 715-20

[129] Qiao, H.; Armstrong, R. T.; Melikyan, G. B.; Cohen, F. S. und White, J. M. (1999): A specific point mutant at position 1 of the influenza hemagglutinin fusion peptide displays a hemifusion phenotype, Mol Biol Cell, (Band 10), No. 8, Seite 2759-69

[130] Li, Y.; Han, X.; Lai, A. L.; Bushweller, J. H.; Cafiso, D. S. und Tamm, L. K. (2005): Membrane structures of the hemifusion-inducing fusion peptide mutant G1S and the fusion-blocking mutant G1V of influenza virus hemagglutinin suggest a mechanism for pore opening in membrane fusion, J Virol, (Band 79), No. 18, Seite 12065-76

[131] Kamath, S. und Wong, T. C. (2002): Membrane structure of the human immunodeficiency virus gp41 fusion domain by molecular dynamics simulation, Biophys J, (Band 83), No. 1, Seite 135-43

[132] Jeffers, S. A.; Sanders, D. A. und Sanchez, A. (2002): Covalent modifications of the ebola virus glycoprotein, J Virol, (Band 76), No. 24, Seite 12463-72

[133] Fredericksen, B. L. und Whitt, M. A. (1995): Vesicular stomatitis virus glycoprotein mutations that affect membrane fusion activity and abolish virus infectivity, J Virol, (Band 69), No. 3, Seite 1435-43

[134] Allison, S. L.; Schalich, J.; Stiasny, K.; Mandl, C. W. und Heinz, F. X. (2001): Mutational evidence for an internal fusion peptide in flavivirus envelope protein E, J Virol, (Band 75), No. 9, Seite 4268-75

[135] Duffus, W. A.; Levy-Mintz, P.; Klimjack, M. R. und Kielian, M. (1995): Mutations in the putative fusion peptide of Semliki Forest virus affect spike protein oligomerization and virus assembly, J Virol, (Band 69), No. 4, Seite 2471-9

[136] Freed, E. O.; Delwart, E. L.; Buchschacher, G. L., Jr. und Panganiban, A. T. (1992): A mutation in the human immunodeficiency virus type 1 transmembrane glycoprotein gp41 dominantly interferes with fusion and infectivity, Proc Natl Acad Sci U S A, (Band 89), No. 1, Seite 70-4

[137] Gething, M. J.; Doms, R. W.; York, D. und White, J. (1986): Studies on the mechanism of membrane fusion: site-specific mutagenesis of the hemagglutinin of influenza virus, J Cell Biol, (Band 102), No. 1, Seite 11-23

[138] Schoch, C. und Blumenthal, R. (1993): Role of the fusion peptide sequence in initial stages of influenza hemagglutinin-induced cell fusion, J Biol Chem, (Band 268), No. 13, Seite 9267-74

[139] Gunther-Ausborn, S.; Schoen, P.; Bartoldus, I.; Wilschut, J. und Stegmann, T. (2000): Role of hemagglutinin surface density in the initial stages of influenza virus fusion: lack of evidence for cooperativity, J Virol, (Band 74), No. 6, Seite 2714-20

[140] Kliger, Y.; Aharoni, A.; Rapaport, D.; Jones, P.; Blumenthal, R. und Shai, Y. (1997): Fusion peptides derived from the HIV type 1 glycoprotein 41 associate within phospholipid membranes and inhibit cell-cell Fusion. Structure-function study, J Biol Chem, (Band 272), No. 21, Seite 13496-505

[141] Pereira, F. B.; Goni, F. M. und Nieva, J. L. (1995): Liposome destabilization induced by the HIV-1 fusion peptide effect of a single amino acid substitution, FEBS Lett, (Band 362), No. 2, Seite 243-6

[142] Gledhill, A. W. und Andrewes, C. H. (1951): A hepatitis virus of mice, Br J Exp Pathol, (Band 32), No. 6, Seite 559-68

[143] Manaker, R. A.; Piczak, C. V.; Miller, A. A. und Stanton, M. F. (1961): A hepatitis virus complicating studies with mouse leukemia, J Natl Cancer Inst, (Band 27), Seite 29-51

[144] Stadler, K.; Masignani, V.; Eickmann, M.; Becker, S.; Abrignani, S.; Klenk, H. D. und Rappuoli, R. (2003): SARS--beginning to understand a new virus, Nat Rev Microbiol, (Band 1), No. 3, Seite 209-18

[145] Kooi, C.; Cervin, M. und Anderson, R. (1991): Differentiation of acid-pH-dependent and -nondependent entry pathways for mouse hepatitis virus, Virology, (Band 180), No. 1, Seite 108-19

[146] Holmes, K. V.; Zelus, B. D.; Schickli, J. H. und Weiss, S. R. (2001): Receptor specificity and receptor-induced conformational changes in mouse hepatitis virus spike glycoprotein, Adv Exp Med Biol, (Band 494), Seite 173-81

[147] Matsuyama, S. und Taguchi, F. (2002): Receptor-induced conformational changes of murine coronavirus spike protein, J Virol, (Band 76), No. 23, Seite 11819-26.

[148] Zelus, B. D.; Schickli, J. H.; Blau, D. M.; Weiss, S. R. und Holmes, K. V. (2003): Conformational changes in the spike glycoprotein of murine coronavirus are induced at 37 degrees C either by soluble murine CEACAM1 receptors or by pH 8, J Virol, (Band 77), No. 2, Seite 830-40

[149] Miura, H. S.; Nakagaki, K. und Taguchi, F. (2004): N-terminal domain of the murine coronavirus receptor CEACAM1 is responsible for fusogenic activation and conformational changes of the spike protein, J Virol, (Band 78), No. 1, Seite 216-23

[150] Taguchi, F. und Matsuyama, S. (2002): Soluble receptor potentiates receptor-independent infection by murine coronavirus, J Virol, (Band 76), No. 3, Seite 950-8.

[151] Frana, M. F.; Behnke, J. N.; Sturman, L. S. und Holmes, K. V. (1985): Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: host-dependent differences in proteolytic cleavage and cell fusion, J Virol, (Band 56), No. 3, Seite 912-20

[152] de Haan, C. A.; Stadler, K.; Godeke, G. J.; Bosch, B. J. und Rottier, P. J. (2004): Cleavage inhibition of the murine coronavirus spike protein by a furin-like enzyme affects cell-cell but not virus-cell fusion, J Virol, (Band 78), No. 11, Seite 6048-54

[153] Krzystyniak, K. und Dupuy, J. M. (1984): Entry of mouse hepatitis virus 3 into cells, J Gen Virol, (Band 65 ( Pt 1)), Seite 227-31

[154] Bosch, B. J.; van der Zee, R.; de Haan, C. A. und Rottier, P. J. (2003): The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex, J Virol, (Band 77), No. 16, Seite 8801-11.

[155] Song, H. C.; Seo, M. Y.; Stadler, K.; Yoo, B. J.; Choo, Q. L.; Coates, S. R.; Uematsu, Y.; Harada, T.; Greer, C. E.; Polo, J. M.; Pileri, P.; Eickmann, M.; Rappuoli, R.; Abrignani, S.; Houghton, M. und Han, J. H. (2004): Synthesis and characterization of a native, oligomeric form of recombinant severe acute respiratory syndrome coronavirus spike glycoprotein, J Virol, (Band 78), No. 19, Seite 10328-35

[156] Li, W.; Moore, M. J.; Vasilieva, N.; Sui, J.; Wong, S. K.; Berne, M. A.; Somasundaran, M.; Sullivan, J. L.; Luzuriaga, K.; Greenough, T. C.; Choe, H. und Farzan, M. (2003): Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus, Nature, (Band 426), No. 6965, Seite 450-4.

[157] Bos, E. C.; Luytjes, W. und Spaan, W. J. (1997): The function of the spike protein of mouse hepatitis virus strain A59 can be studied on virus-like particles: cleavage is not required for infectivity, J Virol, (Band 71), No. 12, Seite 9427-33.

[158] Hingley, S. T.; Leparc-Goffart, I.; Seo, S. H.; Tsai, J. C. und Weiss, S. R. (2002): The virulence of mouse hepatitis virus strain A59 is not dependent on efficient spike protein cleavage and cell-to-cell fusion, J Neurovirol, (Band 8), No. 5, Seite 400-10

[159] Xu, Y.; Liu, Y.; Lou, Z.; Qin, L.; Li, X.; Bai, Z.; Pang, H.; Tien, P.; Gao, G. F. und Rao, Z. (2004): Structural basis for coronavirus-mediated membrane fusion. Crystal structure of mouse hepatitis virus spike protein fusion core, J Biol Chem, (Band 279), No. 29, Seite 30514-22

[160] Xu, Y.; Zhu, J.; Liu, Y.; Lou, Z.; Yuan, F.; Cole, D. K.; Ni, L.; Su, N.; Qin, L.; Li, X.; Bai, Z.; Bell, J. I.; Pang, H.; Tien, P.; Gao, G. F. und Rao, Z. (2004): Characterization of the heptad repeat regions, HR1 and HR2, and design of a fusion core structure model of the spike protein from severe acute respiratory syndrome (SARS) coronavirus, Biochemistry, (Band 43), No. 44, Seite 14064-71

[161] McGinnes, L. W.; Sergel, T.; Chen, H.; Hamo, L.; Schwertz, S.; Li, D. und Morrison, T. G. (2001): Mutational analysis of the membrane proximal heptad repeat of the newcastle disease virus fusion protein, Virology, (Band 289), No. 2, Seite 343-52

[162] Tripet, B.; Howard, M. W.; Jobling, M.; Holmes, R. K.; Holmes, K. V. und Hodges, R. S. (2004): Structural characterization of the SARS-coronavirus spike S fusion protein core, J Biol Chem, (Band 2), Seite 2

[163] Xu, Y.; Lou, Z.; Liu, Y.; Pang, H.; Tien, P.; Gao, G. F. und Rao, Z. (2004): Crystal structure of severe acute respiratory syndrome coronavirus spike protein fusion core, J Biol Chem, (Band 279), No. 47, Seite 49414-9

[164] Xu, Y.; Su, N.; Qin, L.; Bai, Z.; Gao, G. F. und Rao, Z. (2004): Crystallization and preliminary crystallographic analysis of the heptad-repeat complex of SARS coronavirus spike protein, Acta Crystallogr D Biol Crystallogr, (Band 60), No. Pt 12 Pt 2, Seite 2377-9

[165] Beniac, D. R.; Andonov, A.; Grudeski, E. und Booth, T. F. (2006): Architecture of the SARS coronavirus prefusion spike, Nat Struct Mol Biol, (Band 13), No. 8, Seite 751-2

[166] Wu, X. D.; Shang, B.; Yang, R. F.; Yu, H.; Ma, Z. H.; Shen, X.; Ji, Y. Y.; Lin, Y.; Wu, Y. D.; Lin, G. M.; Tian, L.; Gan, X. Q.; Yang, S.; Jiang, W. H.; Dai, E. H.; Wang, X. Y.; Jiang, H. L.; Xie, Y. H.; Zhu, X. L.; Pei, G.; Li, L.; Wu, J. R. und Sun, B. (2004): The spike protein of severe acute respiratory syndrome (SARS) is cleaved in virus infected Vero-E6 cells, Cell Res, (Band 14), No. 5, Seite 400-6

[167] Guillen, J.; Perez-Berna, A. J.; Moreno, M. R. und Villalain, J. (2005): Identification of the membrane-active regions of the severe acute respiratory syndrome coronavirus spike membrane glycoprotein using a 16/18-mer peptide scan: implications for the viral fusion mechanism, J Virol, (Band 79), No. 3, Seite 1743-52

[168] Simmons, G.; Reeves, J. D.; Rennekamp, A. J.; Amberg, S. M.; Piefer, A. J. und Bates, P. (2004): Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry, Proc Natl Acad Sci U S A, (Band 101), No. 12, Seite 4240-5

[169] Yang, Z. Y.; Huang, Y.; Ganesh, L.; Leung, K.; Kong, W. P.; Schwartz, O.; Subbarao, K. und Nabel, G. J. (2004): pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN, J Virol, (Band 78), No. 11, Seite 5642-50

[170] Liu, S.; Xiao, G.; Chen, Y.; He, Y.; Niu, J.; Escalante, C. R.; Xiong, H.; Farmar, J.; Debnath, A. K.; Tien, P. und Jiang, S. (2004): Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: implications for virus fusogenic mechanism and identification of fusion inhibitors, Lancet, (Band 363), No. 9413, Seite 938-47

[171] Hofmann, H. und Pohlmann, S. (2004): Cellular entry of the SARS coronavirus, Trends Microbiol, (Band 12), No. 10, Seite 466-72

[172] Hakansson-McReynolds, S.; Jiang, S.; Rong, L. und Caffrey, M. (2006): Solution structure of the severe acute respiratory syndrome-coronavirus heptad repeat 2 domain in the prefusion state, J Biol Chem, (Band 281), No. 17, Seite 11965-71

[173] Xiao, X.; Chakraborti, S.; Dimitrov, A. S.; Gramatikoff, K. und Dimitrov, D. S. (2003): The SARS-CoV S glycoprotein: expression and functional characterization, Biochem Biophys Res Commun, (Band 312), No. 4, Seite 1159-64.

[174] Bosch, B. J.; Martina, B. E.; Van Der Zee, R.; Lepault, J.; Haijema, B. J.; Versluis, C.; Heck, A. J.; De Groot, R.; Osterhaus, A. D. und Rottier, P. J. (2004): Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides, Proc Natl Acad Sci U S A, (Band 101), No. 22, Seite 8455-60

[175] Yoo, D. W.; Parker, M. D. und Babiuk, L. A. (1991): The S2 subunit of the spike glycoprotein of bovine coronavirus mediates membrane fusion in insect cells, Virology, (Band 180), No. 1, Seite 395-9.

[176] Luo, Z. und Weiss, S. R. (1998): Roles in cell-to-cell fusion of two conserved hydrophobic regions in the murine coronavirus spike protein, Virology, (Band 244), No. 2, Seite 483-94

[177] Luo, Z. L. und Weiss, S. R. (1998): Mutational analysis of fusion peptide-like regions in the mouse hepatitis virus strain A59 spike protein, Adv Exp Med Biol, (Band 440), Seite 17-23

[178] Colotto, A. und Epand, R. M. (1997): Structural study of the relationship between the rate of membrane fusion and the ability of the fusion peptide of influenza virus to perturb bilayers, Biochemistry, (Band 36), No. 25, Seite 7644-51

[179] Pereira, F. B.; Goni, F. M. und Nieva, J. L. (1997): Membrane fusion induced by the HIV type 1 fusion peptide: modulation by factors affecting glycoprotein 41 activity and potential anti-HIV compounds, AIDS Res Hum Retroviruses, (Band 13), No. 14, Seite 1203-11

[180] Pereira, F. B.; Valpuesta, J. M.; Basanez, G.; Goni, F. M. und Nieva, J. L. (1999): Interbilayer lipid mixing induced by the human immunodeficiency virus type-1 fusion peptide on large unilamellar vesicles: the nature of the nonlamellar intermediates, Chem Phys Lipids, (Band 103), No. 1-2, Seite 11-20

[181] Wimley, W. C. und White, S. H. (1996): Experimentally determined hydrophobicity scale for proteins at membrane interfaces, Nat Struct Biol, (Band 3), No. 10, Seite 842-8

[182] Luo, Z.; Matthews, A. M. und Weiss, S. R. (1999): Amino acid substitutions within the leucine zipper domain of the murine coronavirus spike protein cause defects in oligomerization and the ability to induce cell-to-cell fusion, J Virol, (Band 73), No. 10, Seite 8152-9.

[183] Sturman, L. S. und Takemoto, K. K. (1972): Enhanced growth of a murine coronavirus in transformed mouse cells, Infect Immun, (Band 6), No. 4, Seite 501-7

[184] Tsai, J. C.; Zelus, B. D.; Holmes, K. V. und Weiss, S. R. (2003): The N-terminal domain of the murine coronavirus spike glycoprotein determines the CEACAM1 receptor specificity of the virus strain, J Virol, (Band 77), No. 2, Seite 841-50

[185] Bradford, M. M. (1976): A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal Biochem, (Band 72), Seite 248-54

[186] Böttcher, CJF; Van Gent, CM und Pries, C (1961): A rapid sensitive submicrophosphorus determination , Anal Chim Acta, (Band 24), Seite 203-204

[187] Bligh, E. G. und Dyer, W. J. (1959): A rapid method of total lipid extraction and purification, Can J Biochem Physiol, (Band 37), No. 8, Seite 911-7

[188] van Heel, M.; Harauz, G.; Orlova, E. V.; Schmidt, R. und Schatz, M. (1996): A new generation of the IMAGIC image processing system, J Struct Biol, (Band 116), No. 1, Seite 17-24

[189] Van Heel, M. (1987): Angular reconstitution: a posteriori assignment of projection directions for 3D reconstruction, Ultramicroscopy, (Band 21), No. 2, Seite 111-23

[190] van Heel, M. und Stoffler-Meilicke, M. (1985): Characteristic views of E. coli and B. stearothermophilus 30S ribosomal subunits in the electron microscope, Embo J, (Band 4), No. 9, Seite 2389-95

[191] van Heel, M. (1989): Classification of very large electron microscopical image data sets, Optik , (Band 82), Seite 114−126

[192] Dodge, J. T.; Mitchell, C. und Hanahan, D. J. (1963): The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes, Arch Biochem Biophys, (Band 100), Seite 119-30

[193] Hoekstra, D.; de Boer, T.; Klappe, K. und Wilschut, J. (1984): Fluorescence method for measuring the kinetics of fusion between biological membranes, Biochemistry, (Band 23), No. 24, Seite 5675-81

[194] Korte, T.; Ludwig, K.; Booy, F. P.; Blumenthal, R. und Herrmann, A. (1999): Conformational intermediates and fusion activity of influenza virus hemagglutinin, J Virol, (Band 73), No. 6, Seite 4567-74

[195] Blumenthal, R.; Bali-Puri, A.; Walter, A.; Covell, D. und Eidelman, O. (1987): pH-dependent fusion of vesicular stomatitis virus with Vero cells. Measurement by dequenching of octadecyl rhodamine fluorescence, J Biol Chem, (Band 262), No. 28, Seite 13614-9

[196] S. Jaysinghe, K. Hristova, W. Wimley, C. Snider, and S. H. White (2006): Mpex-Software,

[197] Sturman, L. S.; Holmes, K. V. und Behnke, J. (1980): Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid, J Virol, (Band 33), No. 1, Seite 449-62

[198] Helenius, A.; Marsh, M. und White, J. (1982): Inhibition of Semliki forest virus penetration by lysosomotropic weak bases, J Gen Virol, (Band 58 Pt 1), Seite 47-61

[199] Popik, W.; Alce, T. M. und Au, W. C. (2002): Human immunodeficiency virus type 1 uses lipid raft-colocalized CD4 and chemokine receptors for productive entry into CD4(+) T cells, J Virol, (Band 76), No. 10, Seite 4709-22

[200] Guyader, M.; Kiyokawa, E.; Abrami, L.; Turelli, P. und Trono, D. (2002): Role for human immunodeficiency virus type 1 membrane cholesterol in viral internalization, J Virol, (Band 76), No. 20, Seite 10356-64

[201] Subtil, A.; Gaidarov, I.; Kobylarz, K.; Lampson, M. A.; Keen, J. H. und McGraw, T. E. (1999): Acute cholesterol depletion inhibits clathrin-coated pit budding, Proc Natl Acad Sci U S A, (Band 96), No. 12, Seite 6775-80

[202] Huang, I. C.; Bosch, B. J.; Li, W.; Farzan, M.; Rottier, P. M. und Choe, H. (2006): SARS-CoV, but not HCoV-NL63, utilizes cathepsins to infect cells: viral entry, Adv Exp Med Biol, (Band 581), Seite 335-8

[203] van Genderen, I. und van Meer, G. (1995): Differential targeting of glucosylceramide and galactosylceramide analogues after synthesis but not during transcytosis in Madin-Darby canine kidney cells, J Cell Biol, (Band 131), No. 3, Seite 645-54

[204] Chang, K. W.; Sheng, Y. und Gombold, J. L. (2000): Coronavirus-induced membrane fusion requires the cysteine-rich domain in the spike protein, Virology, (Band 269), No. 1, Seite 212-24

[205] Ye, R.; Montalto-Morrison, C. und Masters, P. S. (2004): Genetic analysis of determinants for spike glycoprotein assembly into murine coronavirus virions: distinct roles for charge-rich and cysteine-rich regions of the endodomain, J Virol, (Band 78), No. 18, Seite 9904-17

[206] Agirre, A.; Flach, C.; Goni, F. M.; Mendelsohn, R.; Valpuesta, J. M.; Wu, F. und Nieva, J. L. (2000): Interactions of the HIV-1 fusion peptide with large unilamellar vesicles and monolayers. A cryo-TEM and spectroscopic study, Biochim Biophys Acta, (Band 1467), No. 1, Seite 153-64

[207] Nieva, J. L.; Nir, S.; Muga, A.; Goni, F. M. und Wilschut, J. (1994): Interaction of the HIV-1 fusion peptide with phospholipid vesicles: different structural requirements for fusion and leakage, Biochemistry, (Band 33), No. 11, Seite 3201-9

[208] Suarez, T.; Gomara, M. J.; Goni, F. M.; Mingarro, I.; Muga, A.; Perez-Paya, E. und Nieva, J. L. (2003): Calcium-dependent conformational changes of membrane-bound Ebola fusion peptide drive vesicle fusion, FEBS Lett, (Band 535), No. 1-3, Seite 23-8

[209] David-Ferreira, J. F. und Manaker, R. A. (1965): An Electron Microscope Study of the Development of a Mouse Hepatitis Virus in Tissue Culture Cells, J Cell Biol, (Band 24), Seite 57-78

[210] Phillips, J. J.; Chua, M. M.; Lavi, E. und Weiss, S. R. (1999): Pathogenesis of chimeric MHV4/MHV-A59 recombinant viruses: the murine coronavirus spike protein is a major determinant of neurovirulence, J Virol, (Band 73), No. 9, Seite 7752-60

[211] Ferreira, L.; Villar, E. und Munoz-Barroso, I. (2004): Conformational changes of Newcastle disease virus envelope glycoproteins triggered by gangliosides, Eur J Biochem, (Band 271), No. 3, Seite 581-8

[212] Schoch, C.; Blumenthal, R. und Clague, M. J. (1992): A long-lived state for influenza virus-erythrocyte complexes committed to fusion at neutral pH, FEBS Lett, (Band 311), No. 3, Seite 221-5

[213] Chu, V. C.; McElroy, L. J.; Chu, V.; Bauman, B. E. und Whittaker, G. R. (2006): The avian coronavirus infectious bronchitis virus undergoes direct low-pH-dependent fusion activation during entry into host cells, J Virol, (Band 80), No. 7, Seite 3180-8

[214] Xiao, X.; Feng, Y.; Chakraborti, S. und Dimitrov, D. S. (2004): Oligomerization of the SARS-CoV S glycoprotein: dimerization of the N-terminus and trimerization of the ectodomain, Biochem Biophys Res Commun, (Band 322), No. 1, Seite 93-9

[215] Spaan, W.; Cavanagh, D. und Horzinek, M. C. (1988): Coronaviruses: structure and genome expression, J Gen Virol, (Band 69 ( Pt 12)), Seite 2939-52

[216] Stauber, R.; Pfleiderer, M. und Siddell, S. (1993): Proteolytic cleavage of the murine coronavirus surface glycoprotein is not required for its fusion activity, Adv Exp Med Biol, (Band 342), Seite 165-70

[217] Xiao, X. und Dimitrov, D. S. (2004): The SARS-CoV S glycoprotein, Cell Mol Life Sci, (Band 61), No. 19-20, Seite 2428-30

[218] Li, F.; Berardi, M.; Li, W.; Farzan, M.; Dormitzer, P. R. und Harrison, S. C. (2006): Conformational states of the severe acute respiratory syndrome coronavirus spike protein ectodomain, J Virol, (Band 80), No. 14, Seite 6794-800

[219] Skehel, J. J.; Bayley, P. M.; Brown, E. B.; Martin, S. R.; Waterfield, M. D.; White, J. M.; Wilson, I. A. und Wiley, D. C. (1982): Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion, Proc Natl Acad Sci U S A, (Band 79), No. 4, Seite 968-72

[220] Matsuyama, S.; Ujike, M.; Morikawa, S.; Tashiro, M. und Taguchi, F. (2005): Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection, Proc Natl Acad Sci U S A, (Band 102), No. 35, Seite 12543-7

[221] Huang, I. C.; Bosch, B. J.; Li, F.; Li, W.; Lee, K. H.; Ghiran, S.; Vasilieva, N.; Dermody, T. S.; Harrison, S. C.; Dormitzer, P. R.; Farzan, M.; Rottier, P. J. und Choe, H. (2006): SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells, J Biol Chem, (Band 281), No. 6, Seite 3198-203

[222] Delmas, B. und Laude, H. (1990): Assembly of coronavirus spike protein into trimers and its role in epitope expression, J Virol, (Band 64), No. 11, Seite 5367-75

[223] Du, L.; Kao, R. Y.; Zhou, Y.; He, Y.; Zhao, G.; Wong, C.; Jiang, S.; Yuen, K. Y.; Jin, D. Y. und Zheng, B. J. (2007): Cleavage of spike protein of SARS coronavirus by protease factor Xa is associated with viral infectivity, Biochem Biophys Res Commun, (Band 359), No. 1, Seite 174-9

[224] Sturman, L. S.; Ricard, C. S. und Holmes, K. V. (1990): Conformational change of the coronavirus peplomer glycoprotein at pH 8.0 and 37 degrees C correlates with virus aggregation and virus-induced cell fusion, J Virol, (Band 64), No. 6, Seite 3042-50

[225] Weismiller, D. G.; Sturman, L. S.; Buchmeier, M. J.; Fleming, J. O. und Holmes, K. V. (1990): Monoclonal antibodies to the peplomer glycoprotein of coronavirus mouse hepatitis virus identify two subunits and detect a conformational change in the subunit released under mild alkaline conditions, J Virol, (Band 64), No. 6, Seite 3051-5

[226] de Haan, C. A.; Li, Z.; Te Lintelo, E.; Bosch, B. J.; Haijema, B. J. und Rottier, P. J. (2005): Murine coronavirus with an extended host range uses heparan sulfate as an entry receptor, J Virol, (Band 79), No. 22, Seite 14451-6

[227] Akula, S. M.; Naranatt, P. P.; Walia, N. S.; Wang, F. Z.; Fegley, B. und Chandran, B. (2003): Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) infection of human fibroblast cells occurs through endocytosis, J Virol, (Band 77), No. 14, Seite 7978-90

[228] Asanaka, M. und Lai, M. M. (1993): Cell fusion studies identified multiple cellular factors involved in mouse hepatitis virus entry, Virology, (Band 197), No. 2, Seite 732-41

[229] Yokomori, K.; Asanaka, M.; Stohlman, S. A. und Lai, M. M. (1993): A spike protein-dependent cellular factor other than the viral receptor is required for mouse hepatitis virus entry, Virology, (Band 196), No. 1, Seite 45-56

[230] Sainz, B., Jr.; Rausch, J. M.; Gallaher, W. R.; Garry, R. F. und Wimley, W. C. (2005): The aromatic domain of the coronavirus class I viral fusion protein induces membrane permeabilization: putative role during viral entry, Biochemistry, (Band 44), No. 3, Seite 947-58

[231] Han, D. P.; Kim, H. G.; Kim, Y. B.; Poon, L. L. und Cho, M. W. (2004): Development of a safe neutralization assay for SARS-CoV and characterization of S-glycoprotein, Virology, (Band 326), No. 1, Seite 140-9

[232] Wu, C. Y.; Jan, J. T.; Ma, S. H.; Kuo, C. J.; Juan, H. F.; Cheng, Y. S.; Hsu, H. H.; Huang, H. C.; Wu, D.; Brik, A.; Liang, F. S.; Liu, R. S.; Fang, J. M.; Chen, S. T.; Liang, P. H. und Wong, C. H. (2004): Small molecules targeting severe acute respiratory syndrome human coronavirus, Proc Natl Acad Sci U S A, (Band 101), No. 27, Seite 10012-7

© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 4.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am: