6. Literaturverzeichnis

[1] Floess, S.; Freyer, J.; Siewert, C.; Baron, U.; Olek, S.; Polansky, J.; Schlawe, K.; Chang, H.-D.; Bopp, T.; Schmitt, E.; Klein-Hessling, S.; Serfling, E.; Hamann, A. und Huehn, J. (2007): Epigenetic control of the foxp3 locus in regulatory T cells, PLOS Biol, (Band 5), No. 2, Seite e38. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17298177

[2] Kisielow, P.; Teh, H. S.; Bluthmann, H. und von Boehmer, H. (1988): Positive selection of antigen-specific T cells in thymus by restricting MHC molecules, Nature, (Band 335), No. 6192, Seite 730-3. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=3262831

[3] Kappler, J. W.; Roehm, N. und Marrack, P. (1987): T cell tolerance by clonal elimination in the thymus, Cell, (Band 49), No. 2, Seite 273-80. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=3494522

[4] Arnold, B.; Schonrich, G. und Hammerling, G. J. (1993): Multiple levels of peripheral tolerance, Immunol Today, (Band 14), No. 1, Seite 12-4. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8442855

[5] Miller, J. F. und Heath, W. R. (1993): Self-ignorance in the peripheral T-cell pool, Immunol Rev, (Band 133), Seite 131-50. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8225364

[6] Van Parijs, L. und Abbas, A. K. (1998): Homeostasis and self-tolerance in the immune system: turning lymphocytes off, Science, (Band 280), No. 5361, Seite 243-8. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9535647

[7] Sakaguchi, S. (2000): Regulatory T cells: key controllers of immunologic self-tolerance, Cell, (Band 101), No. 5, Seite 455-8.. http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/referer?http://www.cell.com/cgi/content/full/101/5/455

[8] Nishizuka, Y. und Sakakura, T. (1969): Thymus and reproduction: sex-linked dysgenesia of the gonad after neonatal thymectomy in mice, Science, (Band 166), No. 906, Seite 753-5. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=5823314

[9] Gershon, R. K. und Kondo, K. (1970): Cell interactions in the induction of tolerance: the role of thymic lymphocytes, Immunology, (Band 18), No. 5, Seite 723-37. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=4911896

[10] Golub, E. S. (1981): Suppressor T cells and their possible role in the regulation of autoreactivity, Cell, (Band 24), No. 3, Seite 595-6. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=6454494

[11] Sakaguchi, S.; Sakaguchi, N.; Asano, M.; Itoh, M. und Toda, M. (1995): Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases, J Immunol, (Band 155), No. 3, Seite 1151-64..

[12] Ostroukhova, M.; Seguin-Devaux, C.; Oriss, T. B.; Dixon-McCarthy, B.; Yang, L.; Ameredes, B. T.; Corcoran, T. E. und Ray, A. (2004): Tolerance induced by inhaled antigen involves CD4(+) T cells expressing membrane-bound TGF-beta and FOXP3, J Clin Invest, (Band 114), No. 1, Seite 28-38. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15232609

[13] Sakaguchi, S.; Ono, M.; Setoguchi, R.; Yagi, H.; Hori, S.; Fehervari, Z.; Shimizu, J.; Takahashi, T. und Nomura, T. (2006): Foxp3CD25CD4 natural regulatory T cells in dominant self-tolerance and autoimmune disease, Immunol Rev, (Band 212), Seite 8-27. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16903903

[14] Peng, Y.; Laouar, Y.; Li, M. O.; Green, E. A. und Flavell, R. A. (2004): TGF-beta regulates in vivo expansion of Foxp3-expressing CD4+CD25+ regulatory T cells responsible for protection against diabetes, Proc Natl Acad Sci U S A, (Band 101), No. 13, Seite 4572-7. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15070759

[15] Loser, K.; Hansen, W.; Apelt, J.; Balkow, S.; Buer, J. und Beissert, S. (2005): In vitro-generated regulatory T cells induced by Foxp3-retrovirus infection control murine contact allergy and systemic autoimmunity, Gene Ther, (Band 12), No. 17, Seite 1294-304. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15973443

[16] Kretschmer, K.; Apostolou, I.; Jaeckel, E.; Khazaie, K. und von Boehmer, H. (2006): Making regulatory T cells with defined antigen specificity: role in autoimmunity and cancer, Immunol Rev, (Band 212), Seite 163-9. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16903913

[17] Chen, M. L.; Pittet, M. J.; Gorelik, L.; Flavell, R. A.; Weissleder, R.; von Boehmer, H. und Khazaie, K. (2005): Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta signals in vivo, Proc Natl Acad Sci U S A, (Band 102), No. 2, Seite 419-24. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15623559

[18] Hontsu, S.; Yoneyama, H.; Ueha, S.; Terashima, Y.; Kitabatake, M.; Nakano, A.; Ito, T.; Kimura, H. und Matsushima, K. (2004): Visualization of naturally occurring Foxp3+ regulatory T cells in normal and tumor-bearing mice, Int Immunopharmacol, (Band 4), No. 14, Seite 1785-93. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15531294

[19] Menning, A.; Höpken, U.E.; Siegmund, K.; Lipp, M.; Hamann, A. und Huehn, J. (2007): CCR7 is crucial for the functional activity of both naïve- and effector/memory-like regulatory T cells subsets, Eur J Imm, (Band 37), No. 6, Seite 1575-1583.

[20] Izcue, A.; Coombes, J. L. und Powrie, F. (2006): Regulatory T cells suppress systemic and mucosal immune activation to control intestinal inflammation, Immunol Rev, (Band 212), Seite 256-71. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16903919

[21] Denning, T. L.; Kim, G. und Kronenberg, M. (2005): Cutting edge: CD4+CD25+ regulatory T cells impaired for intestinal homing can prevent colitis, J Immunol, (Band 174), No. 12, Seite 7487-91. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15944246

[22] Annacker, O.; Pimenta-Araujo, R.; Burlen-Defranoux, O. und Bandeira, A. (2001): On the ontogeny and physiology of regulatory T cells, Immunol Rev, (Band 182), Seite 5-17. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11722620

[23] Khattri, R.; Cox, T.; Yasayko, S. A. und Ramsdell, F. (2003): An essential role for Scurfin in CD4+CD25+ T regulatory cells, Nat Immunol, (Band 4), No. 4, Seite 337-42. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12612581

[24] Shimizu, J.; Yamazaki, S.; Takahashi, T.; Ishida, Y. und Sakaguchi, S. (2002): Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance, Nat Immunol, (Band 3), No. 2, Seite 135-42. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11812990

[25] Huehn, J.; Siegmund, K.; Lehmann, J.; Siewert, C.; Haubold, U.; Feuerer, M.; Debes, G. F.; Lauber, J.; Frey, O.; Przybylski, G. K.; Niesner, U.; Rosa, M. de la; Schmidt, C. A.; Bräuer, R.; Buer, J.; Scheffold, A. und Hamann, A. (2004): Developmental stage, phenotype and migration distinguish naive- and effector/memory-like CD4+ regulatory T cells., J Exp Med, (Band 199), Seite 303-313.

[26] Bruder, D.; Probst-Kepper, M.; Westendorf, A. M.; Geffers, R.; Beissert, S.; Loser, K.; von Boehmer, H.; Buer, J. und Hansen, W. (2004): Neuropilin-1: a surface marker of regulatory T cells, Eur J Immunol, (Band 34), No. 3, Seite 623-30. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14991591

[27] Hansen, W.; Loser, K.; Westendorf, A. M.; Bruder, D.; Pfoertner, S.; Siewert, C.; Huehn, J.; Beissert, S. und Buer, J. (2006): G protein-coupled receptor 83 overexpression in naive CD4+CD25- T cells leads to the induction of Foxp3+ regulatory T cells in vivo, J Immunol, (Band 177), No. 1, Seite 209-15. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16785516

[28] Fantini, M. C.; Becker, C.; Monteleone, G.; Pallone, F.; Galle, P. R. und Neurath, M. F. (2004): Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25- T cells through Foxp3 induction and down-regulation of Smad7, J Immunol, (Band 172), No. 9, Seite 5149-53. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15100250

[29] Lyon, M. F.; Peters, J.; Glenister, P. H.; Ball, S. und Wright, E. (1990): The scurfy mouse mutant has previously unrecognized hematological abnormalities and resembles Wiskott-Aldrich syndrome, Proc Natl Acad Sci U S A, (Band 87), No. 7, Seite 2433-7. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2320565

[30] Blair, P. J.; Bultman, S. J.; Haas, J. C.; Rouse, B. T.; Wilkinson, J. E. und Godfrey, V. L. (1994): CD4+CD8- T cells are the effector cells in disease pathogenesis in the scurfy (sf) mouse, J Immunol, (Band 153), No. 8, Seite 3764-74. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7930593

[31] Clark, L. B.; Appleby, M. W.; Brunkow, M. E.; Wilkinson, J. E.; Ziegler, S. F. und Ramsdell, F. (1999): Cellular and molecular characterization of the scurfy mouse mutant, J Immunol, (Band 162), No. 5, Seite 2546-54. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10072494

[32] Fontenot, J. D.; Gavin, M. A. und Rudensky, A. Y. (2003): Foxp3 programs the development and function of CD4+CD25+ regulatory T cells, Nat Immunol, (Band 4), No. 4, Seite 330-6. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12612578

[33] Williams, L. M. und Rudensky, A. Y. (2007): Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3, Nat Immunol, (Band 8), No. 3, Seite 277-84. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17220892

[34] Wan, Y. Y. und Flavell, R. A. (2007): Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression, Nature, (Band 445), No. 7129, Seite 766-70. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17220876

[35] Gambineri, E.; Torgerson, T. R. und Ochs, H. D. (2003): Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis, Curr Opin Rheumatol, (Band 15), No. 4, Seite 430-5. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12819471

[36] Kim, J. M.; Rasmussen, J. P. und Rudensky, A. Y. (2007): Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice, Nat Immunol, (Band 8), No. 2, Seite 191-7. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17136045

[37] Lahl, K.; Loddenkemper, C.; Drouin, C.; Freyer, J.; Arnason, J.; Eberl, G.; Hamann, A.; Wagner, H.; Huehn, J. und Sparwasser, T. (2007): Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease, J Exp Med, (Band 204), No. 1, Seite 57-63. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17200412

[38] Wan, Y. Y. und Flavell, R. A. (2005): Identifying Foxp3-expressing suppressor T cells with a bicistronic reporter, Proc Natl Acad Sci U S A, (Band 102), No. 14, Seite 5126-31. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15795373

[39] Sakaguchi, S.; Hori, S.; Fukui, Y.; Sasazuki, T.; Sakaguchi, N. und Takahashi, T. (2003): Thymic generation and selection of CD25+CD4+ regulatory T cells: implications of their broad repertoire and high self-reactivity for the maintenance of immunological self-tolerance, Novartis Found Symp, (Band 252), Seite 6-16; discussion 16-23, 106-14. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14609209

[40] Ribot, J.; Enault, G.; Pilipenko, S.; Huchenq, A.; Calise, M.; Hudrisier, D.; Romagnoli, P. und van Meerwijk, J. P. (2007): Shaping of the autoreactive regulatory T cell repertoire by thymic cortical positive selection, J Immunol, (Band 179), No. 10, Seite 6741-8. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17982064

[41] Maggi, E.; Cosmi, L.; Liotta, F.; Romagnani, P.; Romagnani, S. und Annunziato, F. (2005): Thymic regulatory T cells, Autoimmun Rev, (Band 4), No. 8, Seite 579-86. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16214099

[42] Taams, L. S. und Akbar, A. N. (2005): Peripheral generation and function of CD4+CD25+ regulatory T cells, Curr Top Microbiol Immunol, (Band 293), Seite 115-31. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15981478

[43] Weber, S. E.; Harbertson, J.; Godebu, E.; Mros, G. A.; Padrick, R. C.; Carson, B. D.; Ziegler, S. F. und Bradley, L. M. (2006): Adaptive islet-specific regulatory CD4 T cells control autoimmune diabetes and mediate the disappearance of pathogenic Th1 cells in vivo, J Immunol, (Band 176), No. 8, Seite 4730-9. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16585566

[44] Thornton, A. M. und Shevach, E. M. (1998): CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production, J Exp Med, (Band 188), No. 2, Seite 287-96.

[45] Takahashi, T.; Kuniyasu, Y.; Toda, M.; Sakaguchi, N.; Itoh, M.; Iwata, M.; Shimizu, J. und Sakaguchi, S. (1998): Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state, Int Immunol, (Band 10), No. 12, Seite 1969-80..

[46] Thornton, A. M. und Shevach, E. M. (2000): Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific, J Immunol, (Band 164), No. 1, Seite 183-90.

[47] Stassen, M., S. Fondel, T. Bopp, C. Richter, C. Müller, J. Kubach, C. Becker, J. Knop, A.H. Enk, S. Schmitt, E. Schmitt, H. Jonuleit (2004): Human CD25+ regulatory T cells: two subsets defined by the integrins a4b7 or a4b1 confer distinct suppressive properties upon CD4+ T helper cells, Eur J Immunol, (Band 34), No. 5, Seite 1303-1311.

[48] Vieira, P. L.; Heystek, H. C.; Wormmeester, J.; Wierenga, E. A. und Kapsenberg, M. L. (2003): Glatiramer acetate (copolymer-1, copaxone) promotes Th2 cell development and increased IL-10 production through modulation of dendritic cells, J Immunol, (Band 170), No. 9, Seite 4483-8. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12707324

[49] Bienvenu, B.; Martin, B.; Auffray, C.; Cordier, C.; Becourt, C. und Lucas, B. (2005): Peripheral CD8+CD25+ T lymphocytes from MHC class II-deficient mice exhibit regulatory activity, J Immunol, (Band 175), No. 1, Seite 246-53. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15972655

[50] Janeway, C. A.; Travers, P.; Walport, M. (2005): Immunobiology (Band 6th.), Harbor, J..

[51] Koonpaew, S.; Shen, S.; Flowers, L. und Zhang, W. (2006): LAT-mediated signaling in CD4+CD25+ regulatory T cell development, J Exp Med, (Band 203), No. 1, Seite 119-29. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16380508

[52] Mantel, P. Y.; Ouaked, N.; Ruckert, B.; Karagiannidis, C.; Welz, R.; Blaser, K. und Schmidt-Weber, C. B. (2006): Molecular Mechanisms Underlying FOXP3 Induction in Human T Cells, J Immunol, (Band 176), No. 6, Seite 3593-602. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16517728

[53] Bopp, T.; Palmetshofer, A.; Serfling, E.; Heib, V.; Schmitt, S.; Richter, C.; Klein, M.; Schild, H.; Schmitt, E. und Stassen, M. (2005): NFATc2 and NFATc3 transcription factors play a crucial role in suppression of CD4+ T lymphocytes by CD4+ CD25+ regulatory T cells, J Exp Med, (Band 201), No. 2, Seite 181-7. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15657288

[54] Liang, S.; Alard, P.; Zhao, Y.; Parnell, S.; Clark, S. L. und Kosiewicz, M. M. (2005): Conversion of CD4+ CD25- cells into CD4+ CD25+ regulatory T cells in vivo requires B7 costimulation, but not the thymus, J Exp Med, (Band 201), No. 1, Seite 127-37. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15630140

[55] Tai, X.; Cowan, M.; Feigenbaum, L. und Singer, A. (2005): CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2, Nat Immunol, (Band 6), No. 2, Seite 152-62. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15640801

[56] Gavin, M. A.; Clarke, S. R.; Negrou, E.; Gallegos, A. und Rudensky, A. (2002): Homeostasis and anergy of CD4+CD25+ suppressor T cells in vivo, Nat Immunol, (Band 3), No. 1, Seite 33-41..

[57] Polanczyk, M. J.; Hopke, C.; Vandenbark, A. A. und Offner, H. (2006): Estrogen-mediated immunomodulation involves reduced activation of effector T cells, potentiation of Treg cells, and enhanced expression of the PD-1 costimulatory pathway, J Neurosci Res, (Band 84), No. 2, Seite 370-8. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16676326

[58] Zorn, E.; Nelson, E. A.; Mohseni, M.; Porcheray, F.; Kim, H.; Litsa, D.; Bellucci, R.; Raderschall, E.; Canning, C.; Soiffer, R. J.; Frank, D. A. und Ritz, J. (2006): IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT dependent mechanism and induces the expansion of these cells in vivo, Blood, (Band 108), No. 5, Seite 1571-1579. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16645171

[59] Zheng, S. G.; Wang, J.; Wang, P.; Gray, J. D. und Horwitz, D. A. (2007): IL-2 is essential for TGF-beta to convert naive CD4+CD25- cells to CD25+Foxp3+ regulatory T cells and for expansion of these cells, J Immunol, (Band 178), No. 4, Seite 2018-27. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17277105

[60] Bayer, A. L.; Yu, A. und Malek, T. R. (2007): Function of the IL-2R for thymic and peripheral CD4+CD25+ Foxp3+ T regulatory cells, J Immunol, (Band 178), No. 7, Seite 4062-71. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17371960

[61] Fontenot, J. D.; Rasmussen, J. P.; Gavin, M. A. und Rudensky, A. Y. (2005): A function for interleukin 2 in Foxp3-expressing regulatory T cells, Nat Immunol, (Band 6), No. 11, Seite 1142-51. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16227984

[62] D'Cruz, L. M. und Klein, L. (2005): Development and function of agonist-induced CD25+Foxp3+ regulatory T cells in the absence of interleukin 2 signaling, Nat Immunol, (Band 6), No. 11, Seite 1152-9. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16227983

[63] Burchill, M. A.; Yang, J.; Vogtenhuber, C.; Blazar, B. R. und Farrar, M. A. (2007): IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells, J Immunol, (Band 178), No. 1, Seite 280-90. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17182565

[64] Kretschmer, K.; Apostolou, I.; Hawiger, D.; Khazaie, K.; Nussenzweig, M. C. und von Boehmer, H. (2005): Inducing and expanding regulatory T cell populations by foreign antigen, Nat Immunol, (Band 12), Seite 1219-27. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16244650

[65] Selvaraj, R. K. und Geiger, T. L. (2007): A kinetic and dynamic analysis of Foxp3 induced in T cells by TGF-beta, J Immunol, (Band 179), No. 2, Seite 11 p following 1390. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17695668

[66] Cobbold, S. P.; Castejon, R.; Adams, E.; Zelenika, D.; Graca, L.; Humm, S. und Waldmann, H. (2004): Induction of foxP3+ regulatory T cells in the periphery of T cell receptor transgenic mice tolerized to transplants, J Immunol, (Band 172), No. 10, Seite 6003-10. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15128783

[67] Park, H. B.; Paik, D. J.; Jang, E.; Hong, S. und Youn, J. (2004): Acquisition of anergic and suppressive activities in transforming growth factor-beta-costimulated CD4+CD25- T cells, Int Immunol, (Band 16), No. 8, Seite 1203-13. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15237111

[68] Schramm, C.; Huber, S.; Protschka, M.; Czochra, P.; Burg, J.; Schmitt, E.; Lohse, A. W.; Galle, P. R. und Blessing, M. (2004): TGFbeta regulates the CD4+CD25+ T-cell pool and the expression of Foxp3 in vivo, Int Immunol, (Band 16), No. 9, Seite 1241-9. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15249539

[69] Zhang, L.; Yi, H.; Xia, X. P. und Zhao, Y. (2006): Transforming growth factor-beta: an important role in CD4+CD25+ regulatory T cells and immune tolerance, Autoimmunity, (Band 39), No. 4, Seite 269-76. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16891215

[70] Rubtsov, Y. P. und Rudensky, A. Y. (2007): TGFbeta signalling in control of T-cell-mediated self-reactivity, Nat Rev Immunol, (Band 7), No. 6, Seite 443-53. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17525753

[71] Tone, Y.; Furuuchi, K.; Kojima, Y.; Tykocinski, M. L.; Greene, M. I. und Tone, M. (2008): Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer, Nat Immunol, (Band 9), No. 2, Seite 194-202. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18157133

[72] Sun, C. M.; Hall, J. A.; Blank, R. B.; Bouladoux, N.; Oukka, M.; Mora, J. R. und Belkaid, Y. (2007): Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid, J Exp Med. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17620362

[73] Coombes, J. L.; Siddiqui, K. R.; Arancibia-Carcamo, C. V.; Hall, J.; Sun, C. M.; Belkaid, Y. und Powrie, F. (2007): A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism, J Exp Med, (Band 204), No. 8, Seite 1757-64. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17620361

[74] Benson, M. J.; Pino-Lagos, K.; Rosemblatt, M. und Noelle, R. J. (2007): All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation, J Exp Med, (Band 204), No. 8, Seite 1765-74. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17620363

[75] Mucida, D.; Park, Y.; Kim, G.; Turovskaya, O.; Scott, I.; Kronenberg, M. und Cheroutre, H. (2007): Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid, Science, (Band 317), No. 5835, Seite 256-60. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17569825

[76] Gandhi, R.; Anderson, D. E. und Weiner, H. L. (2007): Cutting Edge: Immature human dendritic cells express latency-associated peptide and inhibit T cell activation in a TGF-beta-dependent manner, J Immunol, (Band 178), No. 7, Seite 4017-21. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17371954

[77] Kang, S. G.; Lim, H. W.; Andrisani, O. M.; Broxmeyer, H. E. und Kim, C. H. (2007): Vitamin A metabolites induce gut-homing FoxP3+ regulatory T cells, J Immunol, (Band 179), No. 6, Seite 3724-33. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17785809

[78] Liu, H.; Komai-Koma, M.; Xu, D. und Liew, F. Y. (2006): Toll-like receptor 2 signaling modulates the functions of CD4+ CD25+ regulatory T cells, Proc Natl Acad Sci U S A, (Band 103), No. 18, Seite 7048-53. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16632602

[79] Sutmuller, R. P.; den Brok, M. H.; Kramer, M.; Bennink, E. J.; Toonen, L. W.; Kullberg, B. J.; Joosten, L. A.; Akira, S.; Netea, M. G. und Adema, G. J. (2006): Toll-like receptor 2 controls expansion and function of regulatory T cells, J Clin Invest, (Band 116), No. 2, Seite 485-94. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16424940

[80] Nishikawa, H.; Kato, T.; Tawara, I.; Saito, K.; Ikeda, H.; Kuribayashi, K.; Allen, P. M.; Schreiber, R. D.; Sakaguchi, S.; Old, L. J. und Shiku, H. (2005): Definition of target antigens for naturally occurring CD4(+) CD25(+) regulatory T cells, J Exp Med, (Band 201), No. 5, Seite 681-6. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15753203

[81] Kabelitz, D.; Wesch, D. und Oberg, H. H. (2006): Regulation of regulatory T cells: role of dendritic cells and toll-like receptors, Crit Rev Immunol, (Band 26), No. 4, Seite 291-306. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17073555

[82] Sanchez-Guajardo, V.; Tanchot, C.; O'Malley, J. T.; Kaplan, M. H.; Garcia, S. und Freitas, A. A. (2007): Agonist-driven development of CD4+CD25+Foxp3+ regulatory T cells requires a second signal mediated by Stat6, J Immunol, (Band 178), No. 12, Seite 7550-6. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17548589

[83] Bettelli, E.; Oukka, M. und Kuchroo, V. K. (2007): T(H)-17 cells in the circle of immunity and autoimmunity, Nat Immunol, (Band 8), No. 4, Seite 345-50. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17375096

[84] Cobb, B. S.; Hertweck, A.; Smith, J.; O'Connor, E.; Graf, D.; Cook, T.; Smale, S. T.; Sakaguchi, S.; Livesey, F. J.; Fisher, A. G. und Merkenschlager, M. (2006): A role for Dicer in immune regulation, J Exp Med, (Band 203), No. 11, Seite 2519-27. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17060477

[85] Marson, A.; Kretschmer, K.; Frampton, G. M.; Jacobsen, E. S.; Polansky, J. K.; MacIsaac, K. D.; Levine, S. S.; Fraenkel, E.; von Boehmer, H. und Young, R. A. (2007): Foxp3 occupancy and regulation of key target genes during T-cell stimulation, Nature, (Band 445), No. 7130, Seite 931-5. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17237765

[86] Zheng, Y.; Josefowicz, S. Z.; Kas, A.; Chu, T. T.; Gavin, M. A. und Rudensky, A. Y. (2007): Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells, Nature, (Band 445), No. 7130, Seite 936-40. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17237761

[87] Schubert, L. A.; Jeffery, E.; Zhang, Y.; Ramsdell, F. und Ziegler, S. F. (2001): Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation, J Biol Chem, (Band 276), No. 40, Seite 37672-9. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11483607

[88] Bettelli, E.; Dastrange, M. und Oukka, M. (2005): Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells, Proc Natl Acad Sci U S A, (Band 102), No. 14, Seite 5138-43. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15790681

[89] Wu, Y.; Borde, M.; Heissmeyer, V.; Feuerer, M.; Lapan, A. D.; Stroud, J. C.; Bates, D. L.; Guo, L.; Han, A.; Ziegler, S. F.; Mathis, D.; Benoist, C.; Chen, L. und Rao, A. (2006): FOXP3 controls regulatory T cell function through cooperation with NFAT, Cell, (Band 126), No. 2, Seite 375-87. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16873067

[90] Ono, M.; Yaguchi, H.; Ohkura, N.; Kitabayashi, I.; Nagamura, Y.; Nomura, T.; Miyachi, Y.; Tsukada, T. und Sakaguchi, S. (2007): Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1, Nature, (Band 446), No. 7136, Seite 685-9. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17377532

[91] Chen, C.; Rowell, E. A.; Thomas, R. M.; Hancock, W. W. und Wells, A. D. (2006): Transcriptional regulation by Foxp3 is associated with direct promoter occupancy and modulation of histone acetylation, J Biol Chem, (Band 281), No. 48, Seite 36828-34. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17028180

[92] Li, B.; Samanta, A.; Song, X.; Iacono, K. T.; Bembas, K.; Tao, R.; Basu, S.; Riley, J. L.; Hancock, W. W.; Shen, Y.; Saouaf, S. J. und Greene, M. I. (2007): FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression, Proc Natl Acad Sci U S A, (Band 104), No. 11, Seite 4571-6. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17360565

[93] Knippers, R (2003): Molekulare Gentik (Band 8. Auflage).

[94] Reik, W.; Kelsey, G. und Walter, J. (1999): Dissecting de novo methylation, Nat Genet, (Band 23), No. 4, Seite 380-2. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10581015

[95] Choi, Y.; Gehring, M.; Johnson, L.; Hannon, M.; Harada, J. J.; Goldberg, R. B.; Jacobsen, S. E. und Fischer, R. L. (2002): DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in arabidopsis, Cell, (Band 110), No. 1, Seite 33-42. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12150995

[96] Barreto, G.; Schafer, A.; Marhold, J.; Stach, D.; Swaminathan, S. K.; Handa, V.; Doderlein, G.; Maltry, N.; Wu, W.; Lyko, F. und Niehrs, C. (2007): Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation, Nature, (Band 445), No. 7128, Seite 671-5. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17268471

[97] Agarwal, S.; Viola, J. P. und Rao, A. (1999): Chromatin-based regulatory mechanisms governing cytokine gene transcription, J Allergy Clin Immunol, (Band 103), No. 6, Seite 990-9. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10359875

[98] Lee, G. R.; Spilianakis, C. G. und Flavell, R. A. (2005): Hypersensitive site 7 of the TH2 locus control region is essential for expressing TH2 cytokine genes and for long-range intrachromosomal interactions, Nat Immunol, (Band 6), No. 1, Seite 42-8. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15608641

[99] Tykocinski, L. O.; Hajkova, P.; Chang, H. D.; Stamm, T.; Sozeri, O.; Lohning, M.; Hu-Li, J.; Niesner, U.; Kreher, S.; Friedrich, B.; Pannetier, C.; Grutz, G.; Walter, J.; Paul, W. E. und Radbruch, A. (2005): A critical control element for interleukin-4 memory expression in T helper lymphocytes, J Biol Chem, (Band 280), No. 31, Seite 28177-85. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15941711

[100] Shin, H. J.; Park, H. Y.; Jeong, S. J.; Park, H. W.; Kim, Y. K.; Cho, S. H.; Kim, Y. Y.; Cho, M. L.; Kim, H. Y.; Min, K. U. und Lee, C. W. (2005): STAT4 expression in human T cells is regulated by DNA methylation but not by promoter polymorphism, J Immunol, (Band 175), No. 11, Seite 7143-50. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16301617

[101] Murayama, A.; Sakura, K.; Nakama, M.; Yasuzawa-Tanaka, K.; Fujita, E.; Tateishi, Y.; Wang, Y.; Ushijima, T.; Baba, T.; Shibuya, K.; Shibuya, A.; Kawabe, Y. und Yanagisawa, J. (2006): A specific CpG site demethylation in the human interleukin 2 gene promoter is an epigenetic memory, Embo J, (Band 25), No. 5, Seite 1081-92. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16498406

[102] Floess, S.; Freyer, J.; Siewert, C.; Baron, U.; Olek, S.; Polansky, J.; Schlawe, K.; Chang, H. D.; Bopp, T.; Schmitt, E.; Klein-Hessling, S.; Serfling, E.; Hamann, A. und Huehn, J. (2007): Epigenetic control of the foxp3 locus in regulatory T cells, PLoS Biol, (Band 5), No. 2, Seite e38. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17298177

[103] Allis, C. D.; Berger, S. L.; Cote, J.; Dent, S.; Jenuwien, T.; Kouzarides, T.; Pillus, L.; Reinberg, D.; Shi, Y.; Shiekhattar, R.; Shilatifard, A.; Workman, J. und Zhang, Y. (2007): New nomenclature for chromatin-modifying enzymes, Cell, (Band 131), No. 4, Seite 633-6. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18022353

[104] Kouzarides, T. (2007): SnapShot: Histone-Modifying Enzymes, Cell, (Band 131), No. 4, Seite 822. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18022374

[105] Chang, S. und Aune, T. M. (2005): Histone hyperacetylated domains across the Ifng gene region in natural killer cells and T cells, Proc Natl Acad Sci U S A, (Band 102), No. 47, Seite 17095-100. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16286661

[106] Lucas, M.; Zhang, X.; Prasanna, V. und Mosser, D. M. (2005): ERK activation following macrophage FcgammaR ligation leads to chromatin modifications at the IL-10 locus, J Immunol, (Band 175), No. 1, Seite 469-77. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15972681

[107] Su, L.; Creusot, R. J.; Gallo, E. M.; Chan, S. M.; Utz, P. J.; Fathman, C. G. und Ermann, J. (2004): Murine CD4+CD25+ regulatory T cells fail to undergo chromatin remodeling across the proximal promoter region of the IL-2 gene, J Immunol, (Band 173), No. 8, Seite 4994-5001. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15470042

[108] D'Alessio, A. C. und Szyf, M. (2006): Epigenetic tete-a-tete: the bilateral relationship between chromatin modifications and DNA methylation, Biochem Cell Biol, (Band 84), No. 4, Seite 463-76. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16936820

[109] Zhao, S.; Malek, J.; Mahairas, G.; Fu, L.; Nierman, W.; Venter, J. C. und Adams, M. D. (2000): Human BAC ends quality assessment and sequence analyses, Genomics, (Band 63), No. 3, Seite 321-32. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10704280

[110] Osoegawa, K.; Tateno, M.; Woon, P. Y.; Frengen, E.; Mammoser, A. G.; Catanese, J. J.; Hayashizaki, Y. und de Jong, P. J. (2000): Bacterial artificial chromosome libraries for mouse sequencing and functional analysis, Genome Res, (Band 10), No. 1, Seite 116-28. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10645956

[111] McPherson, J. D.; Marra, M.; Hillier, L.; Waterston, R. H.; Chinwalla, A.; Wallis, J.; Sekhon, M.; Wylie, K.; Mardis, E. R.; Wilson, R. K.; Fulton, R.; Kucaba, T. A.; Wagner-McPherson, C.; Barbazuk, W. B.; Gregory, S. G.; Humphray, S. J.; French, L.; Evans, R. S.; Bethel, G.; Whittaker, A.; Holden, J. L.; McCann, O. T.; Dunham, A.; Soderlund, C.; Scott, C. E.; Bentley, D. R.; Schuler, G.; Chen, H. C.; Jang, W.; Green, E. D.; Idol, J. R.; Maduro, V. V.; Montgomery, K. T.; Lee, E.; Miller, A.; Emerling, S.; Kucherlapati; Gibbs, R.; Scherer, S.; Gorrell, J. H.; Sodergren, E.; Clerc-Blankenburg, K.; Tabor, P.; Naylor, S.; Garcia, D.; de Jong, P. J.; Catanese, J. J.; Nowak, N.; Osoegawa, K.; Qin, S.; Rowen, L.; Madan, A.; Dors, M.; Hood, L.; Trask, B.; Friedman, C.; Massa, H.; Cheung, V. G.; Kirsch, I. R.; Reid, T.; Yonescu, R.; Weissenbach, J.; Bruls, T.; Heilig, R.; Branscomb, E.; Olsen, A.; Doggett, N.; Cheng, J. F.; Hawkins, T.; Myers, R. M.; Shang, J.; Ramirez, L.; Schmutz, J.; Velasquez, O.; Dixon, K.; Stone, N. E.; Cox, D. R.; Haussler, D.; Kent, W. J.; Furey, T.; Rogic, S.; Kennedy, S.; Jones, S.; Rosenthal, A.; Wen, G.; Schilhabel, M.; Gloeckner, G.; Nyakatura, G.; Siebert, R.; Schlegelberger, B.; Korenberg, J.; Chen, X. N.; Fujiyama, A.; Hattori, M.; Toyoda, A.; Yada, T.; Park, H. S.; Sakaki, Y.; Shimizu, N.; Asakawa, S.; Kawasaki, K.; Sasaki, T.; Shintani, A.; Shimizu, A.; Shibuya, K.; Kudoh, J.; Minoshima, S.; Ramser, J.; Seranski, P.; Hoff, C.; Poustka, A.; Reinhardt, R. und Lehrach, H. (2001): A physical map of the human genome, Nature, (Band 409), No. 6822, Seite 934-41. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11237014

[112] Sparwasser, T.; Gong, S.; Li, J. Y. und Eberl, G. (2004): General method for the modification of different BAC types and the rapid generation of BAC transgenic mice, Genesis, (Band 38), No. 1, Seite 39-50. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14755803

[113] Muyrers, J. P.; Zhang, Y.; Testa, G. und Stewart, A. F. (1999): Rapid modification of bacterial artificial chromosomes by ET-recombination, Nucleic Acids Res, (Band 27), No. 6, Seite 1555-7. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10037821

[114] Zhang, Y.; Muyrers, J. P.; Testa, G. und Stewart, A. F. (2000): DNA cloning by homologous recombination in Escherichia coli, Nat Biotechnol, (Band 18), No. 12, Seite 1314-7. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11101815

[115] Capecchi, M. R. (1989): Altering the genome by homologous recombination, Science, (Band 244), No. 4910, Seite 1288-92. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2660260

[116] Capecchi, M. R. (1989): The new mouse genetics: altering the genome by gene targeting, Trends Genet, (Band 5), No. 3, Seite 70-6. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2660363

[117] Copeland, N. G.; Jenkins, N. A. und Court, D. L. (2001): Recombineering: a powerful new tool for mouse functional genomics, Nat Rev Genet, (Band 2), No. 10, Seite 769-79. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11584293

[118] te Riele, H.; Maandag, E. R. und Berns, A. (1992): Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs, Proc Natl Acad Sci U S A, (Band 89), No. 11, Seite 5128-32. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1594621

[119] Lewandoski, M. (2001): Conditional control of gene expression in the mouse, Nat Rev Genet, (Band 2), No. 10, Seite 743-55. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11584291

[120] O'Gorman, S.; Fox, D. T. und Wahl, G. M. (1991): Recombinase-mediated gene activation and site-specific integration in mammalian cells, Science, (Band 251), No. 4999, Seite 1351-5. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1900642

[121] Roden, L. C.; Gottgens, B. und Mutasa-Gottgens, E. S. (2005): Protocol: precision engineering of plant gene loci by homologous recombination cloning in Escherichia coli, Plant Methods, (Band 1), No. 1, Seite 6. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16270944

[122] Ralph, P. (1973): Retention of lymphocyte characteristics by myelomas and theta + -lymphomas: sensitivity to cortisol and phytohemagglutinin, J Immunol, (Band 110), No. 6, Seite 1470-5. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=4541304

[123] Shimonkevitz, R.; Colon, S.; Kappler, J. W.; Marrack, P. und Grey, H. M. (1984): Antigen recognition by H-2-restricted T cells. II. A tryptic ovalbumin peptide that substitutes for processed antigen, J Immunol, (Band 133), No. 4, Seite 2067-74. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=6332146

[124] Kubo, R. T.; Born, W.; Kappler, J. W.; Marrack, P. und Pigeon, M. (1989): Characterization of a monoclonal antibody which detects all murine alpha beta T cell receptors, J Immunol, (Band 142), No. 8, Seite 2736-42. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2467936

[125] Sanger, F.; Nicklen, S. und Coulson, A. R. (1977): DNA sequencing with chain-terminating inhibitors, Proc Natl Acad Sci U S A, (Band 74), No. 12, Seite 5463-7. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=271968

[126] Birnboim, H. C. und Doly, J. (1979): A rapid alkaline extraction procedure for screening recombinant plasmid DNA, Nucleic Acids Res, (Band 7), No. 6, Seite 1513-23. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=388356

[127] Wallace, D. M. (1987): Precipitation of nucleic acids, Methods Enzymol, (Band 152), Seite 41-8. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2443803

[128] Mullis, K. B. und Faloona, F. A. (1987): Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction, Methods Enzymol, (Band 155), Seite 335-50. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=3431465

[129] Hanahan, D. (1983): Studies on transformation of Escherichia coli with plasmids, J Mol Biol, (Band 166), No. 4, Seite 557-80. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=6345791

[130] Southern, E. M. (1975): Detection of specific sequences among DNA fragments separated by gel electrophoresis, J Mol Biol, (Band 98), No. 3, Seite 503-17. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1195397

[131] Brunkow, M. E.; Jeffery, E. W.; Hjerrild, K. A.; Paeper, B.; Clark, L. B.; Yasayko, S. A.; Wilkinson, J. E.; Galas, D.; Ziegler, S. F. und Ramsdell, F. (2001): Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse, Nat Genet, (Band 27), No. 1, Seite 68-73. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11138001

[132] Medeiros, R. B.; Burbach, B. J.; Mueller, K. L.; Srivastava, R.; Moon, J. J.; Highfill, S.; Peterson, E. J. und Shimizu, Y. (2007): Regulation of NF-kappaB activation in T cells via association of the adapter proteins ADAP and CARMA1, Science, (Band 316), No. 5825, Seite 754-8. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17478723

[133] Ruefli-Brasse, A. A.; French, D. M. und Dixit, V. M. (2003): Regulation of NF-kappaB-dependent lymphocyte activation and development by paracaspase, Science, (Band 302), No. 5650, Seite 1581-4. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14576442

[134] Serfling, E.; Klein-Hessling, S.; Palmetshofer, A.; Bopp, T.; Stassen, M. und Schmitt, E. (2006): NFAT transcription factors in control of peripheral T cell tolerance, Eur J Immunol, (Band 36), No. 11, Seite 2837-43. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17039563

[135] Hu, H.; Djuretic, I.; Sundrud, M. S. und Rao, A. (2007): Transcriptional partners in regulatory T cells: Foxp3, Runx and NFAT, Trends Immunol, (Band 28), No. 8, Seite 329-32. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17618833

[136] Ho, L. und Crabtree, G. (2006): A Foxy tango with NFAT, Nat Immunol, (Band 7), No. 9, Seite 906-8. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16924253

[137] Gierl, M. S.; Karoulias, N.; Wende, H.; Strehle, M. und Birchmeier, C. (2006): The zinc-finger factor Insm1 (IA-1) is essential for the development of pancreatic beta cells and intestinal endocrine cells, Genes Dev, (Band 20), No. 17, Seite 2465-78. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16951258

[138] Lee, E. C.; Yu, D.; Martinez de Velasco, J.; Tessarollo, L.; Swing, D. A.; Court, D. L.; Jenkins, N. A. und Copeland, N. G. (2001): A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA, Genomics, (Band 73), No. 1, Seite 56-65. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11352566

[139] Winterhager, E.; Pielensticker, N.; Freyer, J.; Ghanem, A.; Schrickel, J. W.; Kim, J. S.; Behr, R.; Grummer, R.; Maass, K.; Urschel, S.; Lewalter, T.; Tiemann, K.; Simoni, M. und Willecke, K. (2007): Replacement of connexin43 by connexin26 in transgenic mice leads to dysfunctional reproductive organs and slowed ventricular conduction in the heart, BMC Dev Biol, (Band 7), Seite 26. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17408477

[140] Lin, W.; Haribhai, D.; Relland, L. M.; Truong, N.; Carlson, M. R.; Williams, C. B. und Chatila, T. A. (2007): Regulatory T cell development in the absence of functional Foxp3, Nat Immunol, (Band 8), No. 4, Seite 359-68. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17273171

[141] Liu, Y.; Amarnath, S. und Chen, W. (2006): Requirement of CD28 signaling in homeostasis/survival of TGF-beta converted CD4+CD25+ Tregs from thymic CD4+CD25- single positive T cells, Transplantation, (Band 82), No. 7, Seite 953-64. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17038912

[142] Koonpaew, S.; Shen, S.; Flowers, L. und Zhang, W. (2005): LAT-mediated signaling in CD4+CD25+ regulatory T cell development, J Exp Med. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16380508

[143] Chen, W.; Jin, W.; Hardegen, N.; Lei, K. J.; Li, L.; Marinos, N.; McGrady, G. und Wahl, S. M. (2003): Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3, J Exp Med, (Band 198), No. 12, Seite 1875-86. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14676299

[144] Marie, J. C.; Letterio, J. J.; Gavin, M. und Rudensky, A. Y. (2005): TGF-beta1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells, J Exp Med, (Band 201), No. 7, Seite 1061-7. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15809351

[145] Polanczyk, M. J.; Carson, B. D.; Subramanian, S.; Afentoulis, M.; Vandenbark, A. A.; Ziegler, S. F. und Offner, H. (2004): Cutting edge: estrogen drives expansion of the CD4+CD25+ regulatory T cell compartment, J Immunol, (Band 173), No. 4, Seite 2227-30. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15294932

[146] Davidson, T. S.; DiPaolo, R. J.; Andersson, J. und Shevach, E. M. (2007): Cutting Edge: IL-2 is essential for TGF-beta-mediated induction of Foxp3+ T regulatory cells, J Immunol, (Band 178), No. 7, Seite 4022-6. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17371955

[147] Hori, S.; Nomura, T. und Sakaguchi, S. (2003): Control of regulatory T cell development by the transcription factor Foxp3, Science, (Band 299), No. 5609, Seite 1057-61. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12522256

[148] Zwar, T. D.; van Driel, I. R. und Gleeson, P. A. (2006): Guarding the immune system: suppression of autoimmunity by CD4+CD25+ immunoregulatory T cells, Immunol Cell Biol, (Band 84), No. 6, Seite 487-501. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16956386

[149] Jonsson, H. und Peng, S. L. (2005): Forkhead transcription factors in immunology, Cell Mol Life Sci, (Band 62), No. 4, Seite 397-409. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15719167

[150] Lewin, B (2000): Genes VII (Band 7th).

[151] Pyzik, M. und Piccirillo, C. A. (2007): TGF-beta1 modulates Foxp3 expression and regulatory activity in distinct CD4+ T cell subsets, J Leukoc Biol, (Band 82), No. 2, Seite 335-46. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17475784

[152] Ehrlich, K. C.; Cary, J. W. und Ehrlich, M. (1992): A broad bean cDNA clone encoding a DNA-binding protein resembling mammalian CREB in its sequence specificity and DNA methylation sensitivity, Gene, (Band 117), No. 2, Seite 169-78. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1386331

[153] Perkins, A. S.; Fishel, R.; Jenkins, N. A. und Copeland, N. G. (1991): Evi-1, a murine zinc finger proto-oncogene, encodes a sequence-specific DNA-binding protein, Mol Cell Biol, (Band 11), No. 5, Seite 2665-74. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2017172

[154] Kurokawa, M.; Mitani, K.; Irie, K.; Matsuyama, T.; Takahashi, T.; Chiba, S.; Yazaki, Y.; Matsumoto, K. und Hirai, H. (1998): The oncoprotein Evi-1 represses TGF-beta signalling by inhibiting Smad3, Nature, (Band 394), No. 6688, Seite 92-6. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9665135

[155] Kim, H. P. und Leonard, W. J. (2007): CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation, J Exp Med, (Band 204), No. 7, Seite 1543-51. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17591856

© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 4.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am: