[page 106↓]

8. References

Adrian, R. and Schneider – Olt, B. 1999. Top – down effects of crustacean zooplankton on pelagic microrganisms in a mesotrophic lake. J. Plankton Res. 21: 2175–2190.

Adrian, R., Wickham, S.A. and Butler, N.M. 2001. Trophic interactions between zooplankton and the microbial community in contrasting food webs: the epilimnion and deep chlorophyll maximum of a mesotrophic lake. Aquat. Microb. Ecol. 24: 83–97.

Ahlgren, G., Gustafsson, I.B. and Boberg, M. 1992. Fatty acid content and chemical composition of freshwater microalgae. J. Phycol. 28: 37–50.

Ahlgren, G., Lundstedt, L., Brett, M. and Forsberg, C. 1990. Lipid composition and food quality of some freshwater phytoplankton for cladoceran zooplankters. J. Plankton Res. 12: 809–818.

Arndt, H. 1993. Rotifers as predators on components of the microbial web (bacteria, heterotrophic flagellates, ciliates) – a review. Hydrobiologia 255/256: 231–246.

Arndt, H. and Berninger, U.G. 1995. Protists in aquatic food webs – complex interactions. Proc. Sec. Eur. Cong. Protistol. 15: 224–232.

Arts, M.T. 1998. Lipids in freshwater zooplankton: Selected ecological and physiological aspects. In: Lipids in freshwater ecosystems (Arts, M.T. and Wainman, B.C., Eds.), pp.71–90. Springer, New York.

Arts, M.T., Robarts, R.D. and Evans, M.S. 1993. Energy reserve lipids of zooplanktonic crustaceans from an oligotrophic saline lake in relation to food resources and temperature. Can. J. Fish. Aquat. Sci. 50: 2404–2420.

Avivi, L., Iaron, O. and Halevy, S. 1967. Sterols of some algae. Comp. Biochem. Physiol. 21: 321–326.

Azam, F., Fenchel, T., Field, J.G., Gray, J.S., Meyer-Reil, L.A. and Thingstad, F. 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.


[page 107↓]

Bec, A., Desvilettes, C., Véra, A., Fontvieille, D. and Bourdier, G. 2003. Nutritional value of different food sources for the benthic Daphnidea Simocephalus vetulus : role of fatty acids. Arch. Hydrobiol. 156: 145–163.

Becker, C. and Boersma, M. 2003. Resource quality effects on life histories of Daphnia. Limnol. Oceanogr. 48: 700–706.

Bell, E.M. and Laybourn-Parry, J. 2003. Mixotrophy in the antartic phytoflagellate Pyramimonas gelidicola (Chlorophyta: Prasinophyceae). J. Phycol. 39: 644–649.

Bernardi, R. and Guissani, G. 1990. Are blue-green algae suitable as food for zooplankton? An overview. Hydrobiologia 200/201: 29–41.

Berninger, U.G., Wickham, S.A. and Finlay, B.J. 1993. Trophic coupling within the microbial food web: a study with fine temporal resolution in a eutrophic freshwater ecosystem. Freshw. Biol. 30: 419–432.

Bird, B.F. and Kalff, J. 1986. Bacterial grazing by planktonic lake algae. Science 231: 493–495.

Bissinger, V., Jander, J. and Tittel, J. 2000. A new medium free of organic carbon to cultivate organisms from extremely acidic mining lakes (pH 2.7). Acta Hydrochim. Hydrobiol. 28: 310–312.

Bloch, K. 1992. Sterol molecule: structure, biosynthesis, and function. Steroids 57: 378–383.

Boersma, M. and Stelzer, C.P. 2000. Response of a zooplankton community to the addition of unsaturated fatty acids: an enclosure study. Freshw. Biol. 45: 179–188.

Boersma, M., Schoeps, C. and McCauley, E. 2001. Nutritional quality of seston for the freshwater herbivore Daphnia galeata x hyalina : Biochemical versus mineral limitations. Oecologia 129: 342–348.

Bogdan, K.G., Gilbert, J.J. and Starkweather, P.L. 1980. In situ clearance rates of planktonic rotifers. Hydrobiologia 73: 73–77.

Bogdan, K.G. and Gilbert, J.J. 1987. Quantitative comparison of food niches of some freshwater zooplankton. A multitracer approach. Oecologia 72: 331–340.


[page 108↓]

Breteler, W.C.M.K., Schogt, N., Baas M., Schouten, S. and Kraay, G.W. 1999. Trophic upgrading of food quality by protozoan enhancing copepod growth: role of essential lipids. Mar. Biol. 135: 191–198.

Brett, M.T. and Müller-Navarra, D.C. 1997. The role of highly unsaturated fatty acids in aquatic food web processes. Freshw. Biol. 38: 483–499.

Burns, C.W. and Schallenberg, M. 2001. Calanoid copepods versus cladocerans: Consumer effects on protozoa in lakes of different trophic status. Limnol. Oceanogr. 46: 1558–1565.

Caron, D.A., Goldman, J.C. and Dennett, M.R. 1990. Carbon utilization by the omnivorous flagellate Paraphysomonas imperforata . Limnol. Oceanogr. 35: 192–201.

Carrick, H.J., Fahnenstiel, G.L., Stoermer, E.F. and Wetzel, R.G. 1991. The importance of zooplankton-protozoan trophic couplings in Lake Michigan. Limnol. Oceanogr. 36: 1335–1345.

Chang, C.L. 2004. Effect of amino acid on larvae and adults of Ceratitis capitata (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 97: 529–535.

Conner, R.L., Landrey, J.R., Burns, C.H. and Mallory, F.B. 1968. Cholesterol inhibition of pentacyclic triterpenoid biosynthesis in Tetrahymena pyriformis . J. Protozool. 15: 600–605.

Cowie, G.L. and Hedges, J.I. 1994. Biochemical indicators of diagenetic alteration in natural organic matter mixtures. Nature 369: 304–307.

Davidson, L.R. 1991. Environmental effects on algal photosynthesis: temperature. J. Phycol. 27: 2–8.

Dayal, J.S., Ali, S.A., Thirunavukkarasu, A.R., Kailasam, M. and Subburaj, R. 2003. Nutrient and amino acid profiles of egg and larvae of Asian seabass, Lates calcarifer (Bloch). Fish Physiol. Biochem. 29: 141–147.

De Biase, A.E., Sanders, R.W. and Porter, K.G. 1990. Relative nutritional value of ciliate protozoa and algae as food for Daphnia . Microb. Ecol. 19: 199–210.

Delaunay, F., Marty, Y., Moal, J. and Samain, J.F. 1993. The effect of monospecific algal diets on growth and fatty acid composition of Pecten maximus (L.) larvae. J. Exp. Mar. Biol. Ecol. 173: 163–179.


[page 109↓]

DeMott, W.R. and Müller-Navarra, D.C. 1997. The importance of highly unsaturated fatty acids in zooplankton nutrition: evidence from experiments with Daphnia , a cyanobacterium and lipid emulsions. Freshw. Biol. 38: 649–664.

DeMott, W.R., Gulati, R.D. and Siewertsen, K. 1998. Effects of phosphorus-deficient diets on the carbon and phosphorus balance of Daphnia magna . Limnol. Oceanogr. 43: 1147–1161.

Desvilettes, C.H., Bourdier, G., Amblard, C.H. and Barth, B. 1997. Use of fatty acids for the assessment of zooplankton grazing on bacteria, protozoans and microalgae. Freshw. Biol. 38: 629–637.

Dixon, H., Gingu, C.D., Williamson, J. 1972. Trypanosome sterols and their metabolic origins. Comp. Biochem. Physiol. B 41: 1–18.

Dortch, Q. and Packard, T.T. 1989. Differences in biomass structures between oligotrophic and eutrophic marine ecosystems. Deep Sea Res. 36: 223–240.

Dunham, P.B. 1973. Regulation of solutes and water in Tetrahymena . In: Biology of Tetrahymena (Elliott, A.M., Ed.), pp. 165–198. Dowden, Hutchinson and Ross, Inc., Pennsylvania.

Ederington, M.C., McManus, G.B. and Harvey, H.R. 1995. Trophic transfer of fatty acids, sterols, and a triterpenoid alcohol between bacteria, ciliate, and the copepod Acartia tonsa . Limnol. Oceanogr. 40: 860–867.

Elhmmali, M.M., Roberts, D.J. and Evershed, R.P. 2000. Combined analysis of bile acids and Sterols/Stanols from riverine particulates to assess sewage discharges and other fecal sources. Environ. Sci. Technol. 34: 39–46.

Elliott, A.M. 1973. Biology of Tetrahymena. Dowden, Hutchinson and Ross, Inc., Pensylvania.

Erwin, J. and Bloch, K. 1963. Lipid metabolism of ciliated protozoa. J. Biol. Chem. 238: 1618–1624.

Fenchel, T. 1986. Protozoan filter feeding. Prog. Protistol. 1: 65–113.

Fenchel, T. 1988. Marine plankton food chains. Annu. Rev. Ecol. Syst. 19: 19–38.


[page 110↓]

Ferguson, K.A., Davis, F.M., Conner, R.L., Landry, J.R. and Mallory, F.B. 1975. Effect of sterol replacement in vivo on the fatty acid composition of Tetrahymena . J. Biol. Chem. 250: 2290–2294.

Fernández – Reiriz, M.J. and Labarta,U. 1996. Lipid classes and fatty acid composition of rotifers ( Brachionus plicatilis ) fed two algal diets. Hydrobiologia 330: 73–79.

Foissner, W., Berger, H. and Schaumburg, J. 1999. Identification and ecology of limnetic plankton ciliates. Informationsberichte des bayer. Landesamtes für Wasserwirtschaft Heft 3/99. Bavarian State Office for Water Management (Editor and Publisher), Munich.

Folch, J., Less, M. and Stanley, H.S. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226: 497–509.

Fredrickson, H.L., Cappenberg, T.E. and De Leeuw, J.W. 1986. Polar lipid ester – linked fatty acid composition of Lake Vechten seston: an ecological application of lipid analysis. FEMS Microb. Ecol. 38: 381–386.

Frolov, A.V., Pankov, S.L., Geradze, K.N., Pankova, S.A. and Spektorova, L.V. 1991. Influence of the biochemical composition of food on the biochemical composition of the rotifer Brachionus plicatilis . Aquaculture 97: 181–202.

Furlong, S.T. 1989. Sterols of parasitic protozoa and helminthes. Exp. Parasitol. 68: 482–485.

Fyhn, H.J. 1989. First feeding of marine fish larvae: Are free amino acids the source of energy? Aquaculture 80: 111–120.

Gershengorn, M.C., Smith, A.R.H., Goulston, G., Goad, L.J., Goodwin, T.W. and Haines, T.H. 1968. The sterols of Ochromonas danica and Ochromonas malhamensis . Biochemistry 7: 1698–1707.

Gilbert, J.J. and Jack, J.D. 1993. Rotifers as predators on small ciliates. Hydrobiologia 255/256: 247–253.

Gillan, F.T., Johns, R.B., Verheyen, T.V., Volkman, J.K. and Bavor, H.J. 1981. Transmonounsaturated fatty acids in marine bacterial isolate. App. Environ. Microb. 41: 849–856.


[page 111↓]

Giner, J.L., Wünsche, L., Andersen, R.A. and Djerassi, C. 1991. Biosynthetic studies of marine organisms. XXVII. Dinoflagellates cyclize squalene oxide to lanosterol. Biochem. Syst. Ecol. 19: 143–145.

Ginger, M.L., Prescott, M.C., Reynolds, D.G., Chance, M.L. and Goad, L.J. 2000. Utilization of Leucine and acetate as carbon sources for sterol and fatty acid biosynthesis by Old and New World Leishmania species, Endotrypanum monterogeii and Trypanossoma cruzi . Eur. J. Biochem. 267: 2555–2566.

Gladu, P.K., Patterson, G.W., Wikfors, G.H., Chitwood, D.J. and Lusby, W.R. 1990. The occurrence of brassicasterol and epibrassicasterol in the Chromophycota. Comp. Biochem. Physiol. 97B: 491–494.

Goad, L.J. 1981. Sterol biosynthesis and metabolism in marine invertebrates. Pure Appl. Chem. 51: 837–852.

Goad, L.J., Holz, G.G. and Beach, D.H. 1983. Identification of (24S)-24-methylcholesta-5,22-dien-3β-ol as the major sterol of a marine cryptophyte and a marine haptophyte. Phytochemistry 22: 475–476.

Goodwin, T.W. 1974. Sterols. In: Algal physiology and biochemistry (Stewart, W.D.P., Ed.), pp. 266–280. Academic Press, New York.

Goulden, C.E. and Place, A.R. 1990. Fatty acid symthesis and accumulation rates in daphniids. J. Exp. Zool. 256: 168–178.

Gordon, D.T. 1982. Sterols in mollusks and crustacea of the Pacific Northwest. JAOCS 59: 536–545.

Gordon, D.T. and Collins, N. 1982. Anatomical distribution of sterols in Oysters ( Crassostrea gigas ). Lipids 17: 11–817.

Guillard, R.R.L. and Lorenzen, C.J. 1972. Yellow–green algae with chlorophyllide. Can. J. Phycol. 8: 10–14.

Guisande, C., Maneiro, I. and Riveiro, I. 1999. Homeostasis in the essential amino acid composition of the marine copepod Euterpina acutifrons . Limnol. Oceanogr. 44: 691–696.


[page 112↓]

Guisande, C., Maneiro, I. and Riveiro, I. 2000. Comparisons among the amino acid composition of females, eggs and food to determine the relative importance of food quantity and food quality to copepod reproduction. Mar. Ecol. Prog. Ser. 202: 135–142.

Halevi, S., Avivi, L. and Katan, H. 1966. Sterols of soil amoebas and Ochromonas danica : phylogenetic approach. J. Protozool. 13: 480–483.

Harvey, H.R. and McManus, G.B. 1991. Marine ciliates as a widespread source of tetrahymanol and hopan-3β-ol in sediments. Geochim. Cosmochim. Acta 55: 3387–3390.

Harvey, H.R., Ederington, M.C. and McManus, G.B. 1997. Lipid composition of the marine ciliates Pleuronema sp. and Fabrea salina : shifts in response to changes in diet. J. Euk. Microbiol. 44: 189–193.

Hasset, R. P. 2004. Supplementation of a diatom diet with cholesterol can enhance copepod egg production-rates. Limnol. Oceanogr. 49: 488–494.

Hayashi, K. 1976. The lipids of marine animals from various habitat depths. VI. On the characteristics of the fatty acid composition of neutral lipids from decapods. Bull. Fac. Fish. Hokkaido Univ. 27: 21–29.

Heifetz, P.B., Forster, B., Osmond, C.B., Giles, L.J. and Boynton, J.E. 2000. Effects of acetate on facultative autotrophy in Clamydomonas reinhardtii assessed by photosynthetic measurements and stable isotope analyses. Plant. Physiol. 122: 1439–1445.

Helland, S., Nejstgaard, J.C., Humlen, R., Fyhn, H.J. and Båmstedt, U. 2003a. Effect of season and maternal food on Calanus finmarchicus reproduction, with emphasis on free amino acids. Mar. Biol. 142: 1141–1151.

Helland, S., Nejstgaard, J.C., Humlen, R., Fyhn, H.J. and Båmstedt, U. 2003b. Effects of starvation, season, and diet on the free amino acid and protein content of Calanus finmarchicus females. Mar. Biol. 143: 297–306.

Hochachka, P.W. and Somero, G.N. 2002. Biochemical adaptation – mechanism and process in physiological evolution. Oxford University Press, Oxford.


[page 113↓]

Holler, S., Pfennig, N., Neunlist, S. and Rohmer, M. 1993. Effect of a non-methanogenic symbiont and exogenous stigmasterol on the viability and tetrahymanol content of the anaerobic ciliate Trimyema compressum . Eur. J. Protistol. 29: 42–48.

Holz Jr., G.G. 1973. The nutrition of Tetrahymena : Essential nutrients, feeding and digestion. In: Biology of Tetrahymena (Elliott, A.M., Ed), pp. 89–98. Dowden, Hutchinson and Ross, Inc., Pennsylvania.

Hudson, E.D., Parrish, C.C. and Helleur, R.J. 2001. Biogeochemistry of sterols in plankton, settling particles and recent sediments in a cold ocean ecosystem (Trinity Bay, Newfoundland). Mar. Chem. 76: 253–270.

Ikekawa, N. 1985. Structures, biosynthesis and function of sterols in invertebrates. In: Sterols and Bile Acids (Danielson, H. and Sjövall, J., Eds.), pp. 199–230. Elsevier Science Publications, Amsterdam.

Jónasdóttir, S. R. 1994. Effects of food quality on the reproductive success of Acartia tonsa and Acartia hudsonica : laboratory observations. Mar. Biol. 121: 67–81.

Jones, R.L.J., Leadbeater, B.S.C. and Green, J.C. 1993. Mixotrophy in marine species of Chrysochromulina ( Prymnesiophyceae ): ingestion and digestion of a small green flagellate. J. Mar. Biol. Assoc. U.K. 73: 283–296.

Jones, R.I. 1994. Mixotrophy in planktonic protists as a spectrum of nutritional strategies. Mar. Microb. Food Webs 8: 87–96.

Jürgens, K. and Güde, H. 1994. The potential importance of grazing-resistant bacteria in planktonic systems. Mar. Ecol. Prog. Ser. 112: 169–188.

Jürgens, K., Skibbe, O. and Jeppesen, E. 1999. Impact of metazooplankton on the composition and population dynamics of planktonic ciliates in a shallow, hypertrophic lake. Aquat. Microb. Ecol. 17: 61–75.

Jürgens, K. and Jeppesen, E. 2000. The impact of metazooplankton on the structure of the microbial food web in a shallow, hypertrophic lake. J. Plankton Res. 22: 1047–1070.


[page 114↓]

Jumars, P.A., Penry, D.L., Baross, J.A., Perry, M.J. and Frost, B.W. 1989. Closing the microbial loop: dissolved carbon pathway to heterotrophic bacteria from incomplete ingestion, digestion and absorption in animals. Deep-Sea Res. 36: 483–495.

Kamjunke N., Gaedke U., Tittel J., Weithoff G. and Bell E.M. Strong vertical differences in the plankton composition of an extremely acidic lake. Arch. Hydrobiol., in press.

Kanasawa, A., Tanaka, N., Teshima, S. and Kashivada, K. 1971. Nutritional requirements of prawn – III. Utilization of the dietary sterols. Nippon. Suisan. Gakk. 37: 1015–1019.

Kaneda, T. 1991. Iso– and anteiso– fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol. Rev. 55: 288–302.

Kilham, S.S., Kreeger, D.A., Goulden, C.E. and Lynn, S.G. 1997. Effect of algal quality on fecundity and growth rates of Daphnia. Freshw. Biol. 38: 639–647.

Klein Breteler, W.C.M. 1980. Continuous breeding of marine pelagic copepods in the presence of heterotrophic dinoflagellates. Mar. Ecol. Prog. Ser. 2: 229–233.

Klein Breteler, W.C.M., Schogt, N., Baas, M., Schouten, S. and Kraay, G.W. 1999. Trophic upgrading of food quality by protozoans enhancing copepod growth: role of essential lipids. Mar. Biol. 135: 191–198.

Kleppel, G.S., Burkart, C.A. and Houchin, L. 1998. Nutrition and regulation of egg production in the calanoid copepod Acartia tonsa . Limnol. Oceanogr. 43: 1000–1007.

Knauer, J., Kerr, R.G., Lindley, D. and Southgate, P.C. 1998. Sterol metabolism of Pacific oyster ( Crassostrea gigas ) Spat. Comp. Biochem. Physiol. 119B: 81–84.

Kohl, W., Gloe, A. and Reichenbach, H. 1983. Steroids from the myxobacterium Nannocystis exedens . J. Gen. Microbiol. 129: 1629–1635.

Koroly, M.J. and Connor, R.L. 1976. Unsaturated fatty acid biosynthesis in Tetrahymena . J. Biol. Chem. 251: 7588–7592.


[page 115↓]

Laabir, M., Poulet, S.A., Cueff, A. and Ianora, A. 1999. Effect of diet on levels of amino acids during embryonic and naupliar development of the copepod Calanus helgolandicus . Mar. Biol. 134: 89–98.

Lair, N. and Picard, V. 2000. The effects of Chilomonas on the life history traits of Daphnia longispina under semi–natural conditions and the implications for competition in the plankton. Hydrobiologia 429: 79–87.

Lampert, W. 1977. Studies on the carbon balance of Daphnia pulex as related to the environmental conditions. IV. Determination of the “threshold” concentration as a factor controlling the abundance of zooplankton species. Arch. Hydrobiol. Beih. Ergeb. Limnol. 48: 361–368.

Lees, A.M. and Korn, E.D. 1966. Metabolism of unsaturated fatty acids in protozoa. Biochemistry 5: 1475–1481.

Lösel, D. M. 1988. Function of lipids: Specialized roles in fungi and algae. In: Microbial Lipids (Ratledge, C. and Wilkinson, S.G., Eds.), vol. 2, pp.367–438. Academic Press, London.

Lubtzens, E., Merko, A. and Tietz, A. 1985. De novo synthesis of fatty acids in the rotifer Brachionus plicatilis . Aquaculture 34: 27–37.

Mallory, F.B., Gordon, J.T. and Conner, R.L. 1963. The isolation of a pentacyclic triterpenoid alcohol from a protozoan. J. Am. Chem. Soc. 85: 1362–1363.

Mansour, M.P., Volkman, J.K., Jackson, A.E. and Blackburn, S.I. 1999. The fatty acid and sterol composition of five marine dinoflagellates. J. Phycol. 35: 710–720.

Martin-Creuzburg, D. and Von Elert, E. 2004. Impact of 10 dietary sterols on growth and reproduction of Daphnia galeata . J. Chem. Ecol. 30: 483–500.

Mayzaud, P., Roche-Mayzaud, O. and Razouls, S. 1992. Medium term time acclimation of feeding and digestive enzyme activity in marine copepods: influence of food concentration and copepod species. Mar. Ecol. Prog. Ser. 89: 197–212.

Mel'nikov, S.M., ten Hoorn, J.W.M.S. and Eijkelenboom, A.P.A.M. 2004. Effect of phytosterols and phytostanols on the solubilization of cholesterol by dietary mixed micelles: an in vitro study. Chem. Phys. Lipids 127: 121–141.


[page 116↓]

Mohr, S. and Adrian, R. 2001. Functional response of the rotifers Brachionus calyciflorus and Brachionus rubens feeding on armored and unarmored ciliates. Limnol. Oceanogr. 45: 1175–1180.

Mohr, S. and Adrian, R. 2002a. Effects of Brachionus calyciflorus and Brachionus rubens on a manipulated freshwater microbial community. Freshw. Biol. 24: 25–31.

Mohr, S. and Adrian, R. 2002b. Reproductive success of the rotifer Brachionus calyciflorus feeding on ciliates and flagellates of different trophic modes. Freshw. Biol. 47: 1832–1839.

Montagnes, D.J.S., Berges, J., Harrison, P.J. and Taylor, F.J.R. 1994. Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplankton. Limnol. Oceanogr. 39: 1044–1060.

Moreau, R.A., Whitaker, B.D. and Hicks, K.B. 2002. Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses. Prog. Lipid Res. 41: 457–500.

Morowitz, H.J. 1968. Energy flow in biology. Academic Press, London.

Müller, H. 1991. Pseudobalanion planctonicum (Ciliophora, Prostomatidae): ecological significance of an algivorous nanociliate in a deep meso-eutrophic lake. J. Plankton Res. 13: 247–262.

Müller, H. and Schlegel, A. 1999. Responses of three freshwater planktonic ciliates with different feeding modes to cryptophyte and diatom prey. Aquat. Microb. Ecol. 17: 49–60.

Müller-Navarra, D.C. 1995. Evidence that a highly unsaturated fatty acid limits Daphnia growth in nature. Arch. Hydrobiol. 132: 297–307.

Müller-Navarra, D.C., Brett, M., Liston, A.M. and Goldman, C.R. 2000. A highly unsaturated fatty acids predicts carbon transfer between primary producers and consumers. Nature 403: 74–77.

Müller-Navarra, D.C., Brett, M., Park, S., Chandra, S., Ballantyne, A.P., Zorita, E. and Goldman, C.R. 2004. Unsaturated fatty acid content in seston and tropho-dynamic coupling in lakes. Nature 427: 69–72.


[page 117↓]

Nes, W.R. and McKean, M.L. 1977. The biochemistry of steroids and other isopentenoids. University Park Press, Baltimore.

Nygaard, K. and Tobiesen, A. 1993. Bacterivory in algae: a survival strategy during nutrient limitation. Limnol. Oceanogr. 38: 273–279.

Ogunji, J.O. and Wirth, M. 2001. Alternative protein sources as substitutes for fish meal in the diet of young tilapia Oreochromis niloticus (Linn). Isr. J. Aquacult. – Bamidgeh. 53: 34–43.

Ourisson, G., Rohmer, M. and Poralla, K. 1987. Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Ann. Rev. Microbiol. 41: 301–333.

Pakrashi, S.C., Dutta, P.K., Achari, B., Misra, S., Choundhury, A., Cahttopadhyay, S. and Ghosh, A. 1989. Lipids and fatty acids of the horseshoe crabs Tachypleus gigas and Carcinoscorpius rotundicauda . Lipids 24: 443–447.

Park, S., Brett, M., Müller-Navarra, D.C. and Goldman, C.R. 2002. Essential fatty acid content and the phosphorus to carbon ratio in cultured algae as indicators of food quality for Daphnia . Freshw. Biol. 47: 1377–1390.

Park, S., Brett, M., Oshel, E.T. and Goldman, C.R. 2003. Seston food quality and Daphnia production efficiencies in an oligo-mesotrophic Subalpine Lake. Aquat. Ecol. 37: 123–136.

Parrish, C.C. and Wangersky, P.J. 1987. Particulate and dissolved lipid classes in cultures of Phaeodactylum trycornutum grown in cage culture turbidostats with a range of nitrogen supply rates. Mar. Ecol. Prog. Ser. 35: 119–128.

Parrish, C.C. 1999. Determination of total lipid, lipid classes, and fatty acids in aquatic samples. In: Lipids in aquatic ecosystems (Arts, M. and Wainman, B.C., Eds.), pp. 4–20. Springer Verlag, New York.

Patterson, G.W. 1991. Sterols of Algae. In: Physiology and Biochemistry of Sterols (Patterson, G.W. and Nes, W.D., Eds.), pp. 118–157. American Oil Chemists’ Society, Illinois.

Pelegrí, S.P., Dolan, J. and Rassoulzadegan, F. 1999. Use of high temperature catalytic oxidation (HTCO) to measure carbon content of microorganisms. Aquat. Microb. Ecol. 16: 273–280.


[page 118↓]

Piironen, V., Lindsay, D.G., Mietiinen, T.A., Toivo, J. and Lampi, A.M. 2000. Plant sterols, biosynthesis, biological function and their importance to human nutrition. J. Sci. Food Agr. 80: 939–966.

Plath, K. and Boersma, M. 2001. Mineral limitation of zooplankton: stoichiometric constraints and optimal foraging. Ecology 82: 1260–1269.

Poerschmann, J., Spijkerman, E. and Langer, U. 2004. Fatty acid patterns in Clamydomonas sp. As a marker for nutritional regimes and tzempearture under extremely acidic conditions. Microb. Ecol. 48: 78–89.

Pomeroy, L.R. 1974. The ocean’s food web, a changing paradigm. BioScience 24: 499–504.

Porter, K.G. and Feig, Y.S. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 141–153.

Post-Beitenmiller, D., Roughan, G. and Ohlrogge, J.B. 1992. Regulation of plant fatty acid biosynthesis. Analysis of acyl-coenzyme A and acyl-acyl carrier protein substrate pools in spinach and pea chloroplasts. Plant Physiol. 100: 923–930.

Pourriot, R. 1977. Food and feeding habits of Rotifera. Arch. Hydrobiol. Beih. Ergeb. Limnol. 8: 243–260.

Putt, M. and Stoecker, D.K. 1989. An experimentally determined carbon : volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters. Limnol. Oceanogr. 34: 1097–1103.

Raederstorff, D. and Rohmer, M. 1987a. The action of systemic fungicides tridemorph and fenpropimorph on sterol biosynthesis by the soil amoeba Acanthamoeba polyfaga . Eur. J. Biochem. 164: 421–426.

Raederstorff, D. and Rohmer, M. 1987b. Sterol biosynthesis via cycloartenol and other biochemical features related to photosynthetic phyla in the amoeba Naegleria lovaniensis and Naegleria gruberi . Eur. J. Biochem. 164: 427–434.

Ratledge, C. and Wilkinson, S.G. 1988. Microbial lipids. Academic Press, London.

Raubenheimer, D. 1992. Tannic acid, protein, and digestible carbohydrate: dietary imbalance and nutritional compensation in locusts. Ecology 73: 1012–1027.


[page 119↓]

Ravet, J.L., Brett, M.T. and Müller-Navarra, D. 2003. A test of the role of polyunsaturated fatty acids in phytoplankton food quality for Daphnia using liposome supplementation. Limnol. Oceanogr. 48: 1938–1947.

Reddy, P. S. 2000. Involvement of opioid peptided in the regulation of reproduction in the prawn Penaeus indicus . Naturwissenschaften 87: 535–538.

Rohmer, M., Seemann, M., Horbach, S., Bringer-Meyer, S. and Sahm, H. 1996. Glyceraldehyde 3-phosphate and pyruvate as precursors of isoprenic units in an alternative non-mevalonate pathway for terpenoid biosynthesis. J. Am. Chem. Soc. 118: 2564–2566.

Rothhaupt, K.O. 1990. Differences in particle size-dependent feeding efficiencies of closely related rotifer species. Limnol. Oceanogr. 35: 16–23.

Rothhaupt, K.O. 1996a. Utilization of substitutable carbon and phosphorus sources by the mixotrophic chrysophyte Ochromonas sp. Ecology 77: 706–715.

Rothhaupt, K.O. 1996b. Laboratory experiments with a mixotrophic chrysophyte and obligately phagotrophic and phototrophic competitors. Ecology 77: 716–724.

Sanders, R.W. and Porter, K.G. 1990. Bacterivorous flagellates as food resources for the freshwater crustacean zooplankter Daphnia ambigua . Limnol. Oceanogr. 35: 188–191.

Sanders, R.W., Porter, K.G. and Caron, D.A. 1990. Relationship between phototrophy and phagotrophy in the mixotrophic chrysophyte Poterioochromonas malhamensis . Microb. Ecol. 19: 97–109.

Sanders, R. 1991. Trophic strategies among heterotrophic flagellates. In: The biology of free-living heterotrophic flagellates (Patterson, D.J. and Larsen, J., Eds.), pp. 21–38. Systematics Association by Clarendon Press, Oxford.

Sanders, R.W., Williamson, C.E., Stutzman, P.L., Moeller, R.E., Goulden, C.E. and Aoki – Goldsmith, R. 1996. Reproductive success of “herbivorous” zooplankton fed algal and nonalgal food resources. Limnol. Oceanogr. 41: 1295–1305.


[page 120↓]

Sargent, J.R. and Falk-Petersen, S. 1988. The lipid chemistry of calanoid copepods. Hydrobiologia 167/168: 101–114.

Schouten, S., Bowman, J.P., Rijpstra, W.I.C. and Damsté, J.S.S. 2000. Sterols in a psychrophilic methanotroph, Methylosphaera hansonii . FEMS Microb. Lett. 186: 193–195.

Sherr, E.B. and Sherr, B.F. 1994. Bacterivory and herbivory: Key roles of phagotrophic protists in pelagic food webs. Microb. Ecol. 28: 223–235.

Šimek, K., Vrba, J. and Hartman, P. 1994. Size – selective feeding by Cyclidium sp. on bacterioplankton and various sizes of cultured bacteria. FEMS Microb. Ecol. 14: 157–168.

Simon, M. and Azam, F. 1989. Protein content and protein synthesis rates of planktonic bacteria. Mar. Ecol. Prog. Ser. 51: 201–213.

Singer, P. 1994. Was sind, wie wirken Omega-3-Fettsäuren? Umschau Zeitschriftenverlag Breidenstein, Frankfurt.

Sleigh, M.A. 2000. Trophic strategies. In: The flagellates: Unity, diversity and evolution (Leadbeater, B.S.C. and Green, J.C., Eds.), pp. 147–165. Taylor and Francis Limited, New York.

Smith, R.E.H. and D’Souza, F.M.L. 1993. Macromolecular labelling patterns and inorganic nutrient limitation of a North Atlantic spring bloom. Mar. Ecol. Prog. Ser. 92: 111–118.

Sommer, U., Gliwicz, Z.M., Lampert, W. and Duncan, A. 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106: 433–471.

Sommer, U. 1998. From algal competition to animal production: Enhanced ecological efficiency of Brachionus plicatilis with a mixed diet. Limnol. Oceanogr. 43: 1393–1396.

Sorkhoh, N.A., Ghannoum, M.A., Ibrahim, A.S., Stretton, R.J. and Radwann, S.S. 1990. Sterols and diacylglycerophosphocholines in the lipids of the hydrocarbon – utilizing prokaryote Rhodococcus rhodochrous . J. Appl. Bacteriol. 69: 856–863.

Souci, S.W., Fachmann, W. and Kraut, H. 1994. Food composition and nutrition tables. Medpharm Scientific Publications (CRC Press), Stuttgart.


[page 121↓]

Stalleart, V.M. and Geuns, J.M.C. 1994. Phospholipid and free sterol composition of hypocotyls plasma – membranes of aging mung bean seedlings. Phytochemistry 36: 1177–1180.

Sterner, R.W., Elser, J.J. and Hessen, D.O. 1992. Stoichiometric relationship among producers and consumers in food webs. Biogeochemistry 17: 49–67.

Sterner, R.W. 1993. Daphnia growth on varying quality of Scenedesmus : mineral limitation of zooplankton. Ecology 74: 2351–2360.

Sterner, R.W. and Hessen, D.O. 1994. Algal nutrient limitation and the nutrition of aquatic herbivores. Ann. Rev. Ecol. Syst. 25: 1–29.

Sterner, R.W. and Elser, J.J. 2002. Ecological Stoichiometry: The biology of elements from molecules to the biosphere. Princeton University Press, New Jersey.

Stoecker, D.K., Cucci, T.L., Hulburt, E.M. and Yentsch, C.M. 1986. Selective feeding by Balanion sp. (Ciliata: Balanionidae) on phytoplankton that best support its growth. J. Exp. Mar. Biol. Ecol. 95: 113–130.

Stoecker, D.K. and Eglolff, D.A. 1987. Predation by Acartia tonsa Dana on planktonic ciliates and rotifers. J. Exp. Mar. Biol. Ecol. 110: 53–68.

Stoecker, D. K. and Capuzzo, J. M. 1990. Predation on protozoa; its importance to zooplankton. J. Plankton Res. 12: 891–908.

Stryer, L. 1995. Biochemistry. W.H. Freeman, New York.

Sul, D., Kaneshiro, E.S., Jayasimhulu, K. and Erwin, J.A. 2000. Neutral lipids, their fatty acids, and the sterols of the marine ciliated protozoon, Parauronema acutum . J. Euk. Microbiol. 47: 373–378.

Tang, K.W. and Dam, H.G. 1999. Limitation of zooplankton production: Beyond stoichiometry. Oikos 84: 537–542.

Teshima, I.S. 1982. Sterol metabolism. In: Proceedings of the 2nd Intl. Conference Aquaculture Nutrition (Pruder, G.D., Langdon, C.J. and Conklin, D.E., Eds.), pp. 205–216. Baton Rouge, Louisiana.


[page 122↓]

Teshima, S., Kanazawa, A., Sasada, H. and Kawasaki, M. 1982. Requirements of the larval prawn, Penaeus japonicus , for cholesterol and soybean phospholipids. Mem. Fac. Fish. Kagoshima Univ. 31: 193–199.

Teshima, S. and Kasanawa, A. 1986. Nutritive value of sterols for the juvenile prawn. Nipp. Suis. Gakk. 52: 1417–1422.

Teshima, I.S. 1991. Sterols of crustaceans, molluscs and fish. In: Physiology and Biochemistry of Sterols (Patterson, G.W. and Nes, W.D., Eds.), pp. 229–256. American Oil Chemists’ Society, Illinois.

Tittel, J., Bissinger, V., Zippel, B., Gaedke, U., Bell, E., Lorke, A. and Kamjunke, N. 2003. Mixotrophs combine resource use to out-compete specialists: implications for aquatic food webs. Proc. Natl. Acad. Sci. USA 100: 12776–12781.

Tsai, L.B., Adler, J.H. and Patterson, G.W. 1975. Metabolism of 24-dihydrolanosterol in Ochromonas malhamensis and Cholorella ellipsoidea . Phytochemistry 14: 2599–2600.

Umbarger, H.E. 1981. Regulation of amino acid metabolism. In: Comprehensive Biochemistry (Florkin, M. and Stotz, E.H., Eds.), pp. 1–49. Elsevier, Amsterdam.

Vazhappilly, R. and Chen, F. 1998. Heterotrophic production potential of omega-3 polyunsaturated fatty acids by microalgae and algae-like microorganisms. Bot. Mar. 41: 553–558.

Vigneault, B., Percot, A., Lafleur, M. and Campbell, P.G.C. 2000. Permeability changes in model and phytoplankton membranes in the presence of aquatic humic substances. Environ. Sci. Technol. 34 : 3907–3913.

Volkman, J.K. 1986. A review of sterols markers for marine and terrigenous organic matter. Org. Geochem. 9: 83–99.

Volkman, J.K., Barrett, S.M., Dunstan, G.A. and Jeffrey, S.W. 1994. Sterol biomarkers for microalgae from the green algal class prasinophyceae. Org. Geochem. 21: 1211–1218.

Volkman, J.K. 2003. Sterols in microorganisms. Appl. Microbiol. Biotechnol. 60: 495–506.


[page 123↓]

Von Elert, E. 2002. Determination of limiting polyunsaturated fatty acids in Daphnia galeata using a new method to enrich food algae with single fatty acids. Limnol. Oceanogr. 47: 1764–1773.

Von Elert, E. and Stampfl, P. 2000. Food quality for Eudiaptomus gracilis : the importance of particular highly unsaturated fatty acids. Freshw. Biol. 45: 189–200.

Von Elert, E. and Wollfrom, T. 2001. Supplementation of cyanobacterial food with polyunsaturated fatty acids does not improve growth of Daphnia. Limnol. Oceanogr. 46: 1552–1558.

Von Elert, E., Martin-Creuzburg, D. and Le-Coz, J.R. 2003. Absence of sterols constrains carbon transfer between Cyanobacteria and a freshwater herbivore ( Daphnia galeata ). Proc. R. Soc. Lond. Ser. B-Biol. Sci. 270: 1209–1214.

Von Liebig, J. 1855. Principles of agricultural chemistry with special reference to the late researches made in England. Reprinted in: Cycles of essential elements (Pomeroy, L.R., Ed.), pp. 11–28, Benchmark papers in Ecology Vol. I, 1974. Dowden, Hutchinson and Ross Inc., Stroudsburg, Pennsylvania.

Wacker A. and Von Elert, E. 2001. Polyunsaturated fatty acids: evidence for non-substitutable biochemical resources in Daphnia galeata . Ecology 82: 2507–2520.

Wacker, A. Becher, P. and Von Elert, E. 2002. Food quality effects of unsaturated fatty acids on larvae of the zebra mussel Dreissena polymorpha . Limnol. Oceanogr. 47: 1242–1248.

Wainman, B.C. and Lean, D.R.S. 1992. Carbon fixation into lipid in small freshwater lakes. Limnol. Oceanogr. 37: 956–965.

Watanabe, T., Arakawa, T., Kitajima, C. and Fujita, S. 1978. Nutritional evaluation of proteins of living feeds used in seed production of fish. Bull. Jpn. Soc. Sci. Fish. 44: 973–984.


[page 124↓]

Weers, P.M.M. and Gulati, R.D. 1997. Effect of the addition of polyunsaturated fatty acids to the diet on the growth and fecundity of Daphnia galeata . Freshw. Biol. 38: 721–729.

Weers, P.M.M., Siewertsen, K. and Gulati, R.D. 1997. Is the fatty acid composition of Daphnia galeata determined by the fatty acid composition of the ingested diet? Freshw. Biol. 38: 731–738.

Weiler, W. 2001. Die Relevanz von Fettsäuren in der Ernährung von Daphnien. PhD dissertation, Humboldt – Universität zu Berlin, Germany.

Weisse, T. and Frahm, A. 2001. Species-specific interactions between small planktonic ciliates ( Urotricha spp.) and rotifers ( Keratella spp.). J. Plankton Res. 23: 1329–1338.

Wiackowski, K., Brett, M.T. and Goldman, C.R. 1994. Differential effects of zooplankton species on ciliate community structure. Limnol. Oceanogr. 39: 486–492.

Wickham, S.A., Gilbert, J.J. and Berninger, U.G. 1993. Effects of rotifers and ciliates on the growth and survival of Daphnia . J. Plankton Res. 15: 317–334.

Wollmann, K., Deneke, R., Nixdorf, B. and Packroff, G. 2000. Dynamics of planktonic food webs in three mining lakes across a pH gradient (pH 2-4). Hydrobiologia 433: 3–14.


© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 4.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML generated:
20.05.2005