[Seite 105↓]

Literaturverzeichnis

[1]

Wolff, J. (1892): Das Gesetz der Transformation der Knochen., A.Hirschwald, Berlin, Seite 1-126.

[2]

Frost, H. M. (1990): Skeletal structural adaptations to mechanical usage (SATMU): Redefining Wolff's law: The bone modeling problem, Anatomical Record 226, Seite 403-413.

[3]

Zhang, D.; Cowin, S. C. und Weinbaum, S. (1997): Electrical signal transmission and gap junction regulation in a bone cell network: a cable model for an osteon, Annals of Biomedical Engineering 25, Seite 357-374.

[4]

Fukada, E. und Yasuda, I. (1957): On the piezoelectric effect of bone, J.Physical.Soc.Japan 10, Seite 1158-1169.

[5]

Bassett, C. L. A. und Becker, R. O. (1962): Generation of electric potentials by bone in respons to mechanical stress, Science 137, Seite 1063-1064.

[6]

Yasuda, I. (1953): Piezoelectricity of living bone, J.Kyoto Pref.Univ.Med. 53, Seite 325.

[7]

Cochran, G. V.; Pawluk, R. J. und Bassett, C. A. (1968): Electromechanical characteristics of bone under physiologic moisture conditions, Clinical Orthopaedics and Related Research 58, Seite 249-70.

[8]

Schmidt-Rohlfing, B.; Silny, J. und Niethard, F. U. (2000): Pulsierende elektromagnetische Felder in der Behandlung von Verletzungen und Erkrankungen der Bewegungsorgane- eine Übersicht und Metaanalyse, Zeitschrift fur Orthopadie und Ihre Grenzgebiete 138, Seite 379-389.

[9]

Fukada, E. (1983): Piezoelectric properties of biological polymers, Quarterly Reviews of Biophysics 16, Seite 59-87.

[10]

Williams, W. S. (1982): Piezoelectric effects in biological materials, Ferroelectrics 41, Seite 225-246.

[11]

Anderson, J. C. und Eriksson, C. (1968): Electrical properties of wet collagen, Nature 218 [137], Seite 166-8.

[12]

Chakkalakal, D. A. (1989): Mechanoelectric transduction in bone, Journal of Materials Research 44, Seite 1034-1046.

[13]

Johnson, M. W.; Chakkalakal, D. A.; Harper, R. A. und Katz, J. L. (1980): Comparison of the electromechanical effects of dry and wet bone, Journal of Biomechanics 13, Seite 437-442.

[14]

Cerquiglini, S.; Cignitti, M.; Marchetti, M. und Salleo, A. (1967): Life Science 6, Seite 2651-2666.

[15]

MacGinitie, L. A. (1995): Streaming and piezoelectric potentials in connective tissues, Advances in Chemistry Series 250, Seite 125-142.

[16]

Cowin, S. C. und Weinbaum, S. (1998): Strain amplification in the bone mechanosensory system, American Journal of the Medical Sciences 316 [3], Seite 184-188.

[17]

Antonsson, E. K. und Mann, R. W. (1985): The frequency content of gait, Journal of Biomechanics 18, Seite 39-47.

[18]

Hung, C. T.; Pollack, S. R.; Reilly, T. M. und Brighton, C. T. (1995): Real-Time Calcium Response of Cultured Bone-Cells to Fluid-Flow, Clinical Orthopaedics and Related Research [313], Seite 256-269.

[19]

Reich, K. M.; Gay, C. V. und Frangos, J. A. (1990): Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production, Journal of Cellular Physiology 143, Seite 100-104.

[20]

Spadaro, J. A. (1997): Mechanical and Electrical Interactions in Bone Remodeling, Bioelectromagnetics 18 [3], Seite 193-202.

[21]

Pilla, A. A.; Kahn, S.; Nasser, P.; Mont, M.; Kaufmann, J. J. und Siffert, R. S. (1989): Low intensity pulsed ultrasound accelerates bone repair in the rabbit fibula, Journal of Bone and Joint Surgery.

[22]

Pilla, A. A.; Mont, M.; Nasser, P. R.; Kahn, S. A.; Figueiredo, M.; Kaufmann, J. J. und Stiffert, R. S. (1990): Non-invasive low intensity pulsed ultrasound accelerates bone healing in the rabbit, Journal of Orthopaedic Trauma 4, Seite 246-253.

[23]

Heckmann, M.; Eberleinkonig, B.; Wollenberg, A.; Przybilla, B. und Plewig, G. (1994): Ultraviolet-A Radiation Induces Adhesion Molecule Expression on Human Dermal Microvascular Endothelial-Cells, British Journal of Dermatology 131 [3], Seite 311-318.

[24]

Naruse, K.; MikuniTakagaki, Y.; Azuma, Y.; Ito, M.; Oota, T.; Kameyama, K. und Itoman, M. (2000): Anabolic response of mouse bone-marrow-derived stromal cell clone ST2 cells to low-intensity pulsed ultrasound, Biochemical and Biophysical Research Communications 268 [1], Seite 216-220.

[25]

Harrigan, T. P. und Hamilton, J. J. (1993): Bone strain sensation via transmembrane potential changes in surface osteoblasts: loading rate and microstructural implications, Journal of Biomechanics 26 [2], Seite 183-200.

[26]

Torricelli, P.; Fini, M.; Giavaresi, G.; Cane, V. und Giardino, R. (1998): In vitro evaluation of the effects of electromagnetic fields used for bone healing, Electro and Magnetobiology 17 [3], Seite 335-342.

[27]

Ciombor, D. M.; Lester, G.; Aaron, R. K.; Neame, P. und Caterson, B. (2002): Low frequency EMF regulates chondrocyte differentiation and expression of matrix proteins, Journal of Orthopaedic Research 20 [1], Seite 40-50.

[28]

Lee, J. H. und McLeod, K. J. (2000): Morphologic responses of osteoblast-like cells in monolayer culture to ELF electromagnetic fields, Bioelectromagnetics 21 [2], Seite 129-136.

[29]

Brighton, C. T.; Wang, W.; Seldes, R.; Zhang, G. H. und Pollack, S. R. (2001): Signal transduction in electrically stimulated bone cells, Journal of Bone and Joint Surgery American Volume 83A [10], Seite 1514-1523.

[30]

Fitzsimmons, R. J.; Ryaby, J. T. und Farley, J. R. (1993): Calcium Influx into Human Bone-Cells Was Increased by an Electromagnetic-Field (EMF), Journal of Bone and Mineral Research 8 [S1], Seite S361-S361.

[31]

Gonzalezriola, J.; Pamies, J. A.; Hernandez, E. R.; Revilla, M.; Seco, C.; Villa, L. F. und Rico, H. (1997): Influence of Electromagnetic-Fields on Bone Mass and Growth in Developing Rats - A Morphometric, Densitometric, and Histomorphometric Study, Calcified Tissue International 60 [6], Seite 533-537.

[32]

McLeod, K. J. und Rubin, C. T. (1990): Frequency specific modulation of bone adaptation by induced electric fields, Journal of Theoretical Biology 145 [3], Seite 385-96.

[33]

Friedenberg, Z. B.; Zemsky, L. M.; Pollis, R. P. und Brighton, C. T. (1974): The response of non-traumatized bone to direct current, Journal of Bone and Joint Surgery 56 [5], Seite 1023-30.

[34]

Brighton, C.; Hozack, W. und Brager, M. (1985): Fracture healing in the rabbit fibula when subjected to various capacitively coupled electrical fields, Journal of Orthopaedic Research 3, Seite 331-340.

[35]

Aaron, R. K. und Steinberg, M. (1991): Electrical stimulation of osteonecrosis of the femoral head, Seminars in Arthroplasty 2, Seite 214-221.

[36]

Rubin, C. T.; Donahue, H. J.; Rubin, J. E. und McLeod, K. J. (1993): Optimization of electric field parameters for the control of bone remodeling: exploitation of an indigenous mechanism for the prevention of osteopenia, Journal of Bone and Mineral Research 8 [Suppl. 2], Seite S573-S581.

[37]

Bassett, C. A. (1984): The development and application of pulsed electromagnetic fields (PEMFs) for ununited fractures and arthrodeses, Orthopedic Clinics of North America 15 [1], Seite 61-87.

[38]

Brighton, C. T.; Black, J.; Friedenberg, Z. B.; Esterhai, J. L.; Day, L. J. und Connolly, J. F. (1981): A multicenter study of the treatment of non-union with constant direct current, Journal of Bone and Joint Surgery 63 [1], Seite 2-13.

[39]

Akai, M.; Yabuki, T.; Tateishi, T. und Shirasaki, Y. (1984): Mechanical properties of the electrically stimulated callus. An experiment with constant direct current in rabbit fibulae, Clinical Orthopaedics and Related Research [188], Seite 293-302.

[40]

Colson, D. J.; Browett, J. P.; Fiddian, N. J. und Watson, B. (1988): Treatment of delayed- and non-union of fractures using pulsed electromagnetic fields, Journal of Biomedical Engineering 10 [4], Seite 301-4.

[41]

Law, H. T.; Annan, I.; McCarthy, I. D.; Hughes, S. P.; Stead, A. C.; Camburn, M. A. und Montgomery, H. (1985): The effect of induced electric currents on bone after experimental osteotomy in sheep, Journal of Bone and Joint Surgery.British Volume 67 [3], Seite 463-9.

[42]

Pienkowski, D.; Pollack, S. R.; Brighton, C. T. und Griffith, N. J. (1992): Comparison of asymmetrical and symmetrical pulse wave forms in electromagnetic stimulation, Journal of Orthopaedic Research 10, Seite 789-?.

[43]

McLeod, K. und Rubin, C. (1992): The effect of low-frequency electric fields on osteogenesis, Journal of Bone and Joint Surgery 74A, Seite 920-929.

[44]

Bassett, C. A. L. (1993): Beneficial Effects of Electromagnetic Fields, Journal of Cellular Biochemistry 51, Seite 387-393.

[45]

Luben, R. A. (1991): Effects of low-energy electromagnetic fields (pulsed and DC) on membrane signal transduction processes in biological systems, Health Physics 61 [1], Seite 15-28.

[46]

Renooij, W.; Janssen, L. W.; Akkermans, L. M.; Lagey, C. L. und Wittebol, P. (1983): Electrode-oxygen consumption and its effects on tissue-oxygen tension. A study by mass spectrometry, Clinical Orthopaedics and Related Research [173], Seite 239-44.

[47]

Black, J. (1984): Tissue response to exogenous electromagnetic signals, Orthopedic Clinics of North America 15 [1], Seite 15-31.

[48]

Brighton, C. T. und Friedenberg, Z. B. (1974): Electrical stimulation and oxygen tension, Annals of the New York Academy of Sciences 238, Seite 314-20.

[49]

Hamanishi, C.; Kawabata, T.; Yoshii, T. und Tanaka, S. (1995): Bone mineral density changes in distracted callus stimulated by pulsed direct electrical current, Clinical Orthopaedics and Related Research [312], Seite 247-52.

[50]

Lerner, U. H. (1994): Regulation of Bone Metabolism by the Kallikrein-Kinin System, the Coagulation Cascade, and the Acute-Phase Reactants, Oral Surgery, Oral Medicine, Oral Pathology 78 [4], Seite 481-493.

[51]

Repke, H. und Liebmann, C. (1987): Membranrezeptoren und ihre Effektorsysteme, Akademie- Verlag, Berlin.

[52]

Muehsam, D. J. und Pilla, A. A. (1999): The Sensitivity of Cells and Tissues to Exogenous Fields - Effects of Target System Initial-State, Bioelectrochemistry and Bioenergetics 48 [1], Seite 35-42.

[53]

Cheng, G. M.; Liu, B. F.; Yu, Y. J.; Diglio, C. und Kuo, T. H. (1996): The Exit from G(0) into the Cell-Cycle Requires and Is Controlled by Sarco(Endo)Plasmic Reticulum Ca2+ Pump, Archives of Biochemistry and Biophysics 329 [1], Seite 65-72.

[54]

Fedarko, N. S.; Bianco, P.; Vetter, U. und Robey, P. G. (1990): Human Bone Cell Enzyme Expression and Cellular Heterogeneity - Correlation of Alkaline-Phosphatase Enzyme-Activity with Cell-Cycle, Journal of Cellular Physiology 144 [1], Seite 115-121.

[55]

Ikegami, A.; Inoue, S. und Hosoi, T. (1994): Cell cycle-dependent expression of estrogen receptor and effect of estrogen on proliferation of synchronized human osteoblast-like osteosarcoma cells, Endocrinology 135, Seite 782-789.

[56]

Pockwinse, S. M.; Stein, J. L.; Lian, J. B. und Stein, G. S. (1995): Developmental Stage-Specific Cellular-Responses to Vitamin-D and Glucocorticoids During Differentiation of the Osteoblast Phenotype - Interrelationship of Morphology and Gene-Expression by in-Situ Hybridization, Experimental Cell Research 216 [1], Seite 244-260.

[57]

Loza, J.; Stephan, E.; Dolce, C.; Dziak, R. und Simasko, S. (1994): Calcium Currents in Osteoblastic Cells - Dependence upon Cellular Growth Stage, Calcified Tissue International 55 [2], Seite 128-133.

[58]

Kuga, T.; Kobayashi, S.; Hirakawa, Y.; Kanaide, H. und Takeshita, A. (1996): Cell Cycle-Dependent Expression of L-Type and T-Type Ca2+ Currents in Rat Aortic Smooth-Muscle Cells in Primary Culture, Circulation Research 79 [1], Seite 14-19.

[59]

Chen, N. X.; Ryder, K. D.; Pavalko, F. M.; Turner, C. H.; Burr, D. B.; Qiu, J. Y. und Duncan, R. L. (2000): Ca2+ regulates fluid shear-induced cytoskeletal reorganization and gene expression in osteoblasts, American Journal of Physiology Cell Physiology 278 [5], Seite C989-C997.

[60]

Lomri, A. und Marie, P. J. (1990): Changes in Cytoskeletal Proteins in Response to Parathyroid-Hormone and 1,25-Dihydroxyvitamin-D in Human Osteoblastic Cells, Bone and Mineral 10 [1], Seite 1-12.

[61]

Farley, J. R.; Hall, S. L.; Tanner, M. A. und Wergedal, J. E. (1994): Specific Activity of Skeletal Alkaline-Phosphatase in Human Osteoblast-Line Cells Regulated by Phosphate, Phosphate-Esters, and Phosphate Analogs and Release of Alkaline-Phosphatase Activity Inversely Regulated by Calcium, Journal of Bone and Mineral Research 9 [4], Seite 497-508.

[62]

Adey, W. R. (1993): Biological Effects of Electromagnetic Fields, Journal of Cellular Biochemistry 51, Seite 410-416.

[63]

Liburdy, R. P. (1992): Calcium signaling in lymphocytes and ELF fields - Evidence for an electric field metric and a site of interaction involving the calcium ion channel, FEBS Letters 301 [1], Seite 53-59.

[64]

Yamaguchi, D. T.; Kleeman, C. R. und Muallem, S. (1987): Protein-Kinase C-Activated Calcium-Channel in the Osteoblast-Like Clonal Osteo-Sarcoma Cell-Line Umr-106, Journal of Biological Chemistry 262 [31], Seite 4967-4973.

[65]

Pande, G.; Kumar, N. A. und Manogaran, P. S. (1996): Flow Cytometric Study of Changes in the Intracellular Free Calcium During the Cell-Cycle, Cytometry 24 [1], Seite 55-63.

[66]

Poenie, M.; Alderton, J.; Tsien, R. Y. und Steinhardt, R. A. (1985): Changes of free calcium levels with stages of the cell division cycle, Nature 315, Seite 147-149.

[67]

Steinhardt, R. und Alderton, J. (1988): Intracellular free calcium rise triggers nuclear envelope breakdown in the sea urchin embryo, Nature 332, Seite 364-366.

[68]

Hepler, P. K. (1994): The role of calcium in cell division, Cell Calcium 16, Seite 322-330.

[69]

Kono, T.; Jones, K. T.; Bosmikich, A.; Whittingham, D. G. und Carroll, J. (1996): A Cell Cycle-Associated Change in Ca2+ Releasing Activity Leads to the Generation of Ca2+ Transients in Mouse Embryos During the First Mitotic Division, Journal of Cell Biology 132 [5], Seite 915-923.

[70]

Twigg, J.; Patel, R. und Whitaker, M. (1988): Translational control of InsP3-induced chromatin condensation during the early cell cycles of sea urchin embryos, Nature 332, Seite 366-369.

[71]

Fukayama, S.; Tashjian, A. H. und Bringhurst, F. R. (1993): Role of Protein Kinase-A in the Regulation of Cytosolic Free Calcium in Human Osteoblast-Like Saos-2 Cells, American Journal of Physiology 264 [2], Seite C464-C470.

[72]

Ferrier, J. und Ward, A. (1986): Electrophysiological differernces between bone cell clones: membran potential responses to parathyroid hormone and correlation with the cAMP response, Journal of Cellular Physiology 126, Seite 237-242.

[73]

Ferrier, J.; Ward-Kesthely, A.; Homble, F. und Ross, S. (1987): Further analysis of spontaneous membrane potential activity and the hyperpolarizing response to parathyroid hormone in osteoblastic cells, Journal of Cellular Physiology 130, Seite 344-351.

[74]

Lennon, A. M.; Ramauge, M. und Pierre, M. (2002): Role of redox status on the activation of mitogen-activated protein kinase cascades by NSAIDs, Biochemical Pharmacology 63 [2], Seite 163-70.

[75]

Saran, M.; Michel, C. und Bors, W. (1998): Radical functions in vivo: a critical review of current concepts and hypotheses, Zeitschrift fur Naturforschung.Section C.Journal of Biosciences 53 [3-4], Seite 210-27.

[76]

Chakraborti, S. und Chakraborti, T. (1998): Oxidant-mediated activation of mitogen-activated protein kinases and nuclear transcription factors in the cardiovascular system: a brief overview, Cellular Signalling 10 [10], Seite 675-83.

[77]

Adler, V.; Yin, Z. M.; Tew, K. D. und Ronai, Z. (1999): Role of redox potential and reactive oxygen species in stress signaling, Oncogene 18 [45], Seite 6104-6111.

[78]

Armour, K. E. und Ralston, S. H. (1998): Estrogen Up-Regulates Endothelial Constitutive Nitric-Oxide Synthase Expression in Human Osteoblast-Like Cells, Endocrinology 139 [2], Seite 799-802.

[79]

Lowik, C. W. G. M.; Nibbering, P. H.; Vanderuit, M. und Papapoulos, S. E. (1994): Inducible Production of Nitric-Oxide in Osteoblast-Like Cells and in Fetal Mouse Bone Explants Is Associated with Suppression of Osteoclastic Bone-Resorption, Journal of Clinical Investigation 93 [4], Seite 1465-1472.

[80]

Ralston, S. H.; Ho, L. P.; Helfrich, M. H.; Grabowski, P. S.; Johnston, P. W. und Benjamin, N. (1995): Nitric-Oxide - A Cytokine-Induced Regulator of Bone-Resorption, Journal of Bone and Mineral Research 10 [7], Seite 1040-1049.

[81]

KleinNulend, J.; Helfrich, M. H.; Sterck, J. G. H.; MacPherson, H.; Joldersma, M.; Ralston, S. H.; Semeins, C. M. und Burger, E. H. (1998): Nitric oxide response to shear stress by human bone cell cultures is endothelial nitric oxide synthase dependent, Biochemical and Biophysical Research Communications 250 [1], Seite 108-114.

[82]

Riancho, J. A.; Salas, E.; Zarrabeitia, M. T.; Olmos, J. M.; Amado, J. A.; Fernandezluna, J. L. und Gonzalezmacias, J. (1995): Expression and Functional-Role of Nitric-Oxide Synthase in Osteoblast-Like Cells, Journal of Bone and Mineral Research 10 [3], Seite 439-446.

[83]

Fox, S. W. und Chow, J. W. M. (1998): Nitric oxide synthase expression in bone cells, Bone 23 [1], Seite 1-6.

[84]

MacPherson, H.; Noble, B. S. und Ralston, S. H. (1999): Expression and functional role of nitric oxide synthase isoforms in human osteoblast-like cells, Bone 24 [3], Seite 179-185.

[85]

Mancini, L.; Moradibidhendi, N.; Brandi, M. L. und Macintyre, I. (1998): Nitric-Oxide Superoxide and Peroxynitrite Modulate Osteoclast Activity, Biochemical and Biophysical Research Communications 243 [3], Seite 785-790.

[86]

Mancini, L.; Moradibidhendi, N.; Becherini, L.; Martineti, V. und Macintyre, I. (2000): The biphasic effects of nitric oxide in primary rat osteoblasts are cGMP dependent, Biochemical and Biophysical Research Communications 274 [2], Seite 477-481.

[87]

Janssen, Yvonne M. áW.; Soultanakis, Rebecca; Steece, Katharine; Heerdt, Ellen; Singh, Ravinder J.; Joseph, Joy und Kalyanaraman, Balaraman (1998): Depletion of nitric oxide causes cell cycle alterations, apoptosis, and oxidative stress in pulmonary cells, American Journal of Physiology 275 [6], Seite 1100-1109. URL: http://ajplung.physiology.org/cgi/content/full/275/6/L1100?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&author1=Janssen%2C+Yvonne+&searchid=1086695887819_307&stored_search=&FIRSTINDEX=0&sortspec=relevance

[88]

Yamaguchi, D. T.; Green, J.; Merritt, B. S.; Kleeman, C. R. und Muallem, S. (1989): Modulation of osteoblast function by prostaglandins, American Journal of Physiology 257 [26], Seite F755-F761.

[89]

Kaji, H.; Sugimoto, T.; Kanatani, M.; Fukase, M.; Kumegawa, M. und Chihara, K. (1996): Prostaglandin E2 stimulates osteoclast-like cell formation and bone-resorbing activity via osteoblasts: role of cAMP-dependent protein kinase, Journal of Bone and Mineral Research 11 [1], Seite 62-71.

[90]

Kaneki, H.; Takasugi, I.; Fujieda, M.; Kiriu, M.; Mizuochi, S. und Ide, H. (1999): Prostaglandin E2 stimulates the formation of mineralized bone nodules by a cAMP-independent mechanism in the culture of adult rat calvarial osteoblasts, Journal of Cellular Biochemistry 73 [1], Seite 36-48.

[91]

Raisz, L. G. (1999): Prostaglandins and bone: physiology and pathophysiology, Osteoarthritis and Cartilage 7 [4], Seite 419-21. URL: 10419786

[92]

Chyun, Y. S. und Raisz, L. G. (1984): Stimulation of bone formation by prostaglandin E2, Prostaglandins 27 [1], Seite 97-103. URL: 6584942

[93]

Hakeda, Y.; Kumegawa, M.; Kurihara, N.; Maeda, N.; Natakani, Y. und Yoshino, T. (1986): Prostaglandin-E2 Stimulates DNA-Synthesis by a Cyclic AMP-Independent Pathway in Osteoblastic Clone Mc3T3-E1 Cells, Journal of Cellular Physiology 128 [2], Seite 155-161.

[94]

Ozawa, H.; Imamura, K.; Abe, E.; Takahashi, N.; Hiraide, T.; Shibasaki, Y.; Fukuhara, T. und Suda, T. (1990): Effect of a continuously applied compressive pressure on mouse osteoblast-like cells (MC3T3-E1) in vitro, Journal of Cellular Physiology 142 [1], Seite 177-85.

[95]

Garrington, T. P. und Johnson, G. L. (1999): Organization and regulation of mitogen-activated protein kinase signaling pathways, Current Opinion in Cell Biology 11, Seite 211-218.

[96]

Davis, R. J. (1993): The mitogen-activated protein kinase signal transduction pathway, Journal of Biological Chemistry 268 [20], Seite 14553-6.

[97]

Kim-Kaneyama; Nose, K. und Shibanuma, M. (2000): Significance of nuclear relocalization of ERK1/2 in reactivation of c-fos transcription and DNA synthesis in senescent fibroblasts, Journal of Biological Chemistry 275 [27], Seite 20685-92.

[98]

Arnoczky, S. P.; Tian, T.; Lavagnino, M.; Gardner, K.; Schuler, P. und Morse, P. (2002): Activation of stress-activated protein kinases (SAPK) in tendon cells following cyclic strain: the effects of strain frequency, strain magnitude, and cytosolic calcium, Journal of Orthopaedic Research 20 [5], Seite 947-52.

[99]

Wadhwa, S.; Godwin, S. L.; Peterson, D. R.; Epstein, M. A.; Raisz, L. G. und Pilbeam, C. C. (2002): Fluid flow induction of cyclo-oxygenase 2 gene expression in osteoblasts is dependent on an extracellular signal-regulated kinase signaling pathway, Journal of Bone and Mineral Research 17 [2], Seite 266-74.

[100]

Xiao, G.; Gopalakrishnan, R.; Jiang, D.; Reith, E.; Benson, M. D. und Franceschi, R. T. (2002): Bone morphogenetic proteins, extracellular matrix, and mitogen-activated protein kinase signaling pathways are required for osteoblast-specific gene expression and differentiation in MC3T3-E1 cells, Journal of Bone and Mineral Research 17 [1], Seite 101-10.

[101]

Lai, C. F. und Cheng, S. L. (2002): Signal transductions induced by bone morphogenetic protein-2 and transforming growth factor-beta in normal human osteoblastic cells, Journal of Biological Chemistry 277 [18], Seite 15514-22.

[102]

Yamaguchi, T.; Chattopadhyay, N.; Kifor, O.; Sanders, J. L. und Brown, E. M. (2000): Activation of p42/44 and p38 mitogen-activated protein kinases by extracellular calcium-sensing receptor agonists induces mitogenic responses in the mouse osteoblastic MC3T3-E1 cell line, Biochemical and Biophysical Research Communications 279 [2], Seite 363-368.

[103]

Farley, J. R. und Baylink, D. J. (1986): Skeletal alkaline phosphatase activity as a bone formation index in vitro, Metabolism: Clinical and Experimental 35 [6], Seite 563-71.

[104]

Higuchi, C.; Myoui, A.; Hashimoto, N.; Kuriyama, K.; Yoshioka, K.; Yoshikawa, H. und Itoh, K. (2002): Continuous inhibition of MAPK signaling promotes the early osteoblastic differentiation and mineralization of the extracellular matrix, Journal of Bone and Mineral Research 17 [10], Seite 1785-94.

[105]

Kenny, J. S.; Kisaalita, W. S.; Rowland, G.; Thai, C. und Foutz, T. (1997): Quantitative study of calcium uptake by tumorigenic bone (TE-85) and neuroblastoma x glioma (NG108-15) cells exposed to extremely-low-frequency (ELF) electric fields, FEBS Letters 414 [2], Seite 343-348.

[106]

Wang, Q.; Zhong, S.; Ouyang, J.; Jiang, L.; Zhang, Z.; Xie, Y. und Luo, S. (1998): Osteogenesis of electrically stimulated bone cells mediated in part by calcium ions, Clinical Orthopaedics and Related Research 348, Seite 259-268.

[107]

Ozawa, H.; Fukuhara, T.; Abe, E.; Suda, T. und Shibasaki, Y. (1989): Electric-Fields Stimulate DNA-Synthesis of Mouse Osteoblast-Like Cells (Mc3T3-E1) by a Mechanism Involving Calcium-Ions, Journal of Cellular Physiology 138 [3], Seite 477-483.

[108]

Cai, G. P.; Liu, J. M.; Chen, G. und Zhao, N. M. (1996): Ca2+ flux as a response of peritoneal exudative macrophages to weak alternating electric fields, Bioelectrochemistry and Bioenergetics 40 [1], Seite 15-19.

[109]

Fitzsimmons, R. J.; Farley, J. R.; Adey, W. R. und Baylink, D. J. (1989): Frequency dependence of increased cell proliferation, in vitro, in exposure to a low-amplitude, low-frequency electric field: Evidence for dependence on increased mitogen activity released into culture medium, Journal of Cellular Physiology 139, Seite 586-591.

[110]

Bodamyali, T.; Bhatt, B.; Hughes, F. J.; Winrow, V. R.; Kanczler, J. M.; Simon, B.; Abbott, J.; Blake, D. R. und Stevens, C. R. (1998): Pulsed electromagnetic fields simultaneously induce osteogenesis and upregulate transcription of bone morphogenetic proteins 2 and 4 in rat osteoblasts in vitro, Biochemical and Biophysical Research Communications 250 [2], Seite 458-461.

[111]

Sollazzo, V.; Traina, G. C.; DeMattei, M.; Pellati, A.; Pezzetti, F. und Caruso, A. (1997): Responses of human MG-63 osteosarcoma cell line and human osteoblast-like cells to pulsed electromagnetic fields, Bioelectromagnetics 18 [8], Seite 541-547.

[112]

Fitzsimmons, R. J.; Ryaby, J. T.; Magee, F. P. und Baylink, D. J. (1995): IGF-II receptor number is increased in TE-85 osteosarcoma cells by combined magnetic fields, Journal of Bone and Mineral Research 10, Seite 812-819.

[113]

Zhuang, H. M.; Wang, W.; Seldes, R. M.; Tahernia, A. D.; Fan, H. J. und Brighton, C. T. (1997): Electrical-Stimulation Induces the Level of TGF-Beta-1 Messenger-RNA in Osteoblastic Cells by a Mechanism Involving Calcium/Calmodulin Pathway, Biochemical and Biophysical Research Communications 237 [2], Seite 225-229.

[114]

Fitzsimmons, R. J.; Honda, Y.; Baylink, D. J. und Mohan, S. (1995): IGF-II Is Required for the Action of Elevated Extracellular Calcium to Increase Cell-Proliferation in Normal Human Bone-Cells, Journal of Bone and Mineral Research 10 [S1], Seite S309-S309.

[115]

Fitzsimmons, R. J.; Strong, D. D.; Mohan, S. und Baylink, D. J. (1992): Low-amplitude, low-frequency electric field-stimulated bone cell proliferation may in part be mediated by increased IGF-II release, Journal of Cellular Physiology 150 [1], Seite 84-89.

[116]

Fitzsimmons, R. J.; Ryaby, J. T.; Magee, F. P. und Baylink, D. J. (1994): Combined Magnetic-Fields Increased Net Calcium Flux in Bone-Cells, Calcified Tissue International 55 [5], Seite 376-380.

[117]

Bourguignon, G. J. und Bourguignon, L. Y. W. (1989): Electric stimulation of human fibroblasts causes an increase in Ca2 influx and the exposure of additional insulin receptors, Journal of Cellular Physiology 140, Seite 379-385.

[118]

Goodman, R.; Blank, M.; Lin, H.; Dai, R.; Khorkova, O.; Soo, L.; Weisbrot, D. und Henderson, A. (1994): Increased levels of HSP70 transcripts induced when cells are exposed to low frequency electromagnetic fields, Bioelectrochemistry and Bioenergetics 33 [2].

[119]

Reinbold, K. A. und Pollack, S. R. (1997): Serum plays a critical role in modulating [Ca2+](c) of primary culture bone cells exposed to weak ion-resonance magnetic fields, Bioelectromagnetics 18 [3], Seite 203-214.

[120]

Norton, L. A. und Rovetti, L. A. (1988): Calcium incorporation in cultured chondroblasts pertubed by an electromagnetic field, Journal of Orthopaedic Research 6, Seite 559-566.

[121]

Wang, Q.; Zhong, S. Z.; Zhang, W. und Wang, G. Y. (1997): DNA synthesis and Ca2+ metabolism of isolated rat osteoblast-like cells under direct current stimulation, Electro and Magnetobiology 16 [2], Seite 87-93.

[122]

Korenstein, R.; Somjen, D.; Fischler, H. und Binderman, I. (1984): Capacitive pulsed electric stimulation of bone cells induction of cyclic-AMP change and DNA synthesis., Biochimica et Biophysica Acta 803, Seite 302-307.

[123]

Luben, R. A.; Cain, C. D.; Chen, M. C. Y.; Rosen, D. M. und Adey, W. R. (1982): Effects of electromagnetic stimuli on bone and bone cells in vitro: Inhibition of responses to parathyroid hormone by low-energy low-frequency fields, Proceedings of the National Academy of Sciences of the United States of America 79, Seite 4180-4184.

[124]

Fitzsimmons, R. J. und Baylink, D. J. (1994): Growth factors and electromagnetic fields in bone, Bone Repair and Regeneration 21 [3], Seite 401-406.

[125]

Guerkov, H. H.; Lohmann, C. H.; Liu, Y.; Dean, D. D.; Simon, B. J.; Heckman, J. D.; Schwartz, Z. und Boyan, B. D. (2001): Pulsed electromagnetic fields increase growth factor release by nonunion cells, Clinical Orthopaedics and Related Research [384], Seite 265-79.

[126]

Bourguignon, G. J. und Bourguignon, L. Y. W. (1987): Electric stimulation of protein and DNA synthesis in human fibroblasts, FASEB Journal 1, Seite 398-402.

[127]

Goodman, R.; Bumann, J.; Wei, L.-X. und Henderson, A. S. (1992): Exposure of Human Cells to Electromagnetic Fields - Effect of Time and Field Strength on Transcript Levels, Electro and Magnetobiology 11 [1], Seite 19-28.

[128]

Hirata, M.; Kusuzaki, K.; Takeshita, H.; Hashiguchi, S.; Hirasawa, Y. und Ashihara, T. (2001): Drug resistance modification using pulsing electromagnetic field stimulation for multidrug resistant mouse osteosarcoma cell line, Anticancer Research 21 [1A], Seite 317-20.

[129]

Nagai, M. und Ota, M. (1994): Pulsating electromagnetic field stimulates mRNA expression of bone morphogenetic protein-2 and -4, Journal of Dental Research 73 [10], Seite 1601-1604.

[130]

Norton, L. A. (1982): Effects of a pulsed electromagnetic field on a mixed chondroblastic tissue culture, Clinical Orthopaedics and Related Research 167, Seite 280-290.

[131]

Walter, R. J.; Shtil, A. A.; Roninson, I. B. und Holian, O. (1997): 60-Hz electric fields inhibit protein kinase C activity and multidrug resistance gene (MDR1) up-regulation, Radiation Research 147, Seite 369-375.

[132]

DeMattei, M.; Caruso, A.; Traina, G. C.; Pezzetti, F.; Baroni, T. und Sollazzo, V. (1999): Correlation Between Pulsed Electromagnetic-Fields Exposure Time and Cell-Proliferation Increase in Human Osteosarcoma Cell-Lines and Human Normal Osteoblast Cells in-Vitro, Bioelectromagnetics 20 [3], Seite 177-182.

[133]

Fitzsimmons, R. J.; Adey, W. R.; Baylink, D. J. und Farley, J. (1986): Embryonic Bone-Matrix Formation Is Increased After Exposure to a Low-Amplitude Capacitively Coupled Electric-Field, Invitro, Biochimica et Biophysica Acta 882 [1], Seite 51-56.

[134]

Hartig, M.; Joos, U. und Wiesmann, H. P. (2000): Capacitively coupled electric fields accelerate proliferation of osteoblast-like primary cells and increase bone extracellular matrix formation in vitro, European Biophysics Journal 29 [7], Seite 499-506.

[135]

Lohmann, C. H.; Schwartz, Z.; Liu, Y.; Guerkov, H.; Dean, D. D.; Simon, B. und Boyan, B. D. (2000): Pulsed electromagnetic field stimulation of MG63 osteoblast-like cells affects differentiation and local factor production, Journal of Orthopaedic Research 18 [4], Seite 637-646.

[136]

Long, Y.; Cai, G. P.; Guan, Z. C.; Liu, H. und Liang, X. D. (2000): Effects of electromagnetic fields on the bioactivities of an osteoblast-like cell line (UMR-106), Electro and Magnetobiology 19 [2], Seite 237-253.

[137]

Lorich, D. G.; Brighton, C. T.; Gupta, R.; Corsetti, J. R.; Levine, S. E.; Gelb, I. D.; Seldes, R. und Pollack, S. R. (1998): Biochemical Pathway Mediating the Response of Bone-Cells to Capacitive Coupling, Clinical Orthopaedics and Related Research [350], Seite 246-256.

[138]

Pezzetti, F.; De Mattei, M.; Caruso, A.; Cadossi, R.; Zucchini, P.; Carinci, F.; Traina, G. C. und Sollazzo, V. (1999): Effects of pulsed electromagnetic fields on human chondrocytes: an in vitro study, Calcified Tissue International 65 [5], Seite 396-401.

[139]

Wiesmann, H.; Hartig, M.; Stratmann, U.; Meyer, U. und Joos, U. (2001): Electrical stimulation influences mineral formation of osteoblast-like cells in vitro, Biochimica et Biophysica Acta 1538 [1], Seite 28-37.

[140]

VanderMolen, M. A.; Donahue, H. J.; Rubin, C. T. und McLeod, K. J. (2000): Osteoblastic networks with deficient coupling: Differential effects of magnetic and electric field exposure, Bone 27 [2], Seite 227-231.

[141]

Aaron, R. K. und Ciombor, D. M. (1996): Acceleration of experimental endochondral ossification by biophysical stimulation of the progenitor cell pool, Journal of Orthopaedic Research 14 [4], Seite 582-589.

[142]

Heermeier, K.; Spanner, M.; Trager, J.; Gradinger, R.; Strauss, P. G.; Kraus, W. und Schmidt, J. (1998): Effects of extremely low frequency electromagnetic field (EMF) on collagen type I mRNA expression and extracellular matrix synthesis of human osteoblastic cells, Bioelectromagnetics 19 [4], Seite 222-231.

[143]

Liu, H. X.; Lees, P.; Abbott, J. und Bee, J. A. (1997): Pulsed electromagnetic fields preserve proteoglycan composition of extracellular matrix in embryonic chick sternal cartilage, Biochimica et Biophysica Acta General Subjects 1336 [2], Seite 303-314.

[144]

McLeod, K. J. und Collazo, L. (2000): Suppression of a differentiation response in MC-3T3-E1 osteoblast-like cells by sustained, low-level, 30 Hz magnetic-field exposure, Radiation Research 153 [5 Pt 2], Seite 706-14.

[145]

Rodemann, H. P. (1989): Differential degradation of intracellular proteins in human skin fibroblasts of mitotic and postmitotic differentiation states, Differentiation 42, Seite 37-43.

[146]

Yonemori, K.; Matsunaga, S.; Ishidou, Y.; Maeda, S. und Yoshida, H. (1996): Early effects of electrical stimulation on osteogenesis, Bone 19, Seite 173-180.

[147]

Pilla, A. A.; Nasser, P. R. und Kaufman, J. J. (1994): Gap Junction Impedance, Tissue Dielectrics and Thermal Noise Limits for Electromagnetic-Field Bioeffects, Bioelectrochemistry and Bioenergetics 35 [1-2], Seite 63-69.

[148]

Li, C. M.; Chiang, H.; Fu, Y. D.; Lu, D. Q. und Shao, B. J. (1999): Exposure to 50-Hz Electromagnetic-Fields - Effects of Time and Field-Strength on Gap Junctional Intercellular Communications, Electro and Magnetobiology 18 [3], Seite 249-256.

[149]

Ubeda, A.; Trillo, M. A.; House, D. E. und Blackman, C. F. (1995): A 50 Hz magnetic-field blocks melatonin-induced enhancement of junctional transfer in normal C3H/10T1/2 cells, Carcinogenesis 16 [12], Seite 2945-2949.

[150]

Schimmelpfeng, J.; Stein, J. C. und Dertinger, H. (1995): Action of 50 Hz magnetic-fields on cyclic-AMP and intercellular communication in monolayers and spheroids of mammalian-cells, Bioelectromagnetics 16 [6], Seite 381-386.

[151]

Lohmann, C. H.; Schwartz, Z.; Liu, Y.; Li, Z.; Simon, B. J.; Sylvia, V. L.; Dean, D. D.; Bonewald, L. F.; Donahue, H. J. und Boyan, B. D. (2003): Pulsed electromagnetic fields affect phenotype and connexin 43 protein expression in MLO-Y4 osteocyte-like cells and ROS 17/2.8 osteoblast-like cells, Journal of Orthopaedic Research 21 [2], Seite 326-34.

[152]

Yamaguchi, D. T.; Huang, J.; Ma, D. F. und Wang, P. K. C. (2002): Inhibition of gap junction intercellular communication by extremely low-frequency electromagnetic fields in osteoblast-like models is dependent on cell differentiation, Journal of Cellular Physiology 190 [2], Seite 180-188.

[153]

Robblee, L. S. und Rose, T. L. (1990): Electrochemical guidelines for selection of protocols and electrode materials for neural stimulation, Agnew, W. F. und McCreery, D. B., Neural prostheses: Fundamental studies , Seite 25-66, Prentice Hall, Englewood Cliffs, NJ.

[154]

de Haro, C.; Mas, R.; Abadal, G.; Munoz, J.; Perez-Murano, F. und Dominguez, C. (2002): Electrochemical platinum coatings for improving performance of implantable microelectrode arrays, Biomaterials 23 [23], Seite 4515-21.

[155]

Blau, A.; Ziegler, C.; Heyer, M.; Endres, F.; Schwitzgebel, G.; Matthies, T.; Stieglitz, T.; Meyer, J. U. und Gopel, W. (1997): Characterization and optimization of microelectrode arrays for in vivo nerve signal recording and stimulation, Biosensors and Bioelectronics 12 [9-10], Seite 883-92.

[156]

Kortüm, G. (1957): Lehrbuch der Elektrochemie, 2. Auflage , Verlag Chemie, Weinheim.

[157]

Bott, A. W. (2001): Electrochemical Techniques for the Characterization of Redox Polymers, Current Separations 19 [3], Seite 71-75.

[158]

Macdonald, J. R (1987): Impedance Spectroscopy - Emphasizing Solid Materials and Systems, John Wiley & Sons, Inc., New York, Chichester, Brisbane, Toronto, Singapore.

[159]

de Boer, R. W. und van Oosterom, A. (1978): Electrical properties of platinum electrodes: impedance measurements and time-domain analysis, Medical and Biological Engineering and Computing 16 [1], Seite 1-10.

[160]

Macdonald, D. D.; Sikora, E. und Engelhardt, G. (1998): Characterizing Electrochemical Systems in the Frequency Domain, Electrochimica Acta 43 [1-2], Seite 87-107.

[161]

Berendson, J. und Simonsson, D. (1994): Electrochemical aspects of treatment of tissue with direct current, European Journal of Surgery.Supplement [574], Seite 111-5.

[162]

McCreery, D. B. und Agnew, W. F. (1990): Mechanisms of stimulation-induced neural damage and their relation to guidelines for safe stimulation, Agnew, W. F. und McCreery, D. B., Neural prostheses: Fundamental studies , Seite 297-317, Prentice Hall, Englewood Cliffs, NJ.

[163]

Fung, S. H.; Burstein, D. und Born, R. T. (1998): In vivo microelectrode track reconstruction using magnetic resonance imaging, Journal of Neuroscience Methods 80 [2], Seite 215-24.

[164]

Henderson, J. M.; Pell, M.; O'Sullivan, D. J.; McCusker, E. A.; Fung, V. S.; Hedges, P. und Halliday, G. M. (2002): Postmortem analysis of bilateral subthalamic electrode implants in Parkinson's disease, Movement Disorders 17 [1], Seite 133-7.

[165]

Norlin, A.; Pan, J. und Leygraf, C. (2002): Investigation of Interfacial Capacitance of Pt, Ti and Tin Coated Electrodes by Electrochemical Impedance Spectroscopy, Biomolecular Engineering 19 [2-6], Seite 67-71.

[166]

Pilla, A. A.; Nasser, P. R. und Kaufman, J. J. (1993): On the Sensitivity of Cells and Tissues to Therapeutic and Environmental Electromagnetic-Fields, Bioelectrochemistry and Bioenergetics 30 [1-3], Seite 161-169.

[167]

Weaver, J. C.; Astumian und R.D. (1990): The Response of Living Cells to Very Weak Electric Fields: The Thermal Noise Limit, Science 247, Seite 459-462.

[168]

Weaver, J. C. und Astumian, R. D. (1992): Estimates for ELF Effects: Noise-Based Thresholds and the Number of Experimental Conditions Required for Empirical Searches, Bioelectromagnetics Supplement 1, Seite 119-138.

[169]

McLeod, K. J.; Lee, R. C. und Ehrlich, H. P. (1987): Frequency dependence of electric field modulation of fibroblast protein synthesis, Science 236, Seite 1465-1469.

[170]

Krude, T. (1999): Mimosine arrests proliferating human cells before onset of DNA replication in a dose-dependent manner, Experimental Cell Research 247 [1], Seite 148-59.

[171]

Wang, G.; Miskimins, R. und Miskimins, W. K. (2000): Mimosine arrests cells in G1 by enhancing the levels of p27(Kip1), Experimental Cell Research 254 [1], Seite 64-71.

[172]

Uzbekov, R.; Chartrain, I.; Philippe, M. und Arlot-Bonnemains, Y. (1998): Cell cycle analysis and synchronization of the Xenopus cell line XL2, Experimental Cell Research 242 [1], Seite 60-8.

[173]

Uzbekov, R.; Prigent, C. und Arlot-Bonnemains, Y. (1999): Cell cycle analysis and synchronization of the Xenopus laevis XL2 cell line: study of the kinesin related protein XlEg5, Microscopy Research and Technique 45 [1], Seite 31-42.

[174]

Kues, W. A.; Anger, M.; Carnwath, J. W.; Paul, D.; Motlik, J. und Niemann, H. (2000): Cell cycle synchronization of porcine fetal fibroblasts: effects of serum deprivation and reversible cell cycle inhibitors, Biology of Reproduction 62 [2], Seite 412-9.

[175]

O'Connor, P. M.; Ferris, D. K.; Pagano, M.; Draetta, G.; Pines, J.; Hunter, T.; Longo, D. L. und Kohn, K. W. (1993): G2 delay induced by nitrogen mustard in human cells affects cyclin A/cdk2 and cyclin B1/cdc2-kinase complexes differently, Journal of Biological Chemistry 268 [11], Seite 8298-308.

[176]

Tobey, R. A.; Oishi, N. und Crissman, H. A. (1990): Cell cycle synchronization: reversible induction of G2 synchrony in cultured rodent and human diploid fibroblasts, Proceedings of the National Academy of Sciences of the United States of America 87 [13], Seite 5104-8.

[177]

Crissman, H. A. und Steinkamp, J. A. (1973): Rapid, simultaneous measurement of DNA, protein, and cell volume in single cells from large mammalian cell populations, Journal of Cell Biology 59 [3], Seite 766-71.

[178]

Krishan, A. (1975): Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining, Journal of Cell Biology 66 [1], Seite 188-93.

[179]

Watson, J. V.; Chambers, S. H. und Smith, P. J. (1987): A pragmatic approach to the analysis of DNA histograms with a definable G1 peak, Cytometry 8 [1], Seite 1-8.

[180]

Ormerod, M. G.; Payne, A. W. und Watson, J. V. (1987): Improved program for the analysis of DNA histograms, Cytometry 8 [6], Seite 637-41.

[181]

Goldberg, G. S.; Bechberger, J. F. und Naus, C. C. (1995): A pre-loading method of evaluating gap junctional communication by fluorescent dye transfer, BioTechniques 18 [3], Seite 490-7.

[182]

Ziambaras, K.; Lecanda, F.; Steinberg, T. H. und Civitelli, R. (1998): Cyclic stretch enhances gap junctional communication between osteoblastic cells, Journal of Bone and Mineral Research 13 [2], Seite 218-228.

[183]

Ihrig, I.; Schubert, F.; Habel, B.; Haberland, L. und Glaser, R. (1999): The UVA light used during the fluorescence microscopy assay affects the level of intracellular calcium being measured in experiments with electric-field exposure, Radiation Research 152 [3], Seite 303-311.

[184]

Misko, T. P.; Schilling, R. J.; Salvemini, D.; Moore, W. M. und Currie, M. G. (1993): A fluorometric assay for the measurement of nitrite in biological samples, Analytical Biochemistry 214, Seite 11-16.

[185]

Nauman, E. A.; Satcher, R. L.; Keaveny, T. M.; Halloran, B. P. und Bikle, D. D. (2001): Osteoblasts respond to pulsatile fluid flow with shortterm increases in PGE(2) but no change in mineralization, Journal of Applied Physiology 90 [5], Seite 1849-1854.

[186]

Blackman, C. F.; Elder, J. A.; Weil, S. G.; Benane, S. G.; Eichinger, D. C. und House, D. E. (1979): Induction of calcium-ion efflux from brain tissue by radiofrequency radiation: Effect of modulation frequency and field strength, Bioelectromagnetics 14 [6S], Seite 93-98.

[187]

Yoo, J. S. und Park, S. M. (2000): An Electrochemical Impedance Measurement Technique Employing Fourier Transform, Analytical Chemistry 72 [9], Seite 2035-2041.

[188]

Lang, G. und Heusler, K. E. (1998): Remarks on the Energetics of Interfaces Exhibiting Constant Phase Element Behaviour, Journal of Electroanalytical Chemistry 457 [1-2], Seite 257-260.

[189]

Zoltowski, P. (1998): On the Electrical Capacitance of Interfaces Exhibiting Constant Phase Element Behaviour, Journal of Electroanalytical Chemistry 443 [1], Seite 149-154.

[190]

Hitz, C. und Lasia, A. (2001): Experimental Study and Modeling of Impedance of the Her on Porous Ni Electrodes, Journal of Electroanalytical Chemistry 500 [1-2], Seite 213-222.

[191]

Gielen, F. L. und Bergveld, P. (1982): Comparison of electrode impedances of Pt, PtIr (10% Ir) and Ir-AIROF electrodes used in electrophysiological experiments, Medical and Biological Engineering and Computing 20 [1], Seite 77-83.

[192]

McIntyre, C. C. und Grill, W. M. (2001): Finite element analysis of the current-density and electric field generated by metal microelectrodes, Annals of Biomedical Engineering 29 [3], Seite 227-35. URL: 11310784

[193]

McIntyre, C. C. und Grill, W. M. (2000): Selective microstimulation of central nervous system neurons, Annals of Biomedical Engineering 28 [3], Seite 219-33. URL: 10784087

[194]

Contu, F.; Elsener, B. und Bohni, H. (2002): Characterization of Implant Materials in Fetal Bovine Serum and Sodium Sulfate by Electrochemical Impedance Spectroscopy. I. Mechanically Polished Samples, Journal of Biomedical Materials Research 62 [3], Seite 412-421.

[195]

Bassett, C. A. und Schink-Ascani, M. (1991): Long-term pulsed electromagnetic field (PEMF) results in congenital pseudarthrosis, Calcified Tissue International 49 [3], Seite 216-20.

[196]

Bassett, C.; Mitchell, S. und Gaston, S. (1981): Treatment of ununited tibial diaphyseal fractures with pulsing electromagnetic fields, Journal of Bone and Joint Surgery 63, Seite 511-523.

[197]

Rubin, J.; McLeod, K. J.; Titus, L.; Nanes, M. S.; Catherwood, B. D. und Rubin, C. T. (1996): Formation of osteoclast-like cells is suppressed by low-frequency, low-intensity electric-fields, Journal of Orthopaedic Research 14, Seite 7-15.

[198]

McLeod, K.; Donahue, H.; Levin, P.; Fontaine, M. A. und Rubin, C. T. (1993): Electric fields modulate bone cell function in a density-dependent manner, Journal of Bone and Mineral Research 8, Seite 977-984.

[199]

Sollazzo, V.; Massari, L.; Caruso, A.; Demattei, C. und Pezzetti, F. (1996): Effects of Low-Frequency Pulsed Electromagnetic-Fields on Human Osteoblast-Like Cells in-Vitro, Electro and Magnetobiology 15 [1], Seite 75-83.

[200]

Ikeda, T.; Futaesaku, Y. und Tsuchida, N. (1992): In vitro differentiation of the human osteosarcoma cell lines, HOS and KHOS, Virchows Archiv.B, Cell Pathology Including Molecular Pathology 62 [3], Seite 199-206.

[201]

Clover, J. und Gowen, M. (1994): Are MG-63 and HOS TE85 human osteosarcoma cell lines representative models of the osteoblastic Phenotype?, Bone 15 [6], Seite 585-591.

[202]

Cho, M. R.; Thatte, H. S.; Silvia, M. T. und Golan, D. E. (1999): Transmembrane calcium influx induced by ac electric fields, FASEB Journal 13 [6], Seite 677-83.

[203]

Ihrig, I.; Heese, C. und Glaser, R. (1997): Alterations of intracellular calcium concentration in mice neuroblastoma cells by electrical field and UVA, Bioelectromagnetics 18 [8], Seite 595-597.

[204]

Xia, S. L. und Ferrier, J. (1992): Propagation of a Calcium Pulse Between Osteoblastic Cells, Biochemical and Biophysical Research Communications 186 [3], Seite 1212-1219.

[205]

Duncan, R. und Misler, S. (1989): Voltage-Activated and Stretch-Activated Ba-2+ Conducting Channels in an Osteoblast-Like Cell-Line (Umr-106), FEBS Letters 251 [1-2], Seite 17-21.

[206]

Meszaros, J. G.; Karin, N. J. und FarachCarson, M. C. (1996): Voltage-sensitive calcium channels in osteoblasts: Mediators of plasma membrane signalling events, Connective Tissue Research 34-5 [1-4], Seite 161-165.

[207]

Lundgren, T. und Linde, A. (1997): Voltage-Gated Calcium Channels and Nonvoltage-Gated Calcium-Uptake Pathways in the Rat Incisor Odontoblast Plasma-Membrane, Calcified Tissue International 60 [1], Seite 79-85.

[208]

Gu, Y.; Preston, M. R.; Magnay, J.; ElHaj, A. J. und Publicover, S. J. (2001): Hormonally-regulated expression of voltage-operated Ca2+ channels in osteocytic (MLO-Y4) cells, Biochemical and Biophysical Research Communications 282 [2], Seite 536-542.

[209]

Cho, M. R.; Marler, J. P.; Thatte, H. S. und Golan, D. E. (2002): Control of calcium entry in human fibroblasts by frequency-dependent electrical stimulation, Frontiers in Bioscience 7, Seite 1-8.

[210]

Blank, M. (1993): Biological effects of electromagnetic fields, Bioelectrochemistry and Bioenergetics 32.

[211]

Tsong, T. Y. (1988): Active cation pumping of NA+,K+,ATPase and sarcoplasmatic reticulum Ca2+,ATPase induced by an electric field, Fleischer, S. und Fleischer, B., Membranes, PTQ : ATP driven pumps and related transport , 157. Auflage, Seite 240-250, Academic Press Inc., San Diego.

[212]

Goren, R.; Lubart, R.; Reuveni, H. und Grossman, N. (1996): Calcium Influx and UVA-Enhanced Proliferation of Normal Human Keratinocyte Cultures, Journal of Investigative Dermatology 106 [4], Seite 367-367.

[213]

Sakai, H.; Ito, E.; Cai, R. X.; Yoshioka, T.; Kubota, Y.; Hashimoto, K. und Fujishima, A. (1994): Intracellular Ca2+ concentration change of T24 cell under irradiation in the presence of TiO2 ultrafine particles, Biochim.Biophys.Acta - General Subjects 1201, Seite 259-265.

[214]

Kikuyama, A.; Fukuda, K.; Mori, S.; Okada, M.; Yamaguchi, H. und Hamanishi, C. (2002): Hydrogen peroxide induces apoptosis of osteocytes: involvement of calcium ion and caspase activity, Calcified Tissue International 71 [3], Seite 243-8.

[215]

Orren, D. K.; Petersen, L. N. und Bohr, V. A. (1995): A UV-responsive G2 checkpoint in rodent cells, Molecular and Cellular Biology 15 [7], Seite 3722-30.

[216]

Cooke, M. S.; Finnegan, M. T.; Herbert, K. E. und Lunec, J. (1995): Cell-cycle and dose-dependence of DNA-damage and p53 expression following UVA irradiation, Biochemical Society Transactions 23 [3], Seite S481-S481.

[217]

Orren, D. K.; Petersen, L. N. und Bohr, V. A. (1997): Persistent DNA damage inhibits S-phase and G2 progression, and results in apoptosis, Molecular Biology of the Cell 8 [6], Seite 1129-42.

[218]

De Laat, A.; van Tilburg, M.; van der Leun, J. C.; van Vloten, W. A. und de Gruijl, F. R. (1996): Cell-cycle kinetics following UVA irradiation in comparison to UVB and UVC irradiation, Photochemistry and Photobiology 63 [4], Seite 492-497.

[219]

Yamamoto, N.; Hayashihara, K. und Takagi, Y. (1997): Changes in UV sensitivity with cell cycle, clonal age, and cultural age in Paramecium tetraurelia, Zoological Science 14, Seite 747-752.

[220]

Petersen, L. N.; Orren, D. K. und Bohr, V. A. (1995): Gene-specific and strand-specific DNA repair in the G1 and G2 phases of the cell cycle, Molecular and Cellular Biology 15 [7], Seite 3731-7.

[221]

Naderi, J.; Hung, M. und Pandey, S. (2003): Oxidative stress-induced apoptosis in dividing fibroblasts involves activation of p38 MAP kinase and over-expression of Bax: resistance of quiescent cells to oxidative stress, Apoptosis 8 [1], Seite 91-100.

[222]

Allen, F. D.; Hung, C. T.; Pollack, S. R. und Brighton, C. T. (2000): Serum modulates the intracellular calcium response of primary cultured bone cells to shear flow, Journal of Biomechanics 33 [12], Seite 1585-1591.

[223]

Mahns, A.; Melchheier, I.; Suschek, C. V.; Sies, H. und Klotz, L. O. (2003): Irradiation of cells with ultraviolet-A (320-400 nm) in the presence of cell culture medium elicits biological effects due to extracellular generation of hydrogen peroxide, Free Radical Research 37 [4], Seite 391-7.

[224]

Babich, M.; Foti, L. R. P. und Mathias, K. L. (1997): Protein-Kinase-C Modulator Effects on Parathyroid Hormone-Induced Intracellular Calcium and Morphologic Changes in Umr 106-H5 Osteoblastic Cells, Journal of Cellular Biochemistry 65 [2], Seite 276-285.

[225]

Hung, C. T.; Allen, F. D.; Pollack, S. R. und Brighton, C. T. (1996): Intracellular Ca2+ Stores and Extracellular Ca2+ Are Required in the Real-Time Ca2+ Response of Bone-Cells Experiencing Fluid-Flow, Journal of Biomechanics 29 [11], Seite 1411-1417.

[226]

Guo, L. und Davidson, R. M. (1999): Extracellular Ca2+ increases cytosolic free Ca2+ in freshly isolated rat odontoblasts, Journal of Bone and Mineral Research 14 [8], Seite 1357-1366.

[227]

Muramatsu, T.; Yamashina, Y.; Tada, H.; Kobayashi, N.; Yamaji, M.; Ohno, H.; Shirai, T.; Takahashi, A. und Ohnishi, T. (1993): 8-Methoxypsoralen Plus UVA Induces the 72 kDa Heat-Shock Protein in Organ-Cultured Normal Human Skin, Photochemistry and Photobiology 58 [6], Seite 809-812.

[228]

Simon, M. M.; Reikerstorfer, A.; Schwarz, A.; Krone, C.; Luger, T. A.; Jaattela, M. und Schwarz, T. (1995): Heat-shock protein-70 overexpression affects the response to ultraviolet-light in murine fibroblasts - Evidence for increased cell viability and suppression of cytokine release, Journal of Clinical Investigation 95 [3], Seite 926-933.

[229]

Matsui, M. S.; Wang, N. C.; Macfarlane, D. und Deleo, V. A. (1994): Long-Wave Ultraviolet-Radiation Induces Protein-Kinase-C in Normal Human Keratinocytes, Photochemistry and Photobiology 59 [1], Seite 53-57.

[230]

Mathieu, N.; Lebreton, C.; Tirache, I.; Morliere, P. und Coulomb, B. (1995): UVA-induced photooxidative stress in fibroblasts cultured in a collagen matrix, Journal of Investigative Dermatology 104 [1], Seite 157-157.

[231]

Condaminet, B.; Redziniak, G.; Monsigny, M. und Kieda, C. (1997): Ultraviolet rays induced expression of lectins on the surface of a squamous carcinoma keratinocyte cell line, Experimental Cell Research 232 [2], Seite 216-224.

[232]

Ibbotson, S. H.; Lambert, C. R.; Moran, M. N.; Lynch, M. C. und Kochevar, I. E. (1998): Benzoyl peroxide increases UVA-induced plasma membrane damage and lipid oxidation in murine leukemia L1210 cells, Journal of Investigative Dermatology 110 [1], Seite 79-83.

[233]

Malorni, W.; Donelli, G.; Straface, E.; Santini, M. T.; Paradisi, S. und Giacomoni, P. U. (1994): Both UVA and UVB Induce Cytoskeleton-Dependent Surface Blebbing in Epidermoid Cells, Journal of Photochemistry and Photobiology.B, Biology 26 [3], Seite 265-270.

[234]

Markkanen, A.; Juutilainen, J.; Lang, S.; Pelkonen, J.; Rytomaa, T. und Naarala, J. (2001): Effects of 50 Hz magnetic field on cell cycle kinetics and the colony forming ability of budding yeast exposed to ultraviolet radiation, Bioelectromagnetics 22 [5], Seite 345-350.

[235]

Bissonnette, N. und Hunting, D. J. (1998): p21-induced cycle arrest in G1 protects cells from apoptosis induced by UV-irradiation or RNA polymerase II blockage, Oncogene 16 [26], Seite 3461-9.

[236]

Vanderkooi, J. M. (1998): The protein state of matter, Biochimica et Biophysica Acta 1386 [2], Seite 241-253.

[237]

DiCarlo, A. L.; White, N. C. und Litovitz, T. A. (2001): Mechanical and electromagnetic induction of protection against oxidative stress, Bioelectrochemistry 53 [1], Seite 87-95.

[238]

Cantoni, O.; Sestili, P.; Fiorani, M. und Dacha, M. (1996): Effect of 50 Hz sinusoidal electric and/or magnetic fields on the rate of repair of DNA single strand breaks in cultured mammalian cells exposed to three different carcinogens: Methylmethane sulphonate, chromate and 254 nm UV radiation, Biochemistry and Molecular Biology International 38, Seite 527-533.

[239]

Kumlin, T.; Alhonen, L.; Janne, J.; Lang, S.; Kosma, V. M. und Juutilainen, J. (1998): Epidermal ornithine decarboxylase and polyamines in mice exposed to 50 Hz magnetic fields and UV radiation, Bioelectromagnetics 19 [6], Seite 388-391.

[240]

Pakhomova, O. N.; Belt, M. L.; Mathur, S. P.; Lee, J. C. und Akyel, Y. (1998): Ultra-wide band electromagnetic radiation does not affect UV-induced recombination and mutagenesis in yeast, Bioelectromagnetics 19 [2], Seite 128-130.

[241]

Ueno, M.; Fukuda, K.; Oh, M.; Asada, S.; Nishizaka, F.; Hara, F. und Tanaka, S. (1998): Protein kinase C modulates the synthesis of nitric oxide by osteoblasts, Calcified Tissue International 63 [1], Seite 22-26.

[242]

Sauer, H.; Rahimi, G.; Hescheler, J. und Wartenberg, M. (1999): Effects of electrical fields on cardiomyocyte differentiation of embryonic stem cells, Journal of Cellular Biochemistry 75 [4], Seite 710-23.

[243]

Sontag, W. (1998): Action of extremely low frequency electric fields on the cytosolic calcium concentration of differentiated HL-60 cells: nonactivated cells, Bioelectromagnetics 19 [1], Seite 32-40.

[244]

Jacobson-Kram, D.; Tepper, J.; Kuo, P.; San, R. H.; Curry, P. T.; Wagner, V. O. und Putman, D. L. (1997): Evaluation of potential genotoxicity of pulsed electric and electromagnetic fields used for bone growth stimulation, Mutation Research 388 [1], Seite 45-57.

[245]

Davidovitch, Z.; Shanfeld, J.; Montgomery, P.; Lally, E.; Laster, L.; Furst, L. und Korostoff, E. (1984): Biochemical mediators of the effects of mechanical forces in electric currents on mineralized tissue, Calcified Tissue International 36, Seite s79-s86.

[246]

Brighton, C. und Townsend, P. F. (1988): Increased cAMP production after short term capacitively coupled stimulation in bovine growth plate chondriocytes, Journal of Orthopaedic Research 6, Seite 552-558.

[247]

Thumm, S.; Loschinger, M.; Glock, S.; Hammerle, H. und Rodemann, H. P. (1999): Induction of cAMP-dependent protein kinase A activity in human skin fibroblasts and rat osteoblasts by extremely low-frequency electromagnetic fields, Radiation and Environmental Biophysics 38 [3], Seite 195-9.

[248]

Sontag, W. H. Dertinger (1998): Response of cytosolic calcium, cyclic AMP, and cyclic GMP in dimethylsulfoxide-differentiated HL-60 cells to mudulated low frequency electric currents, Bioelectrochemistry and Bioenergetics 19, Seite 452-458.

[249]

Chiono, M.; Mahey, R.; Tate, G. und Cooper, D. M. F. (1995): Capacitative Ca2+ Entry Exclusively Inhibits cAMP Synthesis in C6-2B Glioma-Cells - Evidence That Physiologically Evoked Ca2+ Entry Regulates Ca2+-Inhibitable Adenylyl-Cyclase in Nonexcitable Cells, Journal of Biological Chemistry 270 [3], Seite 1149-1155.

[250]

Falcone, S.; Mauro, L.; de Rose, G.; Paolucci, C.; Sciorati, C.; Ando, S. und Clementi, E. (2002): Nitric oxide regulates oestrogen-activated signalling pathways at multiple levels through cyclic GMP-dependent recruitment of insulin receptor substrate 1, Biochemical Journal 366 [Pt 1], Seite 165-73.

[251]

Katz, R. W.; Teng, S. Y.; Thomas, S. und Landesberg, R. (2002): Paracrine activation of extracellular signal-regulated kinase in a simple in vitro model of wounded osteoblasts, Bone 31 [2], Seite 288-95.

[252]

Hatton, J. P.; Pooran, M.; Li, C. F.; Luzzio, C. und Hughes-Fulfor, M. (2003): A short pulse of mechanical force induces gene expression and growth in MC3T3-E1 osteoblasts via an ERK 1/2 pathway, Journal of Bone and Mineral Research 18 [1], Seite 58-66.

[253]

Volmat, V.; Camps, M.; Arkinstall, S.; Pouyssegur, J. und Lenormand, P. (2001): The nucleus, a site for signal termination by sequestration and inactivation of p42/p44 MAP kinases, Journal of Cell Science 114 [Pt 19], Seite 3433-43.

[254]

Sowa, H.; Kaji, H.; Yamaguchi, T.; Sugimoto, T. und Chihara, K. (2002): Activations of ERK1/2 and JNK by transforming growth factor beta negatively regulate Smad3-induced alkaline phosphatase activity and mineralization in mouse osteoblastic cells, Journal of Biological Chemistry 277 [39], Seite 36024-31.

[255]

Kozawa, O.; Hatakeyama, D. und Uematsu, T. (2002): Divergent regulation by p44/p42 MAP kinase and p38 MAP kinase of bone morphogenetic protein-4-stimulated osteocalcin synthesis in osteoblasts, Journal of Cellular Biochemistry 84 [3], Seite 583-9.

[256]

Sömjen, D.; Korenstein, R.; Fischler, H. und Binderman, I. (1982): Effects of electric field intensity on the response of cultured bone cells to parathyroid hormone and prostaglandine-E2, Excerpta Medica, Seite 412-416.

[257]

Sömjen, D.; Yariv, M.; Kaye, A. M.; Korenstein, R.; Fischler, H. und Binderman, I. (1983): Ornithine decarboxylase activity in cultured bone cells is activated by bone-seeking hormaones and physical stimulation, Advances in polyamine research 4, Seite 713-718.

[258]

Korenstein, R.; Somjen, D.; Laub, F.; Danon, A.; Fischler, H. und Bindermann, I. (1983): Pulsed external electric fields are mitogens for bone cells, Biological Structures and Coupled Flows, Seite 401-410.

[259]

Hillsley, M. V. und Frangos, J. A. (1997): Alkaline-Phosphatase in Osteoblasts Is Down-Regulated by Pulsatile Fluid-Flow, Calcified Tissue International 60 [1], Seite 48-53.

[260]

Tang, Q.; Chen, G. und Zhao, N. M. (1998): Effects of ELF electric field on proliferation of mouse osteoblastic cells, Bioelectrochemistry and Bioenergetics 47, Seite 349-353.

[261]

Sauer, H.; Stanelle, R.; Hescheler, J. und Wartenberg, M. (2002): The DC electrical-field-induced Ca(2+) response and growth stimulation of multicellular tumor spheroids are mediated by ATP release and purinergic receptor stimulation, Journal of Cell Science 115 [Pt 16], Seite 3265-73.

[262]

Sylvia, V. L.; Schwartz, Z.; Del Toro, F.; DeVeau, P.; Whetstone, R.; Hardin, R. R.; Dean, D. D. und Boyan, B. D. (2001): Regulation of phospholipase D (PLD) in growth plate chondrocytes by 24R,25-(OH)2D3 is dependent on cell maturation state (resting zone cells) and is specific to the PLD2 isoform, Biochimica et Biophysica Acta 1499 [3], Seite 209-21. URL: 11341968

[263]

Wiltink, A. und Bos, M. P. (1995): S-Phase Independence of Parathyroid Hormone-Induced Calcium Signaling in Primary Osteoblast-Like Cells, Cell Calcium 17 [4], Seite 270-278.

[264]

Segaert, S.; Degreef, H. und Bouillon, R. (2000): Vitamin D receptor expression is linked to cell cycle control in normal human keratinocytes, Biochemical and Biophysical Research Communications 279 [1], Seite 89-94.

[265]

Lindström, E.; Lindstrom, P.; Berglund, A.; Mild, K. H. und Lundgren, E. (1993): Intracellular calcium oscillations induced in a T-cell line by a weak 50 Hz magnetic field, Journal of Cellular Physiology 156 [2], Seite 395-8.

[266]

Lindström, E.; Lindström, P.; Berglund, A.; Lundgren, E. und Mild, K. H. (1995): Intracellular calcium oscillations in a T-cell line after exposure to extremely-low-frequency magnetic fields with variable frequencies and flux densities, Bioelectromagnetics 16, Seite 41-47.

[267]

Lohmann, C. H.; Bonewald, L. F.; Sisk, M. A.; Sylvia, V. L.; Cochran, D. L.; Dean, D. D.; Boyan, B. D. und Schwartz, Z. (2000): Maturation state determines the response of osteogenic cells to surface roughness and 1,25-dihydroxyvitamin D-3, Journal of Bone and Mineral Research 15 [6], Seite 1169-1180.

[268]

Diniz, P.; Shomura, K.; Soejima, K. und Ito, G. (2002): Effects of pulsed electromagnetic field (PEMF) stimulation on bone tissue like formation are dependent on the maturation stages of the osteoblasts, Bioelectromagnetics 23 [5], Seite 398-405.

[269]

Loschinger, M.; Thumm, S.; Hammerle, H. und Rodemann, H. P. (1998): Stimulation of protein kinase A activity and induced terminal differentiation of human skin fibroblasts in culture by low-frequency electromagnetic fields, Toxicology Letters 96-7, Seite 369-376.

[270]

Lin, H.; Blank, M.; RossolHaseroth, K. und Goodman, R. (2001): Regulating genes with electromagnetic response elements, Journal of Cellular Biochemistry 81 [1], Seite 143-148.

[271]

Tjandrawinata, R. R.; Vincent, V. L. und Hughesfulford, M. (1997): Vibrational Force Alters Messenger-RNA Expression in Osteoblasts, FASEB Journal 11 [6], Seite 493-497.

[272]

McCarthy, A. D.; Etcheverry, S. B.; Bruzzone, L.; Lettieri, G.; Barrio, D. A. und Cortizo, A. M. (2001): Non-enzymatic glycosylation of a type I collagen matrix: effects on osteoblastic development and oxidative stress, BMC Cell Biol 2 [1], Seite 16.

[273]

Haberland, L. (1999): Hypothesen zu zellulären, nichtthermischen Wirkungsmechanismen elektromagnetischer Felder, Verlag für Wissenschaft und Forschung, Berlin.

[274]

Danciu, T. E.; Adam, R. M.; Naruse, K.; Freeman, M. R. und Hauschka, P. V. (2003): Calcium regulates the PI3K-Akt pathway in stretched osteoblasts, FEBS Letters 536 [1-3], Seite 193-7.

[275]

Johnson, D. L.; Mcallister, T. N. und Frangos, J. A. (1996): Fluid-Flow Stimulates Rapid and Continuous Release of Nitric-Oxide in Osteoblasts, American Journal of Physiology Endocrinology and Metabolism 34 [1], Seite E205-E208.

[276]

Smalt, R.; Mitchell, F. T.; Howard, R. L. und Chambers, T. J. (1997): Induction of No and Prostaglandin E-2 in Osteoblasts by Wall-Shear Stress But Not Mechanical Strain, American Journal of Physiology Endocrinology and Metabolism 36 [4], Seite E751-E758.

[277]

Hishikawa, K.; Oemar, B. S.; Yang, Z. H. und Luscher, T. F. (1997): Pulsatile stretch stimulates superoxide production and activates nuclear factor-kappa B in human coronary smooth muscle, Circulation Research 81 [5], Seite 797-803.

[278]

Ajubi, N. E.; KleinNulend, J.; Alblas, M. J.; Burger, E. H. und Nijweide, P. J. (1999): Signal transduction pathways involved in fluid flow-induced PGE(2) production by cultured osteocytes, American Journal of Physiology Endocrinology and Metabolism 39 [1], Seite E171-E178.

[279]

Bakker, A. D.; Soejima, K.; KleinNulend, J. und Burger, E. H. (2001): The production of nitric oxide and prostaglandin E-2 by primary bone cells is shear stress dependent, Journal of Biomechanics 34 [5], Seite 671-677.

[280]

Pilla, A. A. (2002): Low-intensity electromagnetic and mechanical modulation of bone growth and repair: are they equivalent?, Journal of Orthopaedic Science 7 [3], Seite 420-8. URL: 12077675

[281]

Edmonds, D. T. (1993): Possible mechanisms for interaction between biological cells and low-frequency low amplitude electric and magnetic field., Manuskript 1993.

[282]

Pickard, W. F. und Rosenbaum, F. J. (1978): Biological Effects of Microwaves at Membrane Level - 2 Possible Athermal Electrophysiological Mechanisms and a Proposed Experimental Test, Mathematical Biosciences 39 [3-4], Seite 235-253.

[283]

Astumian, R. D.; Weaver, J. C. und Adair, R. K. (1995): Rectification and signal averaging of weak electric fields by biological cells, Proceedings of the National Academy of Sciences of the United States of America 92 [9], Seite 3740-3.

[284]

Weaver, J. C.; Vaughan, T. E.; Adair, R. K. und Astumian, R. D. (1998): Theoretical limits on the threshold for the response of long cells to weak extremely low frequency electric fields due to ionic and molecular flux rectification, Biophysical Journal 75 [5], Seite 2251-2254.

[285]

Green, J. und Kleeman, C. R. (1992): Role of Calcium and cAMP Messenger Systems in Intracellular pH Regulation of Osteoblastic Cells, American Journal of Physiology 262 [1], Seite C111-C121.


© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 3.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am:
08.06.2004