[Seite 79↓]

8 Literaturverzeichnis

[1] Poiesz, B. J.; Ruscetti, F. W.; Gazdar, A. F.; Bunn, P. A.; Minna, J. D. und Gallo, R. C. (1980): Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma, Proc Natl Acad Sci U S A, (Band 77), No. 12, Seite 7415-9..

[2] Kornfeld, H.; Riedel, N.; Viglianti, G. A.; Hirsch, V. und Mullins, J. I. (1987): Cloning of HTLV-4 and its relation to simian and human immunodeficiency viruses, Nature, (Band 326), No. 6113, Seite 610-3..

[3] Fung, H. B.; Kirschenbaum, H. L. und Hameed, R. (2000): Amprenavir: a new human immunodeficiency virus type 1 protease inhibitor, Clin Ther, (Band 22), No. 5, Seite 549-72..

[4] Yu, L.; Bridgers, A.; Polli, J.; Vickers, A.; Long, S.; Roy, A.; Winnike, R. und Coffin, M. (1999): Vitamin E-TPGS increases absorption flux of an HIV protease inhibitor by enhancing its solubility and permeability, Pharm Res, (Band 16), No. 12, Seite 1812-7..

[5] Miller, V. (2001): International perspectives on antiretroviral resistance. Resistance to protease inhibitors, J Acquir Immune Defic Syndr, (Band 26), No. Suppl 1, Seite S34-50..

[6] Deeks, S. G. (2001): International perspectives on antiretroviral resistance. Nonnucleoside reverse transcriptase inhibitor resistance, J Acquir Immune Defic Syndr, (Band 26), No. Suppl 1, Seite S25-33..

[7] Loveday, C. (2001): International perspectives on antiretroviral resistance. Nucleoside reverse transcriptase inhibitor resistance, J Acquir Immune Defic Syndr, (Band 26), No. Suppl 1, Seite S10-24..

[8] Mayers, D.; Bethel, J.; Wainberg, M. A.; Weislow, O. und Schnittman, S. (1998): Human immunodeficiency virus proviral DNA from peripheral blood and lymph nodes demonstrates concordant resistance mutations to zidovudine (codon 215) and didanosine (codon 74). Division of AIDS Treatment Research Initiative 003 Study Group, J Infect Dis, (Band 177), No. 6, Seite 1730-3..

[9] McDowell, J. A.; Chittick, G. E.; Ravitch, J. R.; Polk, R. E.; Kerkering, T. M. und Stein, D. S. (1999): Pharmacokinetics of [(14)C]abacavir, a human immunodeficiency virus type 1 (HIV-1) reverse transcriptase inhibitor, administered in a single oral dose to HIV-1-infected adults: a mass balance study, Antimicrob Agents Chemother, (Band 43), No. 12, Seite 2855-61..

[10] Back, D. J.; Ormesher, S.; Tjia, J. F. und Macleod, R. (1992): Metabolism of 2',3'-dideoxyinosine (ddI) in human blood, Br J Clin Pharmacol, (Band 33), No. 3, Seite 319-22..

[11] Balimane, P. V. und Sinko, P. J. (1999): Involvement of multiple transporters in the oral absorption of nucleoside analogues, Adv Drug Deliv Rev, (Band 39), No. 1-3, Seite 183-209..

[12] Li, J. Y.; Boado, R. J. und Pardridge, W. M. (2001): Differential kinetics of transport of 2',3'-dideoxyinosine and adenosine via concentrative Na+ nucleoside transporter CNT2 cloned from rat blood-brain barrier, J Pharmacol Exp Ther, (Band 299), No. 2, Seite 735-40..

[13] Johnson, M. A.; Moore, K. H.; Yuen, G. J.; Bye, A. und Pakes, G. E. (1999): Clinical pharmacokinetics of lamivudine, Clin Pharmacokinet, (Band 36), No. 1, Seite 41-66..

[14] Cretton, E. M.; Zhou, Z.; Kidd, L. B.; McClure, H. M.; Kaul, S.; Hitchcock, M. J. und Sommadossi, J. P. (1993): In vitro and in vivo disposition and metabolism of 3'-deoxy-2',3'-didehydrothymidine, Antimicrob Agents Chemother, (Band 37), No. 9, Seite 1816-25..

[15] Devineni, D. und Gallo, J. M. (1995): Zalcitabine. Clinical pharmacokinetics and efficacy, Clin Pharmacokinet, (Band 28), No. 5, Seite 351-60..

[16] Wang, L. H.; Chittick, G. E. und McDowell, J. A. (1999): Single-dose pharmacokinetics and safety of abacavir (1592U89), zidovudine, and lamivudine administered alone and in combination in adults with human immunodeficiency virus infection, Antimicrob Agents Chemother, (Band 43), No. 7, Seite 1708-15..

[17] Trapnell, C. B.; Klecker, R. W.; Jamis-Dow, C. und Collins, J. M. (1998): Glucuronidation of 3'-azido-3'-deoxythymidine (zidovudine) by human liver microsomes: relevance to clinical pharmacokinetic interactions with atovaquone, fluconazole, methadone, and valproic acid, Antimicrob Agents Chemother, (Band 42), No. 7, Seite 1592-6..


[Seite 80↓]

[18] Barbier, O.; Turgeon, D.; Girard, C.; Green, M. D.; Tephly, T. R.; Hum, D. W. und Belanger, A. (2000): 3'-azido-3'-deoxythimidine (AZT) is glucuronidated by human UDP-glucuronosyltransferase 2B7 (UGT2B7), Drug Metab Dispos, (Band 28), No. 5, Seite 497-502..

[19] Scott, L. J. und Perry, C. M. (2000): Delavirdine: a review of its use in HIV infection, Drugs, (Band 60), No. 6, Seite 1411-44..

[20] Tran, J. Q.; Gerber, J. G. und Kerr, B. M. (2001): Delavirdine: clinical pharmacokinetics and drug interactions, Clin Pharmacokinet, (Band 40), No. 3, Seite 207-26..

[21] Voorman, R. L.; Payne, N. A.; Wienkers, L. C.; Hauer, M. J. und Sanders, P. E. (2001): Interaction of delavirdine with human liver microsomal cytochrome P450: inhibition of CYP2C9, CYP2C19, and CYP2D6, Drug Metab Dispos, (Band 29), No. 1, Seite 41-7..

[22] Störmer, E.; von Moltke, L. L.; Perloff, M. D. und Greenblatt, D. J. (2002): Differential modulation of P-glycoprotein expression and activity by non-nucleoside HIV-1 reverse transcriptase inhibitors in cell culture, Pharm Res, (Band 19), No. 7, Seite 1038-45..

[23] Adkins, J. C. und Noble, S. (1998): Efavirenz, Drugs, (Band 56), No. 6, Seite 1055-64.

[24] Mutlib, A. E.; Chen, H.; Nemeth, G. A.; Markwalder, J. A.; Seitz, S. P.; Gan, L. S. und Christ, D. D. (1999): Identification and characterization of efavirenz metabolites by liquid chromatography/mass spectrometry and high field NMR: species differences in the metabolism of efavirenz, Drug Metab Dispos, (Band 27), No. 11, Seite 1319-33..

[25] Mouly, S.; Lown, K. S.; Kornhauser, D.; Joseph, J. L.; Fiske, W. D.; Benedek, I. H. und Watkins, P. B. (2002): Hepatic but not intestinal CYP3A4 displays dose-dependent induction by efavirenz in humans, Clin Pharmacol Ther, (Band 72), No. 1, Seite 1-9..

[26] Riska, P.; Lamson, M.; MacGregor, T.; Sabo, J.; Hattox, S.; Pav, J. und Keirns, J. (1999): Disposition and biotransformation of the antiretroviral drug nevirapine in humans, Drug Metab Dispos, (Band 27), No. 8, Seite 895-901..

[27] Erickson, D. A.; Mather, G.; Trager, W. F.; Levy, R. H. und Keirns, J. J. (1999): Characterization of the in vitro biotransformation of the HIV-1 reverse transcriptase inhibitor nevirapine by human hepatic cytochromes P-450, Drug Metab Dispos, (Band 27), No. 12, Seite 1488-95..

[28] Perloff, M. D.; von Moltke, L. L.; Fahey, J. M.; Daily, J. P. und Greenblatt, D. J. (2000): Induction of P-glycoprotein expression by HIV protease inhibitors in cell culture, Aids, (Band 14), No. 9, Seite 1287-9..

[29] van der Sandt, I. C.; Vos, C. M.; Nabulsi, L.; Blom-Roosemalen, M. C.; Voorwinden, H. H.; de Boer, A. G. und Breimer, D. D. (2001): Assessment of active transport of HIV protease inhibitors in various cell lines and the in vitro blood--brain barrier, Aids, (Band 15), No. 4, Seite 483-91..

[30] Balani, S. K.; Arison, B. H.; Mathai, L.; Kauffman, L. R.; Miller, R. R.; Stearns, R. A.; Chen, I. W. und Lin, J. H. (1995): Metabolites of L-735,524, a potent HIV-1 protease inhibitor, in human urine, Drug Metab Dispos, (Band 23), No. 2, Seite 266-70..

[31] Chiba, M.; Hensleigh, M. und Lin, J. H. (1997): Hepatic and intestinal metabolism of indinavir, an HIV protease inhibitor, in rat and human microsomes. Major role of CYP3A, Biochem Pharmacol, (Band 53), No. 8, Seite 1187-95.

[32] Koudriakova, T.; Iatsimirskaia, E.; Utkin, I.; Gangl, E.; Vouros, P.; Storozhuk, E.; Orza, D.; Marinina, J. und Gerber, N. (1998): Metabolism of the human immunodeficiency virus protease inhibitors indinavir and ritonavir by human intestinal microsomes and expressed cytochrome P4503A4/3A5: mechanism-based inactivation of cytochrome P4503A by ritonavir, Drug Metab Dispos, (Band 26), No. 6, Seite 552-61.

[33] Lee, C. G.; Gottesman, M. M.; Cardarelli, C. O.; Ramachandra, M.; Jeang, K. T.; Ambudkar, S. V.; Pastan, I. und Dey, S. (1998): HIV-1 protease inhibitors are substrates for the MDR1 multidrug transporter, Biochemistry, (Band 37), No. 11, Seite 3594-601..


[Seite 81↓]

[34] Huisman, M. T.; Smit, J. W.; Crommentuyn, K. M.; Zelcer, N.; Wiltshire, H. R.; Beijnen, J. H. und Schinkel, A. H. (2002): Multidrug resistance protein 2 (MRP2) transports HIV protease inhibitors, and transport can be enhanced by other drugs, Aids, (Band 16), No. 17, Seite 2295-301..

[35] Hurst, M. und Faulds, D. (2000): Lopinavir, Drugs, (Band 60), No. 6, Seite 1371-9; discussion 1380-1..

[36] Perry, C. M. und Benfield, P. (1997): Nelfinavir, Drugs, (Band 54), No. 1, Seite 81-7; discussion 88.

[37] Kim, R. B.; Fromm, M. F.; Wandel, C.; Leake, B.; Wood, A. J.; Roden, D. M. und Wilkinson, G. R. (1998): The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors, J Clin Invest, (Band 101), No. 2, Seite 289-94..

[38] Shiraki, N.; Hamada, A.; Yasuda, K.; Fujii, J.; Arimori, K. und Nakano, M. (2000): Inhibitory effect of human immunodeficiency virus protease inhibitors on multidrug resistance transporter P-glycoproteins, Biol Pharm Bull, (Band 23), No. 12, Seite 1528-31..

[39] Kumar, G. N.; Rodrigues, A. D.; Buko, A. M.; Denissen, J. F. und 96185105 (1996): Cytochrome P450-mediated metabolism of the HIV-1 protease inhibitor ritonavir (ABT-538) in human liver microsomes, J Pharmacol Exp Ther, (Band 277), No. 1, Seite 423-31..

[40] Hsu, A.; Granneman, G. R. und Bertz, R. J. (1998): Ritonavir. Clinical pharmacokinetics and interactions with other anti-HIV agents, Clin Pharmacokinet, (Band 35), No. 4, Seite 275-91..

[41] Fitzsimmons, M. E. und Collins, J. M. (1997): Selective biotransformation of the human immunodeficiency virus protease inhibitor saquinavir by human small-intestinal cytochrome P4503A4: potential contribution to high first-pass metabolism, Drug Metab Dispos, (Band 25), No. 2, Seite 256-66..

[42] Kim, A. E.; Dintaman, J. M.; Waddell, D. S. und Silverman, J. A. (1998): Saquinavir, an HIV protease inhibitor, is transported by P-glycoprotein, J Pharmacol Exp Ther, (Band 286), No. 3, Seite 1439-45.

[43] Huisman, M. T.; Smit, J. W.; Wiltshire, H. R.; Hoetelmans, R. M.; Beijnen, J. H. und Schinkel, A. H. (2001): P-glycoprotein limits oral availability, brain, and fetal penetration of saquinavir even with high doses of ritonavir, Mol Pharmacol, (Band 59), No. 4, Seite 806-13..

[44] Wijnholds, J.; Mol, C. A.; van Deemter, L.; de Haas, M.; Scheffer, G. L.; Baas, F.; Beijnen, J. H.; Scheper, R. J.; Hatse, S.; De Clercq, E.; Balzarini, J. und Borst, P. (2000): Multidrug-resistance protein 5 is a multispecific organic anion transporter able to transport nucleotide analogs, Proc Natl Acad Sci U S A, (Band 97), No. 13, Seite 7476-81..

[45] Merry, C.; Barry, M. G.; Mulcahy, F.; Ryan, M.; Tjia, J. F.; Halifax, K. L.; Breckenridge, A. M. und Back, D. J. (1998): The pharmacokinetics of combination therapy with nelfinavir plus nevirapine, Aids, (Band 12), No. 10, Seite 1163-7.

[46] Fichtenbaum, C. J. und Gerber, J. G. (2002): Interactions Between Antiretroviral Drugs and Drugs Used for the Therapy of the Metabolic Complications Encountered During HIV Infection, Clin Pharmacokinet, (Band 41), No. 14, Seite 1195-211..

[47] Merry, C.; Barry, M. G.; Mulcahy, F.; Ryan, M.; Heavey, J.; Tjia, J. F.; Gibbons, S. E.; Breckenridge, A. M. und Back, D. J. (1997): Saquinavir pharmacokinetics alone and in combination with ritonavir in HIV-infected patients, Aids, (Band 11), No. 4, Seite F29-33.

[48] Paredes, R.; Puig, T.; Arno, A.; Negredo, E.; Balague, M.; Bonjoch, A.; Jou, A.; Tuldra, A.; Tural, C.; Sirera, G.; Veny, A.; Romeu, J.; Ruiz, L. und Clotet, B. (1999): High-dose saquinavir plus ritonavir: long-term efficacy in HIV-positive protease inhibitor-experienced patients and predictors of virologic response, J Acquir Immune Defic Syndr, (Band 22), No. 2, Seite 132-8..

[49] Merry, C.; Barry, M. G.; Mulcahy, F.; Halifax, K. L. und Back, D. J. (1997): Saquinavir pharmacokinetics alone and in combination with nelfinavir in HIV-infected patients, Aids, (Band 11), No. 15, Seite F117-20.


[Seite 82↓]

[50] Eagling, V. A.; Back, D. J. und Barry, M. G. (1997): Differential inhibition of cytochrome P450 isoforms by the protease inhibitors, ritonavir, saquinavir and indinavir, Br J Clin Pharmacol, (Band 44), No. 2, Seite 190-4.

[51] Eagling, V. A.; Tjia, J. F. und Back, D. J. (1998): Differential selectivity of cytochrome P450 inhibitors against probe substrates in human and rat liver microsomes, Br J Clin Pharmacol, (Band 45), No. 2, Seite 107-14.

[52] Drewe, J.; Gutmann, H.; Fricker, G.; Torok, M.; Beglinger, C. und Huwyler, J. (1999): HIV protease inhibitor ritonavir: A more potent inhibitor of P-glycoprotein than the cyclosporine analog SDZ PSC 833, Biochemical Pharmacology, (Band 57), No. 10, Seite 1147-1152.

[53] von Moltke, L. L.; Greenblatt, D. J.; Granda, B. W.; Giancarlo, G. M.; Duan, S. X.; Daily, J. P.; Harmatz, J. S. und Shader, R. I. (2001): Inhibition of human cytochrome P450 isoforms by nonnucleoside reverse transcriptase inhibitors, J Clin Pharmacol, (Band 41), No. 1, Seite 85-91..

[54] Inaba, T.; Fischer, N. E.; Riddick, D. S.; Stewart, D. J. und Hidaka, T. (1997): HIV protease inhibitors, saquinavir, indinavir and ritonavir: inhibition of CYP3A4-mediated metabolism of testosterone and benzoxazinorifamycin, KRM-1648, in human liver microsomes, Toxicol Lett, (Band 93), No. 2-3, Seite 215-9.

[55] Frötschl, R.; Chichmanov, L.; Kleeberg, U.; Hildebrandt, A. G.; Roots, I. und Brockmöller, J. (1998): Prediction of aryl hydrocarbon receptor-mediated enzyme induction of drugs and chemicals by mRNA quantification, Chem Res Toxicol, (Band 11), No. 12, Seite 1447-52..

[56] Vella, S. (1995): Clinical experience with saquinavir, Aids, (Band 9 Suppl 2), Seite S21-S25.

[57] Grub, S.; Bryson, H.; Goggin, T.; Ludin, E. und Jorga, K. (2001): The interaction of saquinavir (soft gelatin capsule) with ketoconazole, erythromycin and rifampicin: comparison of the effect in healthy volunteers and in HIV-infected patients, Eur J Clin Pharmacol, (Band 57), No. 2, Seite 115-21..

[58] Kupferschmidt, H. H.; Fattinger, K. E.; Ha, H. R.; Follath, F. und Krahenbuhl, S. (1998): Grapefruit juice enhances the bioavailability of the HIV protease inhibitor saquinavir in man, Br J Clin Pharmacol, (Band 45), No. 4, Seite 355-9..

[59] Hasler, JA.; Estabrook, R.; Murray, M.; Pikuleva, I.; Waterman, M.; Capdevila, J.; Holla, V.; Helvig, C.; Falck, JR.; Farrell, G.; Kaminsky, LS.; Spivack, SD.; Bioitier, E. und Beaune, P. (1999): Human cytochromes P450, Mol Aspects Med, (Band 20), No. 1-2, Seite 5-12, 13-137..

[60] Alexandrov, K.; Rojas, M.; Kadlubar, F. F.; Lang, N. P. und Bartsch, H. (1996): Evidence of anti-benzo[a]pyrene diolepoxide-DNA adduct formation in human colon mucosa, Carcinogenesis, (Band 17), No. 9, Seite 2081-3..

[61] Vogelstein, B. und Kinzler, K. W. (1993): The multistep nature of cancer, Trends Genet, (Band 9), No. 4, Seite 138-41..

[62] Tassaneeyakul, W.; Birkett, D. J.; Veronese, M. E.; McManus, M. E.; Tukey, R. H.; Quattrochi, L. C.; Gelboin, H. V. und Miners, J. O. (1993): Specificity of substrate and inhibitor probes for human cytochromes P450 1A1 and 1A2, J Pharmacol Exp Ther, (Band 265), No. 1, Seite 401-7..

[63] Ohyama, K.; Nakajima, M.; Nakamura, S.; Shimada, N.; Yamazaki, H. und Yokoi, T. (2000): A significant role of human cytochrome P450 2C8 in amiodarone N-deethylation: an approach to predict the contribution with relative activity factor, Drug Metab Dispos, (Band 28), No. 11, Seite 1303-10..

[64] Niwa, T.; Yabusaki, Y.; Honma, K.; Matsuo, N.; Tatsuta, K.; Ishibashi, F. und Katagiri, M. (1998): Contribution of human hepatic cytochrome P450 isoforms to regioselective hydroxylation of steroid hormones, Xenobiotica, (Band 28), No. 6, Seite 539-47..

[65] Corchero, J.; Pimprale, S.; Kimura, S. und Gonzalez, F. J. (2001): Organization of the CYP1A cluster on human chromosome 15: implications for gene regulation, Pharmacogenetics, (Band 11), No. 1, Seite 1-6..


[Seite 83↓]

[66] Jaiswal, A. K.; Gonzalez, F. J. und Nebert, D. W. (1985): Human dioxin-inducible cytochrome P1-450: complementary DNA and amino acid sequence, Science, (Band 228), No. 4695, Seite 80-3..

[67] Schweikl, H.; Taylor, J. A.; Kitareewan, S.; Linko, P.; Nagorney, D. und Goldstein, J. A. (1993): Expression of CYP1A1 and CYP1A2 genes in human liver, Pharmacogenetics, (Band 3), No. 5, Seite 239-49..

[68] Ding, X. und Kaminsky, L. S. (2002): Human Extrahepatic Cytochromes P450: Function in Xenobiotic Metabolism and Tissue-Selective Chemical Toxicity in the Respiratory and Gastrointestinal Tracts, Annu Rev Pharmacol Toxicol, (Band 6), Seite 6.

[69] Fujii-Kuriyama, Y.; Imataka, H.; Sogawa, K.; Yasumoto, K. und Kikuchi, Y. (1992): Regulation of CYP1A1 expression, Faseb J, (Band 6), No. 2, Seite 706-10..

[70] Kanamura, S. und Watanabe, J. (2000): Cell biology of cytochrome P-450 in the liver, Int Rev Cytol, (Band 198), Seite 109-52..

[71] Denison, M. S.; Fisher, J. M. und Whitlock, J. P., Jr. (1989): Protein-DNA interactions at recognition sites for the dioxin-Ah receptor complex, J Biol Chem, (Band 264), No. 28, Seite 16478-82..

[72] Mathis, J. M.; Houser, W. H.; Bresnick, E.; Cidlowski, J. A.; Hines, R. N.; Prough, R. A. und Simpson, E. R. (1989): Glucocorticoid regulation of the rat cytochrome P450c (P450IA1) gene: receptor binding within intron I, Arch Biochem Biophys, (Band 269), No. 1, Seite 93-105..

[73] Bhat, R.; Weaver, J. A.; Sterling, K. M. und Bresnick, E. (1996): Nuclear transcription factor Oct-1 binds to the 5'-upstream region of CYP1A1 and negatively regulates its expression, Int J Biochem Cell Biol, (Band 28), No. 2, Seite 217-27..

[74] Yanagida, A.; Sogawa, K.; Yasumoto, K. I. und Fujii-Kuriyama, Y. (1990): A novel cis-acting DNA element required for a high level of inducible expression of the rat P-450c gene, Mol Cell Biol, (Band 10), No. 4, Seite 1470-5..

[75] Whitlock, J. P., Jr. (1999): Induction of cytochrome P4501A1, Annu Rev Pharmacol Toxicol, (Band 39), Seite 103-25..

[76] Vasiliou, V.; Shertzer, H. G.; Liu, R. M.; Sainsbury, M. und Nebert, D. W. (1995): Response of [Ah] battery genes to compounds that protect against menadione toxicity, Biochem Pharmacol, (Band 50), No. 11, Seite 1885-91..

[77] Schrenk, D. (1998): Impact of dioxin-type induction of drug-metabolizing enzymes on the metabolism of endo- and xenobiotics, Biochem Pharmacol, (Band 55), No. 8, Seite 1155-62..

[78] Kolluri, S. K.; Balduf, C.; Hofmann, M. und Gottlicher, M. (2001): Novel target genes of the Ah (dioxin) receptor: transcriptional induction of N-myristoyltransferase 2, Cancer Res, (Band 61), No. 23, Seite 8534-9..

[79] Whitlock, J. P., Jr.; Chichester, C. H.; Bedgood, R. M.; Okino, S. T.; Ko, H. P.; Ma, Q.; Dong, L.; Li, H. und Clarke-Katzenberg, R. (1997): Induction of drug-metabolizing enzymes by dioxin, Drug Metab Rev, (Band 29), No. 4, Seite 1107-27..

[80] Nebert, D. W.; Puga, A. und Vasiliou, V. (1993): Role of the Ah receptor and the dioxin-inducible [Ah] gene battery in toxicity, cancer, and signal transduction, Ann N Y Acad Sci, (Band 685), Seite 624-40..

[81] Willey, J. C.; Coy, E. L.; Frampton, M. W.; Torres, A.; Apostolakos, M. J.; Hoehn, G.; Schuermann, W. H.; Thilly, W. G.; Olson, D. E.; Hammersley, J. R.; Crespi, C. L. und Utell, M. J. (1997): Quantitative RT-PCR measurement of cytochromes p450 1A1, 1B1, and 2B7, microsomal epoxide hydrolase, and NADPH oxidoreductase expression in lung cells of smokers and nonsmokers, Am J Respir Cell Mol Biol, (Band 17), No. 1, Seite 114-24..


[Seite 84↓]

[82] Kim, S.G. ; Reddy, S.L. ; States, J.C. und Novak, R.F. (1991): Pyridine effects on expression and molecular regulation of the cytochrome P450IA gene subfamily., Mol Pharmacol, (Band 40), No. 1, Seite 52-7.

[83] Lekas, P.; Tin, K. L.; Lee, C. und Prokipcak, R. D. (2000): The human cytochrome P450 1A1 mRNA is rapidly degraded in HepG2 cells, Arch Biochem Biophys, (Band 384), No. 2, Seite 311-8..

[84] Baron, J. M.; Zwadlo-Klarwasser, G.; Jugert, F.; Hamann, W.; Rubben, A.; Mukhtar, H. und Merk, H. F. (1998): Cytochrome P450 1B1: a major P450 isoenzyme in human blood monocytes and macrophage subsets, Biochem Pharmacol, (Band 56), No. 9, Seite 1105-10..

[85] Murray, G. I.; Melvin, W. T.; Greenlee, W. F. und Burke, M. D. (2001): Regulation, function, and tissue-specific expression of cytochrome P450 CYP1B1, Annu Rev Pharmacol Toxicol, (Band 41), Seite 297-316..

[86] Hakkola, J.; Pasanen, M.; Pelkonen, O.; Hukkanen, J.; Evisalmi, S.; Anttila, S.; Rane, A.; Mantyla, M.; Purkunen, R.; Saarikoski, S.; Tooming, M. und Raunio, H. (1997): Expression of CYP1B1 in human adult and fetal tissues and differential inducibility of CYP1B1 and CYP1A1 by Ah receptor ligands in human placenta and cultured cells, Carcinogenesis, (Band 18), No. 2, Seite 391-7..

[87] Heidel, S. M.; MacWilliams, P. S.; Baird, W. M.; Dashwood, W. M.; Buters, J. T.; Gonzalez, F. J.; Larsen, M. C.; Czuprynski, C. J. und Jefcoate, C. R. (2000): Cytochrome P4501B1 mediates induction of bone marrow cytotoxicity and preleukemia cells in mice treated with 7,12-dimethylbenz[a]anthracene, Cancer Res, (Band 60), No. 13, Seite 3454-60..

[88] Trombino, A. F.; Near, R. I.; Matulka, R. A.; Yang, S.; Hafer, L. J.; Toselli, P. A.; Kim, D. W.; Rogers, A. E.; Sonenshein, G. E. und Sherr, D. H. (2000): Expression of the aryl hydrocarbon receptor/transcription factor (AhR) and AhR-regulated CYP1 gene transcripts in a rat model of mammary tumorigenesis, Breast Cancer Res Treat, (Band 63), No. 2, Seite 117-31..

[89] Shimada, T.; Gillam, E. M.; Sutter, T. R.; Strickland, P. T.; Guengerich, F. P. und Yamazaki, H. (1997): Oxidation of xenobiotics by recombinant human cytochrome P450 1B1, Drug Metab Dispos, (Band 25), No. 5, Seite 617-22..

[90] Tang, Y. M.; Wo, Y. Y.; Stewart, J.; Hawkins, A. L.; Griffin, C. A.; Sutter, T. R. und Greenlee, W. F. (1996): Isolation and characterization of the human cytochrome P450 CYP1B1 gene, J Biol Chem, (Band 271), No. 45, Seite 28324-30..

[91] Shehin, S. E.; Stephenson, R. O. und Greenlee, W. F. (2000): Transcriptional regulation of the human CYP1B1 gene. Evidence for involvement of an aryl hydrocarbon receptor response element in constitutive expression, J Biol Chem, (Band 275), No. 10, Seite 6770-6..

[92] Wo, Y. Y.; Stewart, J. und Greenlee, W. F. (1997): Functional analysis of the promoter for the human CYP1B1 gene, J Biol Chem, (Band 272), No. 42, Seite 26702-7..

[93] Guengerich, F. P. (1999): Cytochrome P-450 3A4: regulation and role in drug metabolism, Annu Rev Pharmacol Toxicol, (Band 39), Seite 1-17.

[94] Wrighton, S. A. und Stevens, J. C. (1992): The human hepatic cytochromes P450 involved in drug metabolism, Crit Rev Toxicol, (Band 22), No. 1, Seite 1-21..

[95] Rendic, S. und Di Carlo, F. J. (1997): Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors, Drug Metab Rev, (Band 29), No. 1-2, Seite 413-580..

[96] Gellner, K.; Eiselt, R.; Hustert, E.; Arnold, H.; Koch, I.; Haberl, M.; Deglmann, C. J.; Burk, O.; Buntefuss, D.; Escher, S.; Bishop, C.; Koebe, H. G.; Brinkmann, U.; Klenk, H. P.; Kleine, K.; Meyer, U. A. und Wojnowski, L. (2001): Genomic organization of the human CYP3A locus: identification of a new, inducible CYP3A gene, Pharmacogenetics, (Band 11), No. 2, Seite 111-21..

[97] Westlind, A.; Malmebo, S.; Johansson, I.; Otter, C.; Andersson, T. B.; Ingelman-Sundberg, M. und Oscarson, M. (2001): Cloning and tissue distribution of a novel human cytochrome p450 of the CYP3A subfamily, CYP3A43, Biochem Biophys Res Commun, (Band 281), No. 5, Seite 1349-55..


[Seite 85↓]

[98] Domanski, T. L.; Finta, C.; Halpert, J. R. und Zaphiropoulos, P. G. (2001): cDNA cloning and initial characterization of CYP3A43, a novel human cytochrome P450, Mol Pharmacol, (Band 59), No. 2, Seite 386-92..

[99] Thummel, K. E. und Wilkinson, G. R. (1998): In vitro and in vivo drug interactions involving human CYP3A, Annu Rev Pharmacol Toxicol, (Band 38), Seite 389-430.

[100] Zhang, Q. Y.; Dunbar, D.; Ostrowska, A.; Zeisloft, S.; Yang, J. und Kaminsky, L. S. (1999): Characterization of human small intestinal cytochromes P-450, Drug Metab Dispos, (Band 27), No. 7, Seite 804-9..

[101] Janardan, S. K.; Lown, K. S.; Schmiedlin-Ren, P.; Thummel, K. E. und Watkins, P. B. (1996): Selective expression of CYP3A5 and not CYP3A4 in human blood, Pharmacogenetics, (Band 6), No. 5, Seite 379-85.

[102] Sempoux, C.; Starkel, P.; Stevens, M.; Van Den Berge, V. und Horsmans, Y. (1999): Cytochrome P450 3A proteins are expressed in B lymphocytes but not in T lymphocytes, Pharmacogenetics, (Band 9), No. 2, Seite 263-5..

[103] Nakamoto, T.; Hase, I.; Imaoka, S.; Hiroi, T.; Oda, Y.; Asada, A. und Funae, Y. (2000): Quantitative RT-PCR for CYP3A4 mRNA in human peripheral lymphocytes: induction of CYP3A4 in lymphocytes and in liver by rifampicin, Pharmacogenetics, (Band 10), Seite 571-5.

[104] Krovat, B. C.; Tracy, J. H. und Omiecinski, C. J. (2000): Fingerprinting of cytochrome P450 and microsomal epoxide hydrolase gene expression in human blood cells, Toxicol Sci, (Band 55), No. 2, Seite 352-60..

[105] Wrighton, S. A.; Brian, W. R.; Sari, M. A.; Iwasaki, M.; Guengerich, F. P.; Raucy, J. L.; Molowa, D. T. und Vandenbranden, M. (1990): Studies on the expression and metabolic capabilities of human liver cytochrome P450IIIA5 (HLp3), Mol Pharmacol, (Band 38), No. 2, Seite 207-13.

[106] Hustert, E.; Haberl, M.; Burk, O.; Wolbold, R.; He, Y. Q.; Klein, K.; Nuessler, A. C.; Neuhaus, P.; Klattig, J.; Eiselt, R.; Koch, I.; Zibat, A.; Brockmöller, J.; Halpert, J. R.; Zanger, U. M. und Wojnowski, L. (2001): The genetic determinants of the CYP3A5 polymorphism, Pharmacogenetics, (Band 11), No. 9, Seite 773-9..

[107] Gervot, L; ; Carriere, V; ; Costet, P; Cugnenc, PH; ; Berger, A;; Beaune, PH; und de Waziers, I. (1996): CYP3A5 is the major cytochrome P450 3A expressed inhuman colon and colonic cell lines, Environmental Toxicology and Pharmacology 2, Seite 381-388.

[108] Hukkanen, J.; Hakkola, J.; Anttila, S.; Piipari, R.; Karjalainen, A.; Pelkonen, O. und Raunio, H. (1997): Detection of mRNA encoding xenobiotic-metabolizing cytochrome P450s in human bronchoalveolar macrophages and peripheral blood lymphocytes, Mol Carcinog, (Band 20), No. 2, Seite 224-30..

[109] Schuetz, J. D.; Beach, D. L. und Guzelian, P. S. (1994): Selective expression of cytochrome P450 CYP3A mRNAs in embryonic and adult human liver, Pharmacogenetics, (Band 4), No. 1, Seite 11-20.

[110] Shimada, T.; Yamazaki, H.; Mimura, M.; Inui, Y. und Guengerich, F. P. (1994): Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians, J Pharmacol Exp Ther, (Band 270), No. 1, Seite 414-23..

[111] Westlind, A.; Lofberg, L.; Tindberg, N.; Andersson, T. B. und Ingelman-Sundberg, M. (1999): Interindividual differences in hepatic expression of CYP3A4: relationship to genetic polymorphism in the 5'-upstream regulatory region, Biochem Biophys Res Commun, (Band 259), No. 1, Seite 201-5.

[112] Eiselt, R.; Domanski, T. L.; Zibat, A.; Mueller, R.; Presecan-Siedel, E.; Hustert, E.; Zanger, U. M.; Brockmoller, J.; Klenk, H. P.; Meyer, U. A.; Khan, K. K.; He, Y. A.; Halpert, J. R. und Wojnowski, L. (2001): Identification and functional characterization of eight CYP3A4 protein variants, Pharmacogenetics, (Band 11), No. 5, Seite 447-58..


[Seite 86↓]

[113] Hsieh, K. P.; Lin, Y. Y.; Cheng, C. L.; Lai, M. L.; Lin, M. S.; Siest, J. P. und Huang, J. D. (2001): Novel mutations of CYP3A4 in Chinese, Drug Metab Dispos, (Band 29), No. 3, Seite 268-73..

[114] Rebbeck, T. R.; Jaffe, J. M.; Walker, A. H.; Wein, A. J. und Malkowicz, S. B. (1998): Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4 [published erratum appears in J Natl Cancer Inst 1999 Jun 16;91(12):1082], J Natl Cancer Inst, (Band 90), No. 16, Seite 1225-9.

[115] Spurdle, A. B.; Goodwin, B.; Hodgson, E.; Hopper, J. L.; Chen, X.; Purdie, D. M.; McCredie, M. R.; Giles, G. G.; Chenevix-Trench, G. und Liddle, C. (2002): The CYP3A4*1B polymorphism has no functional significance and is not associated with risk of breast or ovarian cancer, Pharmacogenetics, (Band 12), No. 5, Seite 355-366..

[116] Lamba, J. K.; Lin, Y. S.; Thummel, K.; Daly, A.; Watkins, P. B.; Strom, S.; Zhang, J. und Schuetz, E. G. (2002): Common allelic variants of cytochrome P4503A4 and their prevalence in different populations, Pharmacogenetics, (Band 12), No. 2, Seite 121-132..

[117] Zilly, W.; Breimer, D. D. und Richter, E. (1975): Induction of drug metabolism in man after rifampicin treatment measured by increased hexobarbital and tolbutamide clearance, Eur J Clin Pharmacol, (Band 9), No. 2-3, Seite 219-27..

[118] Miguet, J. P.; Mavier, P.; Soussy, C. J. und Dhumeaux, D. (1977): Induction of hepatic microsomal enzymes after brief administration of rifampicin in man, Gastroenterology, (Band 72), No. 5 Pt 1, Seite 924-6..

[119] Kostrubsky, V. E.; Lewis, L. D.; Strom, S. C.; Wood, S. G.; Schuetz, E. G.; Schuetz, J. D.; Sinclair, P. R.; Wrighton, S. A. und Sinclair, J. F. (1998): Induction of cytochrome P4503A by taxol in primary cultures of human hepatocytes, Arch Biochem Biophys, (Band 355), No. 2, Seite 131-6.

[120] Sumida, A.; Fukuen, S.; Yamamoto, I.; Matsuda, H.; Naohara, M. und Azuma, J. (2000): Quantitative analysis of constitutive and inducible CYPs mRNA expression in the HepG2 cell line using reverse transcription-competitive PCR, Biochem Biophys Res Commun, (Band 267), No. 3, Seite 756-60.

[121] Sueyoshi, T. und Negishi, M. (2001): Phenobarbital response elements of cytochrome P450 genes and nuclear receptors, Annu Rev Pharmacol Toxicol, (Band 41), Seite 123-43..

[122] Mangelsdorf, D. J. und Evans, R. M. (1995): The RXR heterodimers and orphan receptors, Cell, (Band 83), No. 6, Seite 841-50..

[123] Goodwin, B.; Hodgson, E. und Liddle, C. (1999): The orphan human pregnane X receptor mediates the transcriptional activation of CYP3A4 by rifampicin through a distal enhancer module, Mol Pharmacol, (Band 56), No. 6, Seite 1329-39.

[124] Kliewer, S. A.; Moore, J. T.; Wade, L.; Staudinger, J. L.; Watson, M. A.; Jones, S. A.; McKee, D. D.; Oliver, B. B.; Willson, T. M.; Zetterstrom, R. H.; Perlmann, T. und Lehmann, J. M. (1998): An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway, Cell, (Band 92), No. 1, Seite 73-82.

[125] Synold, T. W.; Dussault, I. und Forman, B. M. (2001): The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux, Nat Med, (Band 7), No. 5, Seite 584-90..

[126] Willson, T. M. und Kliewer, S. A. (2002): PXR, CAR and drug metabolism, Nat Rev Drug Discov, (Band 1), No. 4, Seite 259-66..

[127] Staudinger, J. L.; Goodwin, B.; Jones, S. A.; Hawkins-Brown, D.; MacKenzie, K. I.; LaTour, A.; Liu, Y.; Klaassen, C. D.; Brown, K. K.; Reinhard, J.; Willson, T. M.; Koller, B. H. und Kliewer, S. A. (2001): The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity, Proc Natl Acad Sci U S A, (Band 98), No. 6, Seite 3369-74..

[128] Xie, W.; Radominska-Pandya, A.; Shi, Y.; Simon, C. M.; Nelson, M. C.; Ong, E. S.; Waxman, D. J. und Evans, R. M. (2001): An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids, Proc Natl Acad Sci U S A, (Band 98), No. 6, Seite 3375-80..


[Seite 87↓]

[129] Lehmann, J. M.; McKee, D. D.; Watson, M. A.; Willson, T. M.; Moore, J. T. und Kliewer, S. A. (1998): The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions, J Clin Invest, (Band 102), No. 5, Seite 1016-23.

[130] Schuetz, E. G.; Beck, W. T. und Schuetz, J. D. (1996): Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells, Mol Pharmacol, (Band 49), No. 2, Seite 311-8..

[131] Zhang, H.; LeCulyse, E.; Liu, L.; Hu, M.; Matoney, L.; Zhu, W. und Yan, B. (1999): Rat pregnane X receptor: molecular cloning, tissue distribution, and xenobiotic regulation, Arch Biochem Biophys, (Band 368), No. 1, Seite 14-22..

[132] Gibson, G. G.; Plant, N. J.; Swales, K. E.; Ayrton, A. und El-Sankary, W. (2002): Receptor-dependent transcriptional activation of cytochrome P4503A genes: induction mechanisms, species differences and interindividual variation in man, Xenobiotica, (Band 32), No. 3, Seite 165-206..

[133] Schuetz, E. G.; Schmid, W.; Schutz, G.; Brimer, C.; Yasuda, K.; Kamataki, T.; Bornheim, L.; Myles, K. und Cole, T. J. (2000): The glucocorticoid receptor is essential for induction of cytochrome P-4502B by steroids but not for drug or steroid induction of CYP3A or P-450 reductase in mouse liver, Drug Metab Dispos, (Band 28), No. 3, Seite 268-78..

[134] Forman, B. M.; Tzameli, I.; Choi, H. S.; Chen, J.; Simha, D.; Seol, W.; Evans, R. M. und Moore, D. D. (1998): Androstane metabolites bind to and deactivate the nuclear receptor CAR-beta, Nature, (Band 395), No. 6702, Seite 612-5..

[135] Pascussi, J. M.; Gerbal-Chaloin, S.; Fabre, J. M.; Maurel, P. und Vilarem, M. J. (2000): Dexamethasone enhances constitutive androstane receptor expression in human hepatocytes: consequences on cytochrome P450 gene regulation, Mol Pharmacol, (Band 58), No. 6, Seite 1441-50..

[136] Tzameli, I. und Moore, D. D. (2001): Role reversal: new insights from new ligands for the xenobiotic receptor CAR, Trends Endocrinol Metab, (Band 12), No. 1, Seite 7-10..

[137] Kawamoto, T.; Sueyoshi, T.; Zelko, I.; Moore, R.; Washburn, K. und Negishi, M. (1999): Phenobarbital-responsive nuclear translocation of the receptor CAR in induction of the CYP2B gene, Mol Cell Biol, (Band 19), No. 9, Seite 6318-22..

[138] Xie, W.; Barwick, J. L.; Simon, C. M.; Pierce, A. M.; Safe, S.; Blumberg, B.; Guzelian, P. S. und Evans, R. M. (2000): Reciprocal activation of xenobiotic response genes by nuclear receptors SXR/PXR and CAR, Genes Dev, (Band 14), No. 23, Seite 3014-23..

[139] Sonoda, J.; Xie, W.; Rosenfeld, J. M.; Barwick, J. L.; Guzelian, P. S. und Evans, R. M. (2002): Regulation of a xenobiotic sulfonation cascade by nuclear pregnane X receptor (PXR), Proc Natl Acad Sci U S A, (Band 99), No. 21, Seite 13801-6..

[140] Zangar, R. C.; Hernandez, M. und Novak, R. F. (1997): Posttranscriptional elevation of cytochrome P450 3A expression, Biochem Biophys Res Commun, (Band 231), No. 1, Seite 203-5..

[141] Zangar, R. C. und Novak, R. F. (1998): Posttranslational elevation of cytochrome P450 3A levels and activity by dimethyl sulfoxide, Arch Biochem Biophys, (Band 353), No. 1, Seite 1-9..

[142] Watkins, P. B.; Wrighton, S. A.; Schuetz, E. G.; Maurel, P. und Guzelian, P. S. (1986): Macrolide antibiotics inhibit the degradation of the glucocorticoid-responsive cytochrome P-450p in rat hepatocytes in vivo and in primary monolayer culture, J Biol Chem, (Band 261), No. 14, Seite 6264-71..

[143] Hostetler, K. A.; Wrighton, S. A.; Molowa, D. T.; Thomas, P. E.; Levin, W. und Guzelian, P. S. (1989): Coinduction of multiple hepatic cytochrome P-450 proteins and their mRNAs in rats treated with imidazole antimycotic agents, Mol Pharmacol, (Band 35), No. 3, Seite 279-85..


[Seite 88↓]

[144] Chen, C. J.; Clark, D.; Ueda, K.; Pastan, I.; Gottesman, M. M. und Roninson, I. B. (1990): Genomic organization of the human multidrug resistance (MDR1) gene and origin of P-glycoproteins, J Biol Chem, (Band 265), No. 1, Seite 506-14..

[145] Borst, P. und Schinkel, A. H. (1997): Genetic dissection of the function of mammalian P-glycoproteins, Trends Genet, (Band 13), No. 6, Seite 217-22..

[146] Pastan, I. und Gottesman, M. (1987): Multiple-drug resistance in human cancer, N Engl J Med, (Band 316), No. 22, Seite 1388-93..

[147] Schinkel, A. H. (1997): The physiological function of drug-transporting P-glycoproteins, Semin-Cancer-Biol, (Band 8), No. 3, Seite 161-70.

[148] Johnstone, R. W.; Ruefli, A. A.; Tainton, K. M. und Smyth, M. J. (2000): A role for P-glycoprotein in regulating cell death, Leuk Lymphoma, (Band 38), No. 1-2, Seite 1-11..

[149] Schmitz, G. und Langmann, T. (2001): Structure, function and regulation of the ABC1 gene product, Curr Opin Lipidol, (Band 12), No. 2, Seite 129-40..

[150] Hochman, J. H.; Chiba, M.; Nishime, J.; Yamazaki, M. und Lin, J. H. (2000): Influence of P-glycoprotein on the transport and metabolism of indinavir in Caco-2 cells expressing cytochrome P-450 3A4, Pharmacol Exp Ther, (Band 292), No. 1, Seite 310-8.

[151] Schinkel, A. H.; Wagenaar, E.; Mol, C. A. und van Deemter, L. (1996): P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs, J Clin Invest, (Band 97), No. 11, Seite 2517-24..

[152] Rao, U. S.; Fine, R. L. und Scarborough, G. A. (1994): Antiestrogens and steroid hormones: substrates of the human P-glycoprotein, Biochem Pharmacol, (Band 48), No. 2, Seite 287-92..

[153] Oka, A.; Oda, M.; Saitoh, H.; Nakayama, A.; Takada, M. und Aungst, B. J. (2002): Secretory transport of methylprednisolone possibly mediated by P-glycoprotein in Caco-2 cells, Biol Pharm Bull, (Band 25), No. 3, Seite 393-6..

[154] Oude Elferink, R. P. und Zadina, J. (2001): MDR1 P-glycoprotein transports endogenous opioid peptides, Peptides, (Band 22), No. 12, Seite 2015-20..

[155] Fellner, S.; Bauer, B.; Miller, D. S.; Schaffrik, M.; Fankhanel, M.; Spruss, T.; Bernhardt, G.; Graeff, C.; Farber, L.; Gschaidmeier, H.; Buschauer, A. und Fricker, G. (2002): Transport of paclitaxel (Taxol) across the blood-brain barrier in vitro and in vivo, J Clin Invest, (Band 110), No. 9, Seite 1309-18..

[156] Yusa, K. und Tsuruo, T. (1989): Reversal mechanism of multidrug resistance by verapamil: direct binding of verapamil to P-glycoprotein on specific sites and transport of verapamil outward across the plasma membrane of K562/ADM cells, Cancer Res, (Band 49), No. 18, Seite 5002-6..

[157] Wandel, C.; Kim, R. B.; Guengerich, F. P. und Wood, A. J. (2000): Mibefradil is a P-glycoprotein substrate and a potent inhibitor of both P-glycoprotein and CYP3A in vitro, Drug Metab Dispos, (Band 28), No. 8, Seite 895-8..

[158] Sanglard, D.; Kuchler, K.; Ischer, F.; Pagani, J. L.; Monod, M. und Bille, J. (1995): Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters, Antimicrob Agents Chemother, (Band 39), No. 11, Seite 2378-86..

[159] Miyama, T.; Takanaga, H.; Matsuo, H.; Yamano, K.; Yamamoto, K.; Iga, T.; Naito, M.; Tsuruo, T.; Ishizuka, H.; Kawahara, Y. und Sawada, Y. (1998): P-glycoprotein-mediated transport of itraconazole across the blood-brain barrier, Antimicrob Agents Chemother, (Band 42), No. 7, Seite 1738-44..

[160] Schuetz, E. G.; Yasuda, K.; Arimori, K. und Schuetz, J. D. (1998): Human MDR1 and mouse mdr1a P-glycoprotein alter the cellular retention and disposition of erythromycin, but not of retinoic acid or benzo(a)pyrene, Arch Biochem Biophys, (Band 350), No. 2, Seite 340-7..


[Seite 89↓]

[161] Takeguchi, N.; Ichimura, K.; Koike, M.; Matsui, W.; Kashiwagura, T. und Kawahara, K. (1993): Inhibition of the multidrug efflux pump in isolated hepatocyte couplets by immunosuppressants FK506 and cyclosporine, Transplantation, (Band 55), No. 3, Seite 646-50..

[162] Lown, K. S.; Mayo, R. R.; Leichtman, A. B.; Hsiao, H. L.; Turgeon, D. K.; Schmiedlin-Ren, P.; Brown, M. B.; Guo, W.; Rossi, S. J.; Benet, L. Z. und Watkins, P. B. (1997): Role of intestinal P-glycoprotein (mdr1) in interpatient variation in the oral bioavailability of cyclosporine, Clin Pharmacol Ther, (Band 62), No. 3, Seite 248-60..

[163] Potschka, H.; Fedrowitz, M. und Loscher, W. (2002): P-Glycoprotein-mediated efflux of phenobarbital, lamotrigine, and felbamate at the blood-brain barrier: evidence from microdialysis experiments in rats, Neurosci Lett, (Band 327), No. 3, Seite 173-6..

[164] Stephens, R. H.; O'Neill, C. A.; Warhurst, A.; Carlson, G. L.; Rowland, M. und Warhurst, G. (2001): Kinetic profiling of P-glycoprotein-mediated drug efflux in rat and human intestinal epithelia, J Pharmacol Exp Ther, (Band 296), No. 2, Seite 584-91..

[165] Ambudkar, S. V.; Dey, S.; Hrycyna, C. A.; Ramachandra, M.; Pastan, I. und Gottesman, M. M. (1999): Biochemical, cellular, and pharmacological aspects of the multidrug transporter, Annu Rev Pharmacol Toxicol, (Band 39), Seite 361-98..

[166] Drach, D.; Zhao, S.; Drach, J.; Mahadevia, R.; Gattringer, C.; Huber, H. und Andreeff, M. (1992): Subpopulations of normal peripheral blood and bone marrow cells express a functional multidrug resistant phenotype, Blood, (Band 80), No. 11, Seite 2729-34..

[167] Chaudhary, P. M.; Mechetner, E. B. und Roninson, I. B. (1992): Expression and activity of the multidrug resistance P-glycoprotein in human peripheral blood lymphocytes, Blood, (Band 80), No. 11, Seite 2735-9..

[168] Kaczorowski, S.; Ochocka, M.; Kaczorowska, M.; Aleksandrowicz, R.; Matysiakl, M. und Karwacki, M. (1995): Is P-glycoprotein a sufficient marker for multidrug resistance in vivo? Immunohistochemical staining for P-glycoprotein in children and adult leukemia: correlation with clinical outcome, Leuk Lymphoma, (Band 20), No. 1-2, Seite 143-52..

[169] Klimecki, W. T.; Futscher, B. W.; Grogan, T. M. und Dalton, W. S. (1994): P-glycoprotein expression and function in circulating blood cells from normal volunteers, Blood, (Band 83), No. 9, Seite 2451-8..

[170] Andreana, A.; Aggarwal, S.; Gollapudi, S.; Wien, D.; Tsuruo, T. und Gupta, S. (1996): Abnormal expression of a 170-kilodalton P-glycoprotein encoded by MDR1 gene, a metabolically active efflux pump, in CD4+ and CD8+ T cells from patients with human immunodeficiency virus type 1 infection, AIDS Res Hum Retroviruses, (Band 12), No. 15, Seite 1457-62..

[171] Goldsmith, M. E.; Madden, M. J.; Morrow, C. S. und Cowan, K. H. (1993): A Y-box consensus sequence is required for basal expression of the human multidrug resistance (mdr1) gene, J Biol Chem, (Band 268), No. 8, Seite 5856-60..

[172] Geick, A.; Eichelbaum, M. und Burk, O. (2001): Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin, J Biol Chem, (Band 276), No. 18, Seite 14581-7..

[173] Ogretmen, B. und Safa, A. R. (2000): Identification and characterization of the MDR1 promoter-enhancing factor 1 (MEF1) in the multidrug resistant HL60/VCR human acute myeloid leukemia cell line, Biochemistry, (Band 39), No. 1, Seite 194-204..

[174] Labialle, S.; Gayet, L.; Marthinet, E.; Rigal, D. und Baggetto, L. G. (2002): Transcriptional regulators of the human multidrug resistance 1 gene: recent views, Biochem Pharmacol, (Band 64), No. 5-6, Seite 943-8..

[175] Hoffmeyer, S.; Burk, O.; von Richter, O.; Arnold, H. P.; Brockmöller, J.; Johne, A.; Cascorbi, I.; Gerloff, T.; Roots, I.; Eichelbaum, M. und Brinkmann, U. (2000): Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo, Proc Natl Acad Sci U S A, (Band 97), No. 7, Seite 3473-8..


[Seite 90↓]

[176] Brinkmann, U.; Roots, I. und Eichelbaum, M. (2001): Pharmacogenetics of the human drug-transporter gene MDR1: impact of polymorphisms on pharmacotherapy, Drug Discov Today, (Band 6), No. 16, Seite 835-839..

[177] Cascorbi, I.; Gerloff, T.; Johne, A.; Meisel, C.; Hoffmeyer, S.; Schwab, M.; Schaeffeler, E.; Eichelbaum, M.; Brinkmann, U. und Roots, I. (2001): Frequency of single nucleotide polymorphisms in the P-glycoprotein drug transporter MDR1 gene in white subjects, Clin Pharmacol Ther, (Band 69), No. 3, Seite 169-74..

[178] Kim, R. B.; Leake, B. F.; Choo, E. F.; Dresser, G. K.; Kubba, S. V.; Schwarz, U. I.; Taylor, A.; Xie, H. G.; McKinsey, J.; Zhou, S.; Lan, L. B.; Schuetz, J. D.; Schuetz, E. G. und Wilkinson, G. R. (2001): Identification of functionally variant MDR1 alleles among European Americans and African Americans, Clin Pharmacol Ther, (Band 70), No. 2, Seite 189-99..

[179] Schaeffeler, E.; Eichelbaum, M.; Brinkmann, U.; Penger, A.; Asante-Poku, S.; Zanger, U. M. und Schwab, M. (2001): Frequency of C3435T polymorphism of MDR1 gene in African people, Lancet, (Band 358), No. 9279, Seite 383-4..

[180] Fellay, J.; Marzolini, C.; Meaden, E. R.; Back, D. J.; Buclin, T.; Chave, J. P.; Decosterd, L. A.; Furrer, H.; Opravil, M.; Pantaleo, G.; Retelska, D.; Ruiz, L.; Schinkel, A. H.; Vernazza, P.; Eap, C. B. und Telenti, A. (2002): Response to antiretroviral treatment in HIV-1-infected individuals with allelic variants of the multidrug resistance transporter 1: a pharmacogenetics study, Lancet, (Band 359), No. 9300, Seite 30-6..

[181] Greenblatt, D. J.; von Moltke, L. L.; Harmatz, J. S.; Ciraulo, D. A. und Shader, R. I. (1993): Alprazolam pharmacokinetics, metabolism, and plasma levels: clinical implications, J Clin Psychiatry, (Band 54), No. Suppl, Seite 4-11.

[182] Yasui, N.; Otani, K.; Kaneko, S.; Ohkubo, T.; Osanai, T.; Sugawara, K.; Chiba, K. und Ishizaki, T. (1996): A kinetic and dynamic study of oral alprazolam with and without erythromycin in humans: in vivo evidence for the involvement of CYP3A4 in alprazolam metabolism, Clin Pharmacol Ther, (Band 59), No. 5, Seite 514-9..

[183] Gorski, J. C.; Jones, D. R.; Hamman, M. A.; Wrighton, S. A. und Hall, S. D. (1999): Biotransformation of alprazolam by members of the human cytochrome P4503A subfamily, Xenobiotica, (Band 29), No. 9, Seite 931-44..

[184] Hirota, N.; Ito, K.; Iwatsubo, T.; Green, C. E.; Tyson, C. A.; Shimada, N.; Suzuki, H. und Sugiyama, Y. (2001): In vitro/in vivo scaling of alprazolam metabolism by CYP3A4 and CYP3A5 in humans, Biopharm Drug Dispos, (Band 22), No. 2, Seite 53-71..

[185] Bertilsson, L.; Aberg-Wistedt, A.; Liden, A.; Otani, K. und Spina, E. (1988): Alprazolam does not inhibit the metabolism of nortriptyline in depressed patients or inhibit the metabolism of desipramine in human liver microsomes, Ther Drug Monit, (Band 10), No. 2, Seite 231-3..

[186] Otani, K.; Yasui, N.; Kaneko, S.; Ohkubo, T.; Osanai, T.; Sugawara, K.; Hayashi, K.; Chiba, K. und Ishizaki, T. (1997): Effects of genetically determined S-mephenytoin 4-hydroxylation status and cigarette smoking on the single-dose pharmacokinetics of oral alprazolam, Neuropsychopharmacology, (Band 16), No. 1, Seite 8-14..

[187] Schmider, J.; Brockmöller, J.; Arold, G.; Bauer, S. und Roots, I. (1999): Simultaneous assessment of CYP3A4 and CYP1A2 activity in vivo with alprazolam and caffeine, Pharmacogenetics, (Band 9), No. 6, Seite 725-34..

[188] Greenblatt, D. J. und Wright, C. E. (1993): Clinical pharmacokinetics of alprazolam. Therapeutic implications, Clin Pharmacokinet, (Band 24), No. 6, Seite 453-71..

[189] Yasui, N.; Kondo, T.; Otani, K.; Furukori, H.; Kaneko, S.; Ohkubo, T.; Nagasaki, T. und Sugawara, K. (1998): Effect of itraconazole on the single oral dose pharmacokinetics and pharmacodynamics of alprazolam, Psychopharmacology (Berl), (Band 139), No. 3, Seite 269-73..

[190] Furukori, H.; Otani, K.; Yasui, N.; Kondo, T.; Kaneko, S.; Shimoyama, R.; Ohkubo, T.; Nagasaki, T. und Sugawara, K. (1998): Effect of carbamazepine on the single oral dose pharmacokinetics of alprazolam, Neuropsychopharmacology, (Band 18), No. 5, Seite 364-9..


[Seite 91↓]

[191] Chomczynski, P. und Sacchi, N. (1987): Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction, Anal Biochem, (Band 162), No. 1, Seite 156-9..

[192] Parker, R. M. und Barnes, N. M. (1999): mRNA: detection by in Situ and northern hybridization, Methods Mol Biol, (Band 106), Seite 247-83..

[193] Herrington, C. S. (1998): Demystified ... in situ hybridisation, Mol Pathol, (Band 51), No. 1, Seite 8-13..

[194] Ma, Y. J.; Dissen, G. A.; Rage, F. und Ojeda, S. R. (1996): RNase Protection Assay, Methods, (Band 10), No. 3, Seite 273-8..

[195] Drmanac, R. und Drmanac, S. (1999): cDNA screening by array hybridization, Methods Enzymol, (Band 303), Seite 165-78..

[196] Bustin, S. A. (2000): Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays, J Mol Endocrinol, (Band 25), No. 2, Seite 169-93..

[197] Nowakowski-Gashaw, I.; Mrozikiewicz, P. M.; Roots, I. und Brockmöller, J. (2002): Rapid quantification of CYP3A4 expression in human leukocytes by real-time reverse transcription-PCR, Clin Chem, (Band 48), No. 2, Seite 366-70..

[198] de Silva, S.; Petterson, B.; Aquino de Muro, M. und Priest, F. G. (1998): A DNA probe for the detection and identification of Bacillus sporothermodurans using the 16S-23S rDNA spacer region and phylogenetic analysis of some field isolates of Bacillus which form highly heat resistant spores, Syst Appl Microbiol, (Band 21), No. 3, Seite 398-407..

[199] Kreuzer, K. A.; Lass, U.; Bohn, A.; Landt, O. und Schmidt, C. A. (1999): LightCycler technology for the quantitation of bcr/abl fusion transcripts, Cancer Res, (Band 59), No. 13, Seite 3171-4..

[200] Schneider, J.; Gonzalez-Roces, S.; Pollan, M.; Lucas, R.; Tejerina, A.; Martin, M. und Alba, A. (2001): Expression of LRP and MDR1 in locally advanced breast cancer predicts axillary node invasion at the time of rescue mastectomy after induction chemotherapy, Breast Cancer Res, (Band 3), No. 3, Seite 183-91..

[201] Sanger, F.; Nicklen, S. und Coulson, A. R. (1977): DNA sequencing with chain-terminating inhibitors, Proc Natl Acad Sci U S A, (Band 74), No. 12, Seite 5463-7..

[202] Läuter, H. und Pincus, R. (1989): Mathematisch-statistische Datenanalyse, Akademie-Verlag Berlin, Berlin.

[203] Glue, P. und Clement, R. P. (1999): Cytochrome P450 enzymes and drug metabolism--basic concepts and methods of assessment, Cell Mol Neurobiol, (Band 19), No. 3, Seite 309-23..

[204] Mensink, E.; van de Locht, A.; Schattenberg, A.; Linders, E.; Schaap, N.; Geurts van Kessel, A. und De Witte, T. (1998): Quantitation of minimal residual disease in Philadelphia chromosome positive chronic myeloid leukaemia patients using real-time quantitative RT-PCR, Br J Haematol, (Band 102), No. 3, Seite 768-74..

[205] Kreuzer, K. A.; Bohn, A.; Lupberger, J.; Solassol, J.; le Coutre, P. und Schmidt, C. A. (2001): Simultaneous absolute quantification of target and control templates by real-time fluorescence reverse transcription-PCR using 4-(4'-dimethylaminophenylazo)benzoic acid as a dark quencher dye, Clin Chem, (Band 47), No. 3, Seite 486-90..

[206] Takahashi, M.; Funato, T.; Ishii, K. K.; Kaku, M. und Sasaki, T. (2001): Measurement of tumor necrosis factor-alpha messenger RNA in synovial fibroblasts by real-time quantitative reverse transcriptase-polymerase chain reaction, J Lab Clin Med, (Band 137), No. 2, Seite 101-6..

[207] Brennan, C. M. und Steitz, J. A. (2001): HuR and mRNA stability, Cell Mol Life Sci, (Band 58), No. 2, Seite 266-77..

[208] Kolars, J. C.; Lown, K. S.; Schmiedlin-Ren, P.; Ghosh, M.; Fang, C.; Wrighton, S. A.; Merion, R. M. und Watkins, P. B. (1994): CYP3A gene expression in human gut epithelium, Pharmacogenetics, (Band 4), No. 5, Seite 247-59.


[Seite 92↓]

[209] Hakkola, J.; Raunio, H.; Purkunen, R.; Pelkonen, O.; Saarikoski, S.; Cresteil, T. und Pasanen, M. (1996): Detection of cytochrome P450 gene expression in human placenta in first trimester of pregnancy, Biochem Pharmacol, (Band 52), No. 2, Seite 379-83..

[210] Andersen, M. R.; Farin, F. M. und Omiecinski, C. J. (1998): Quantification of multiple human cytochrome P450 mRNA molecules using competitive reverse transcriptase-PCR, DNA Cell Biol, (Band 17), No. 3, Seite 231-8..

[211] Streetman, D. S.; Kashuba, A. D.; Bertino, J. S., Jr.; Kulawy, R.; Rocci, M. L., Jr. und Nafziger, A. N. (2001): Use of midazolam urinary metabolic ratios for cytochrome P450 3A (CYP3A) phenotyping, Pharmacogenetics, (Band 11), No. 4, Seite 349-55..

[212] Engman, H. A.; Lennernas, H.; Taipalensuu, J.; Otter, C.; Leidvik, B. und Artursson, P. (2001): CYP3A4, CYP3A5, and MDR1 in human small and large intestinal cell lines suitable for drug transport studies, J Pharm Sci, (Band 90), No. 11, Seite 1736-51..

[213] Fukuda, Y.; Ishida, N.; Noguchi, T.; Kappas, A. und Sassa, S. (1992): Interleukin-6 down regulates the expression of transcripts encoding cytochrome P450 IA1, IA2 and IIIA3 in human hepatoma cells, Biochem Biophys Res Commun, (Band 184), No. 2, Seite 960-5..

[214] Schuetz, E. G.; Schuetz, J. D.; Strom, S. C.; Thompson, M. T.; Fisher, R. A.; Molowa, D. T.; Li, D. und Guzelian, P. S. (1993): Regulation of human liver cytochromes P-450 in family 3A in primary and continuous culture of human hepatocytes, Hepatology, (Band 18), No. 5, Seite 1254-62..

[215] Nakama, A.; Kuroda, K. und Yamada, A. (1995): Induction of cytochrome P450-dependent monooxygenase in serum-free cultured Hep G2 cells, Biochem Pharmacol, (Band 50), No. 9, Seite 1407-12..

[216] Ogg, M. S.; Gray, T. J. und Gibson, G. G. (1997): Development of an in vitro reporter gene assay to assess xenobiotic induction of the human CYP3A4 gene, Eur J Drug Metab Pharmacokinet, (Band 22), No. 4, Seite 311-3..

[217] Seree, E.; Villard, P. H.; Hever, A.; Guigal, N.; Puyoou, F.; Charvet, B.; Point Scomma, H.; Lechevalier, E.; Lacarelle, B. und Barra, Y. (1998): Modulation of MDR1 and CYP3A expression by dexamethasone: evidence for an inverse regulation in adrenals, Biochem-Biophys-Res-Commun, (Band 252), No. 2, Seite 392-5.

[218] Iwanari, M.; Nakajima, M.; Kizu, R.; Hayakawa, K. und Yokoi, T. (2002): Induction of CYP1A1, CYP1A2, and CYP1B1 mRNAs by nitropolycyclic aromatic hydrocarbons in various human tissue-derived cells: chemical-, cytochrome P450 isoform-, and cell-specific differences, Arch Toxicol, (Band 76), No. 5-6, Seite 287-98..

[219] Koch, I.; Weil, R.; Wolbold, R.; Brockmöller, J.; Hustert, E.; Burk, O.; Nuessler, A.; Neuhaus, P.; Eichelbaum, M.; Zanger, U. und Wojnowski, L. (2002): Interindividual Variability and Tissue-Specificity in the Expression of Cytochrome P450 3A mRNA., Drug Metab Dispos, (Band 30), No. 10, Seite 1108-14..

[220] Brady, J. M.; Cherrington, N. J.; Hartley, D. P.; Buist, S. C.; Li, N. und Klaassen, C. D. (2002): Tissue distribution and chemical induction of multiple drug resistance genes in rats, Drug Metab Dispos, (Band 30), No. 7, Seite 838-44..

[221] George, J.; Goodwin, B.; Liddle, C.; Tapner, M. und Farrell, G. C. (1997): Time-dependent expression of cytochrome P450 genes in primary cultures of well-differentiated human hepatocytes, J Lab Clin Med, (Band 129), No. 6, Seite 638-48..

[222] Bowen, W. P.; Carey, J. E.; Miah, A.; McMurray, H. F.; Munday, P. W.; James, R. S.; Coleman, R. A. und Brown, A. M. (2000): Measurement of cytochrome P450 gene induction in human hepatocytes using quantitative real-time reverse transcriptase-polymerase chain reaction, Drug Metab Dispos, (Band 28), No. 7, Seite 781-8..

[223] Alexander, D. L.; Eltom, S. E. und Jefcoate, C. R. (1997): Ah receptor regulation of CYP1B1 expression in primary mouse embryo-derived cells, Cancer Res, (Band 57), No. 20, Seite 4498-506..


[Seite 93↓]

[224] Matuoka, K. und Takenawa, T. (1998): Downregulated expression of the signaling molecules Nck, c-Crk, Grb2/Ash, PI 3-kinase p110 alpha and WRN during fibroblast aging in vitro, Biochim Biophys Acta, (Band 1401), No. 2, Seite 211-5..

[225] Nagy, S. R. und Denison, M. S. (2002): Specificity of nuclear protein binding to a CYP1A1 negative regulatory element, Biochem Biophys Res Commun, (Band 296), No. 4, Seite 799-805..

[226] Zhang, J.; Block, E. und Patel, J. (2002): Down-regulation of mitochondrial cytochrome c oxidase in senescent porcine pulmonary artery endothelial cells, Mech Ageing Dev, (Band 123), No. 10, Seite 1363..

[227] LeCluyse, E.; Madan, A.; Hamilton, G.; Carroll, K.; DeHaan, R. und Parkinson, A. (2000): Expression and regulation of cytochrome P450 enzymes in primary cultures of human hepatocytes, J Biochem Mol Toxicol, (Band 14), No. 4, Seite 177-88..

[228] Spink, D. C.; Spink, B. C.; Cao, J. Q.; DePasquale, J. A.; Pentecost, B. T.; Fasco, M. J.; Li, Y. und Sutter, T. R. (1998): Differential expression of CYP1A1 and CYP1B1 in human breast epithelial cells and breast tumor cells, Carcinogenesis, (Band 19), No. 2, Seite 291-8..

[229] Angus, W. G.; Larsen, M. C. und Jefcoate, C. R. (1999): Expression of CYP1A1 and CYP1B1 depends on cell-specific factors in human breast cancer cell lines: role of estrogen receptor status, Carcinogenesis, (Band 20), No. 6, Seite 947-55..

[230] Hukkanen, J.; Lassila, A.; Paivarinta, K.; Valanne, S.; Sarpo, S.; Hakkola, J.; Pelkonen, O. und Raunio, H. (2000): Induction and regulation of xenobiotic-metabolizing cytochrome P450s in the human A549 lung adenocarcinoma cell line, Am J Respir Cell Mol Biol, (Band 22), No. 3, Seite 360-6..

[231] Kerzee, J. K. und Ramos, K. S. (2001): Constitutive and inducible expression of Cyp1a1 and Cyp1b1 in vascular smooth muscle cells: role of the Ahr bHLH/PAS transcription factor, Circ Res, (Band 89), No. 7, Seite 573-82..

[232] Mangum, E. M. und Graham, K. K. (2001): Lopinavir-Ritonavir: a new protease inhibitor, Pharmacotherapy, (Band 21), No. 11, Seite 1352-63..

[233] Anzenbacher, P. und Anzenbacherova, E. (2001): Cytochromes P450 and metabolism of xenobiotics, Cell Mol Life Sci, (Band 58), No. 5-6, Seite 737-47..

[234] Desai, H. D.; Seabolt, J. und Jann, M. W. (2001): Smoking in patients receiving psychotropic medications: a pharmacokinetic perspective, CNS Drugs, (Band 15), No. 6, Seite 469-94..

[235] Shimada, T.; Inoue, K.; Suzuki, Y.; Kawai, T.; Azuma, E.; Nakajima, T.; Shindo, M.; Kurose, K.; Sugie, A.; Yamagishi, Y.; Fujii-Kuriyama, Y. und Hashimoto, M. (2002): Arylhydrocarbon receptor-dependent induction of liver and lung cytochromes P450 1A1, 1A2, and 1B1 by polycyclic aromatic hydrocarbons and polychlorinated biphenyls in genetically engineered C57BL/6J mice, Carcinogenesis, (Band 23), No. 7, Seite 1199-207..

[236] Wolff, A. J. und O'Donnell, A. E. (2001): Pulmonary manifestations of HIV infection in the era of highly active antiretroviral therapy, Chest, (Band 120), No. 6, Seite 1888-93..

[237] Schwarz, D.; Kisselev, P.; Cascorbi, I.; Schunck, W. H. und Roots, I. (2001): Differential metabolism of benzo[a]pyrene and benzo[a]pyrene-7,8-dihydrodiol by human CYP1A1 variants, Carcinogenesis, (Band 22), No. 3, Seite 453-9..

[238] Nebert, D. W.; Petersen, D. D. und Puga, A. (1991): Human AH locus polymorphism and cancer: inducibility of CYP1A1 and other genes by combustion products and dioxin, Pharmacogenetics, (Band 1), No. 2, Seite 68-78..

[239] Wong, Judy M. Y. ; Okey, Allan B. und Harper, Patricia A. (2001): Human Aryl Hydrocarbon Receptor Polymorphisms That Result in Loss of CYP1A1 Induction, Biochem Biophys Res Commun, (Band 288), No. 4, Seite 990-996.

[240] Daly, A. K.; Cholerton, S.; Gregory, W. und Idle, J. R. (1993): Metabolic polymorphisms, Pharmacol Ther, (Band 57), No. 2-3, Seite 129-60..


[Seite 94↓]

[241] Shimada, T.; Watanabe, J.; Inoue, K.; Guengerich, F. P. und Gillam, E. M. (2001): Specificity of 17beta-oestradiol and benzo[a]pyrene oxidation by polymorphic human cytochrome P4501B1 variants substituted at residues 48, 119 and 432, Xenobiotica, (Band 31), No. 3, Seite 163-76..

[242] Huang, L.; Wring, S. A.; Woolley, J. L.; Brouwer, K. R.; Serabjit-Singh, C. und Polli, J. W. (2001): Induction of P-glycoprotein and cytochrome P450 3A by HIV protease inhibitors, Drug Metab Dispos, (Band 29), No. 5, Seite 754-60..

[243] Perloff, M. D.; Von Moltke, L. L.; Marchand, J. E. und Greenblatt, D. J. (2001): Ritonavir induces P-glycoprotein expression, multidrug resistance-associated protein (MRP1) expression, and drug transporter-mediated activity in a human intestinal cell line, J Pharm Sci, (Band 90), No. 11, Seite 1829-37..

[244] Srinivas, R. V.; Middlemas, D.; Flynn, P. und Fridland, A. (1998): Human immunodeficiency virus protease inhibitors serve as substrates for multidrug transporter proteins MDR1 and MRP1 but retain antiviral efficacy in cell lines expressing these transporters [see comments], Antimicrob Agents Chemother, (Band 42), No. 12, Seite 3157-62.

[245] Jones, K.; Bray, P. G.; Khoo, S. H.; Davey, R. A.; Meaden, E. R.; Ward, S. A. und Back, D. J. (2001): P-Glycoprotein and transporter MRP1 reduce HIV protease inhibitor uptake in CD4 cells: potential for accelerated viral drug resistance?, Aids, (Band 15), No. 11, Seite 1353-8..

[246] El-Sankary, W.; Plant, N. J.; Gibson, G. G. und Moore, D. J. (2000): Regulation of the CYP3A4 gene by hydrocortisone and xenobiotics: role of the glucocorticoid and pregnane X receptors, Drug Metab Dispos, (Band 28), No. 5, Seite 493-6..

[247] Pfister, M.; Labbe, L.; Lu, J. F.; Hammer, S. M.; Mellors, J.; Bennett, K. K.; Rosenkranz, S. und Sheiner, L. B. (2002): Effect of coadministration of nelfinavir, indinavir, and saquinavir on the pharmacokinetics of amprenavir, Clin Pharmacol Ther, (Band 72), No. 2, Seite 133-41..

[248] Lee, C. G.; Ramachandra, M.; Jeang, K. T.; Martin, M. A.; Pastan, I. und Gottesman, M. M. (2000): Effect of ABC transporters on HIV-1 infection: inhibition of virus production by the MDR1 transporter, Faseb J, (Band 14), No. 3, Seite 516-22..

[249] Choo, E. F.; Leake, B.; Wandel, C.; Imamura, H.; Wood, A. J.; Wilkinson, G. R. und Kim, R. B. (2000): Pharmacological inhibition of P-glycoprotein transport enhances the distribution of HIV-1 protease inhibitors into brain and testes, Drug Metab Dispos, (Band 28), No. 6, Seite 655-60..

[250] Kantharidis, P.; El-Osta, S.; Silva, M.; Lee, G.; Hu, X. F. und Zalcberg, J. (2000): Regulation of MDR1 gene expression: emerging concepts, Drug Resist Updat, (Band 3), No. 2, Seite 99-108..

[251] Schuetz, E. G.; Schinkel, A. H.; Relling, M. V. und Schuetz, J. D. (1996): P-glycoprotein: a major determinant of rifampicin-inducible expression of cytochrome P4503A in mice and humans, Proc-Natl-Acad-Sci-U-S-A, (Band 93), No. 9, Seite 4001-5.

[252] Schuetz, E. G.; Umbenhauer, D. R.; Yasuda, K.; Brimer, C.; Nguyen, L.; Relling, M. V.; Schuetz, J. D. und Schinkel, A. H. (2000): Altered expression of hepatic cytochromes P-450 in mice deficient in one or more mdr1 genes, Mol Pharmacol, (Band 57), No. 1, Seite 188-97.

[253] Greuet, J.; Pichard, L.; Bonfils, C.; Domergue, J. und Maurel, P. (1996): The fetal specific gene CYP3A7 is inducible by rifampicin in adult human hepatocytes in primary culture, Biochem Biophys Res Commun, (Band 225), No. 2, Seite 689-94.

[254] Runge, D.; Kohler, C.; Kostrubsky, V. E.; Jager, D.; Lehmann, T.; Runge, D. M.; May, U.; Stolz, D. B.; Strom, S. C.; Fleig, W. E. und Michalopoulos, G. K. (2000): Induction of cytochrome P450 (CYP)1A1, CYP1A2, and CYP3A4 but not of CYP2C9, CYP2C19, multidrug resistance (MDR-1) and multidrug resistance associated protein (MRP-1) by prototypical inducers in human hepatocytes, Biochem Biophys Res Commun, (Band 273), No. 1, Seite 333-41.

[255] Sumida, A.; Yamamoto, I.; Zhou, Q.; Morisaki, T. und Azuma, J. (1999): Evaluation of induction of CYP3A mRNA using the HepG2 cell line and reverse transcription-PCR, Biol Pharm Bull, (Band 22), No. 1, Seite 61-5..


[Seite 95↓]

[256] Katoh, M.; Nakajima, M.; Yamazaki, H. und Yokoi, T. (2001): Inhibitory effects of CYP3A4 substrates and their metabolites on P-glycoprotein-mediated transport, Eur J Pharm Sci, (Band 12), No. 4, Seite 505-13..

[257] Huang, Z.; Guengerich, F. P. und Kaminsky, L. S. (1998): 16Alpha-hydroxylation of estrone by human cytochrome P4503A4/5, Carcinogenesis, (Band 19), No. 5, Seite 867-72..

[258] Hunt, C. M.; Westerkam, W. R. und Stave, G. M. (1992): Effect of age and gender on the activity of human hepatic CYP3A, Biochem Pharmacol, (Band 44), No. 2, Seite 275-83..

[259] McCune, J. S.; Lindley, C.; Decker, J. L.; Williamson, K. M.; Meadowcroft, A. M.; Graff, D.; Sawyer, W. T.; Blough, D. K. und Pieper, J. A. (2001): Lack of gender differences and large intrasubject variability in cytochrome P450 activity measured by phenotyping with dextromethorphan, J Clin Pharmacol, (Band 41), No. 7, Seite 723-31..

[260] Asghar, A.; Gorski, J. C.; Haehner-Daniels, B. und Hall, S. D. (2002): Induction of multidrug resistance-1 and cytochrome P450 mRNAs in human mononuclear cells by rifampin, Drug Metab Dispos, (Band 30), No. 1, Seite 20-6..

[261] Finta, C. und Zaphiropoulos, P. G. (2001): Intergenic mRNA molecules resulting from trans-splicing, J Biol Chem, (Band 277), No. 8, Seite 5882-90.

[262] Sata, F.; Sapone, A.; Elizondo, G.; Stocker, P.; Miller, V. P.; Zheng, W.; Raunio, H.; Crespi, C. L. und Gonzalez, F. J. (2000): CYP3A4 allelic variants with amino acid substitutions in exons 7 and 12: evidence for an allelic variant with altered catalytic activity, Clin Pharmacol Ther, (Band 67), No. 1, Seite 48-56..

[263] Kuehl, P.; Zhang, J.; Lin, Y.; Lamba, J.; Assem, M.; Schuetz, J.; Watkins, P. B.; Daly, A.; Wrighton, S. A.; Hall, S. D.; Maurel, P.; Relling, M.; Brimer, C.; Yasuda, K.; Venkataramanan, R.; Strom, S.; Thummel, K.; Boguski, M. S. und Schuetz, E. (2001): Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression, Nat Genet, (Band 27), No. 4, Seite 383-91..

[264] Felix, C. A.; Walker, A. H.; Lange, B. J.; Williams, T. M.; Winick, N. J.; Cheung, N. K.; Lovett, B. D.; Nowell, P. C.; Blair, I. A. und Rebbeck, T. R. (1998): Association of CYP3A4 genotype with treatment-related leukemia, Proc Natl Acad Sci U S A, (Band 95), No. 22, Seite 13176-81.

[265] Wandel, C.; Witte, J. S.; Hall, J. M.; Stein, C. M.; Wood, A. J. und Wilkinson, G. R. (2000): CYP3A activity in African American and European American men: population differences and functional effect of the CYP3A4*1B5'-promoter region polymorphism, Clin Pharmacol Ther, (Band 68), No. 1, Seite 82-91..

[266] Amirimani, B.; Walker, A. H.; Weber, B. L. und Rebbeck, T. R. (1999): RESPONSE: re: modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4, J Natl Cancer Inst, (Band 91), No. 18, Seite 1588-90..

[267] Rebbeck, T. R. (2000): More about: modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4, J Natl Cancer Inst, (Band 92), No. 1, Seite 76..

[268] Ando, Y.; Tateishi, T.; Sekido, Y.; Yamamoto, T.; Satoh, T.; Hasegawa, Y.; Kobayashi, S.; Katsumata, Y.; Shimokata, K. und Saito, H. (1999): Re: Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4, J Natl Cancer Inst, (Band 91), No. 18, Seite 1587-90..

[269] van Schaik, R. H.; de Wildt, S. N.; Brosens, R.; van Fessem, M.; van den Anker, J. N. und Lindemans, J. (2001): The CYP3A4*3 allele: is it really rare?, Clin Chem, (Band 47), No. 6, Seite 1104-6..

[270] Aoyama, T.; Yamano, S.; Waxman, D. J.; Lapenson, D. P.; Meyer, U. A.; Fischer, V.; Tyndale, R.; Inaba, T.; Kalow, W.; Gelboin, H. V. und et al. (1989): Cytochrome P-450 hPCN3, a novel cytochrome P-450 IIIA gene product that is differentially expressed in adult human liver. cDNA and deduced amino acid sequence and distinct specificities of cDNA-expressed hPCN1 and hPCN3 for the metabolism of steroid hormones and cyclosporine, J Biol Chem, (Band 264), No. 18, Seite 10388-95.


[Seite 96↓]

[271] Wrighton, S. A.; Ring, B. J.; Watkins, P. B. und VandenBranden, M. (1989): Identification of a polymorphically expressed member of the human cytochrome P-450III family, Mol Pharmacol, (Band 36), No. 1, Seite 97-105.

[272] Jounaidi, Y.; Hyrailles, V.; Gervot, L. und Maurel, P. (1996): Detection of CYP3A5 allelic variant: a candidate for the polymorphic expression of the protein?, Biochem Biophys Res Commun, (Band 221), No. 2, Seite 466-70..


© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 3.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am:
20.10.2004