[Seite 100↓]

Literaturverzeichnis

[1] Medzhitov, R. und Janeway, C. A., Jr. (1997): Innate immunity: impact on the adaptive immune response, Curr Opin Immunol (9) [1], Seite 4-9.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=9039775

[2] Hoffmann, J. A.; Kafatos, F. C.; Janeway, C. A. und Ezekowitz, R. A. (1999): Phylogenetic perspectives in innate immunity, Science (284) [5418], Seite 1313-8.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10334979

[3] Aderem, A. und Underhill, D. M. (1999): Mechanisms of phagocytosis in macrophages, Annu Rev Immunol (17), Seite 593-623. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10358769

[4] Medzhitov, R. und Janeway, C., Jr. (2000): Innate immunity, N Engl J Med (343) [5], Seite 338-44.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10922424

[5] Aderem, A. und Ulevitch, R. J. (2000): Toll-like receptors in the induction of the innate immune response, Nature (406) [6797], Seite 782-7..

[6] Schroder, N. W.; Opitz, B.; Lamping, N.; Michelsen, K. S.; Zahringer, U.; Gobel, U. B. und Schumann, R. R. (2000): Involvement of lipopolysaccharide binding protein, CD14, and Toll-like receptors in the initiation of innate immune responses by Treponema glycolipids, J Immunol (165) [5], Seite 2683-93.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10946299

[7] Janeway, C. A., Jr. (1989): Approaching the asymptote? Evolution and revolution in immunology, Cold Spring Harb Symp Quant Biol (54) [Pt 1], Seite 1-13..

[8] Medzhitov, R. und Janeway, C. A., Jr. (1997): Innate immunity: the virtues of a nonclonal system of recognition, Cell (91) [3], Seite 295-8..

[9] Janeway, C. A.; Trafers, P.; Walport, M. und Shlomchik, M.J. (2002): Immunologie, Spektrum Akademischer Verlag GmbH.

[10] Janeway, C. A., Jr. und Medzhitov, R. (2002): Innate immune recognition, Annu Rev Immunol (20), Seite 197-216. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11861602

[11] Janeway, C. A., Jr. (1999): The role of self-recognition in receptor repertoire development. Members of the Janeway Laboratory, Immunol Res (19) [2-3], Seite 107-18. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10493166

[12] Seydel, U.; Koch, M. H. und Brandenburg, K. (1993): Structural polymorphisms of rough mutant lipopolysaccharides Rd to Ra from Salmonella minnesota, J Struct Biol (110) [3], Seite 232-43..

[13] Westphal, O. und Lüderitz, O. (1954): Chemische Erforschung von Lipopolysacchariden Gram-negativer Bakterien, Angew Chemie (66), Seite 407-17.

[14] Gmeiner, J.; Luderitz, O. und Westphal, O. (1969): Biochemical studies on lipopolysaccharides of Salmonella R mutants. Investigations on the structure of the lipid A component, Eur J Biochem (7) [3], Seite 370-9..

[15] Rietschel, E. T.; Kirikae, T.; Schade, F. U.; Mamat, U.; Schmidt, G.; Loppnow, H.; Ulmer, A. J.; Zahringer, U.; Seydel, U.; Di Padova, F. und et al. (1994): Bacterial endotoxin: molecular relationships of structure to activity and function, Faseb J (8) [2], Seite 217-25..

[16] Brade, H.; Moll, H. und Rietschel, E. T. (1985): Structural investigations on the inner core region of lipopolysaccharides from Salmonella minnesota rough mutants, Biomed Mass Spectrom (12) [10], Seite 602-9..

[17] Imoto, M.; Kusumoto, S.; Shiba, T.; Rietschel, E. T.; Galones, C. und Lüderitz, O. (1985): Chemical structure of Escherichia coli lipid A, Tetrahedron L (26), Seite 907-8.

[18] Beutler, B. und Rietschel, E. T. (2003): Innate immune sensing and its roots: the story of endotoxin, Nat Rev Immunol (3) [2], Seite 169-76.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=12563300

[19] Pfeiffer, R. (1892): Untersuchungen über das Choleragift, Zf. f. Hygiene (11), Seite 393-412.

[20] Rietschel, E. T. und Brade, H. (1992): Bacterial endotoxins, Sci Am (267) [2], Seite 54-61..

[21] Watson, R. W.; Redmond, H. P. und Bouchier-Hayes, D. (1994): Role of endotoxin in mononuclear phagocyte-mediated inflammatory responses, J Leukoc Biol (56) [1], Seite 95-103..

[22] Kusunoki, T.; Hailman, E.; Juan, T. S.; Lichenstein, H. S. und Wright, S. D. (1995): Molecules from Staphylococcus aureus that bind CD14 and stimulate innate immune responses, J Exp Med (182) [6], Seite 1673-82.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=7500012

[23] Tobias, P. S.; Soldau, K. und Ulevitch, R. J. (1986): Isolation of a lipopolysaccharide-binding acute phase reactant from rabbit serum, J Exp Med (164) [3], Seite 777-93..

[24] Schumann, R. R.; Leong, S. R.; Flaggs, G. W.; Gray, P. W.; Wright, S. D.; Mathison, J. C.; Tobias, P. S. und Ulevitch, R. J. (1990): Structure and function of lipopolysaccharide binding protein, Science (249) [4975], Seite 1429-31.. http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/referer?http://www.ncbi.nlm.nih.gov/htbin-post/Omim/getmim%3ffield=medline_uid&search=2402637

[25] Ramadori, G.; Meyer zum Buschenfelde, K. H.; Tobias, P. S.; Mathison, J. C. und Ulevitch, R. J. (1990): Biosynthesis of lipopolysaccharide-binding protein in rabbit hepatocytes, Pathobiology (58) [2], Seite 89-94.

[26] Dentener, M. A.; Vreugdenhil, A. C.; Hoet, P. H.; Vernooy, J. H.; Nieman, F. H.; Heumann, D.; Janssen, Y. M.; Buurman, W. A. und Wouters, E. F. (2000): Production of the acute-phase protein lipopolysaccharide-binding protein by respiratory type II epithelial cells: implications for local defense to bacterial endotoxins, Am J Respir Cell Mol Biol (23) [2], Seite 146-53..

[27] Vreugdenhil, A. C.; Dentener, M. A.; Snoek, A. M.; Greve, J. W. und Buurman, W. A. (1999): Lipopolysaccharide binding protein and serum amyloid A secretion by human intestinal epithelial cells during the acute phase response, J Immunol (163) [5], Seite 2792-8..

[28] Opal, S. M.; Scannon, P. J.; Vincent, J. L.; White, M.; Carroll, S. F.; Palardy, J. E.; Parejo, N. A.; Pribble, J. P. und Lemke, J. H. (1999): Relationship between plasma levels of lipopolysaccharide (LPS) and LPS- binding protein in patients with severe sepsis and septic shock, J Infect Dis (180) [5], Seite 1584-9..

[29] Zweigner, J.; Gramm, H. J.; Singer, O. C.; Wegscheider, K. und Schumann, R. R. (2001): High concentrations of lipopolysaccharide-binding protein in serum of patients with severe sepsis or septic shock inhibit the lipopolysaccharide response in human monocytes, Blood (98) [13], Seite 3800-8..

[30] Ulevitch, R. J. und Tobias, P. S. (1995): Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin, Annu Rev Immunol (13), Seite 437-57.

[31] Wright, S. D.; Ramos, R. A.; Tobias, P. S.; Ulevitch, R. J. und Mathison, J. C. (1990): CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein, Science (249) [4975], Seite 1431-3.. http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/referer?http://www.ncbi.nlm.nih.gov/htbin-post/Omim/getmim%3ffield=medline_uid&search=1698311

[32] Lamping, N.; Hoess, A.; Yu, B.; Park, T. C.; Kirschning, C. J.; Pfeil, D.; Reuter, D.; Wright, S. D.; Herrmann, F. und Schumann, R. R. (1996): Effects of site-directed mutagenesis of basic residues (Arg 94, Lys 95, Lys 99) of lipopolysaccharide (LPS)-binding protein on binding and transfer of LPS and subsequent immune cell activation, J Immunol (157) [10], Seite 4648-56..

[33] Tobias, P. S.; Soldau, K. und Ulevitch, R. J. (1989): Identification of a lipid A binding site in the acute phase reactant lipopolysaccharide binding protein, J Biol Chem (264) [18], Seite 10867-71..

[34] Tall, A. (1995): Plasma lipid transfer proteins, Annu Rev Biochem (64), Seite 235-57.

[35] Kirschning, C. J.; Au-Young, J.; Lamping, N.; Reuter, D.; Pfeil, D.; Seilhamer, J. J. und Schumann, R. R. (1997): Similar organization of the lipopolysaccharide-binding protein (LBP) and phospholipid transfer protein (PLTP) genes suggests a common gene family of lipid-binding proteins, Genomics (46) [3], Seite 416-25..

[36] Tobias, P. S.; Mathison, J. C. und Ulevitch, R. J. (1988): A family of lipopolysaccharide binding proteins involved in responses to gram-negative sepsis, J Biol Chem (263) [27], Seite 13479-81..

[37] Dentener, M. A.; Von Asmuth, E. J.; Francot, G. J.; Marra, M. N. und Buurman, W. A. (1993): Antagonistic effects of lipopolysaccharide binding protein and bactericidal/permeability-increasing protein on lipopolysaccharide- induced cytokine release by mononuclear phagocytes. Competition for binding to lipopolysaccharide, J Immunol (151) [8], Seite 4258-65..

[38] Wurfel, M. M.; Kunitake, S. T.; Lichenstein, H.; Kane, J. P. und Wright, S. D. (1994): Lipopolysaccharide (LPS)-binding protein is carried on lipoproteins and acts as a cofactor in the neutralization of LPS, J Exp Med (180) [3], Seite 1025-35..

[39] Wurfel, M. M. und Wright, S. D. (1997): Lipopolysaccharide-binding protein and soluble CD14 transfer lipopolysaccharide to phospholipid bilayers: preferential interaction with particular classes of lipid, J Immunol (158) [8], Seite 3925-34..

[40] Gegner, J. A.; Ulevitch, R. J. und Tobias, P. S. (1995): Lipopolysaccharide (LPS) signal transduction and clearance. Dual roles for LPS binding protein and membrane CD14, J Biol Chem (270) [10], Seite 5320-5.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=7534294

[41] Schumann, R. R. und Latz, E. (2000): Lipopolysaccharide-binding protein, Chem Immunol (74), Seite 42-60. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10608081

[42] Lamping, N.; Dettmer, R.; Schroder, N. W.; Pfeil, D.; Hallatschek, W.; Burger, R. und Schumann, R. R. (1998): LPS-binding protein protects mice from septic shock caused by LPS or gram-negative bacteria, J Clin Invest (101) [10], Seite 2065-71..

[43] Hamann, L.; Schumann, R. R.; Flad, H. D.; Brade, L.; Rietschel, E. T. und Ulmer, A. J. (2000): Binding of lipopolysaccharide (LPS) to CHO cells does not correlate with LPS-induced NF-kappaB activation, Eur J Immunol (30) [1], Seite 211-6..

[44] Weber, J. R.; Freyer, D.; Alexander, C.; Schroder, N. W.; Reiss, A.; Kuster, C.; Pfeil, D.; Tuomanen, E. I. und Schumann, R. R. (2003): Recognition of pneumococcal peptidoglycan: an expanded, pivotal role for LPS binding protein, Immunity (19) [2], Seite 269-79. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12932360

[45] Fan, X.; Stelter, F.; Menzel, R.; Jack, R.; Spreitzer, I.; Hartung, T. und Schutt, C. (1999): Structures in Bacillus subtilis are recognized by CD14 in a lipopolysaccharide binding protein-dependent reaction, Infect Immun (67) [6], Seite 2964-8.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10338506

[46] Schroder, N. W.; Morath, S.; Alexander, C.; Hamann, L.; Hartung, T.; Zahringer, U.; Gobel, U. B.; Weber, J. R. und Schumann, R. R. (2003): Lipoteichoic acid (LTA) of S. pneumoniae and S. aureus activates immune cells via toll-like receptor (TLR)-2, LPS binding protein (LBP) and CD14 while TLR-4 and MD-2 are not involved, J Biol Chem (19), Seite 19. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=12594207

[47] Wright, S. D. und Jong, M. T. (1986): Adhesion-promoting receptors on human macrophages recognize Escherichia coli by binding to lipopolysaccharide, J Exp Med (164) [6], Seite 1876-88..

[48] Hampton, R. Y.; Golenbock, D. T.; Penman, M.; Krieger, M. und Raetz, C. R. (1991): Recognition and plasma clearance of endotoxin by scavenger receptors, Nature (352) [6333], Seite 342-4..

[49] Kobayashi, Y.; Miyaji, C.; Watanabe, H.; Umezu, H.; Hasegawa, G.; Abo, T.; Arakawa, M.; Kamata, N.; Suzuki, H.; Kodama, T. und Naito, M. (2000): Role of macrophage scavenger receptor in endotoxin shock, J Pathol (192) [2], Seite 263-72.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11004705

[50] Goyert, S. M.; Ferrero, E.; Rettig, W. J.; Yenamandra, A. K.; Obata, F. und Le Beau, M. M. (1988): The CD14 monocyte differentiation antigen maps to a region encoding growth factors and receptors, Science (239) [4839], Seite 497-500.. http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/referer?http://locus.umdnj.edu/ccr/ccr_cgi/pubmed.cgi%3f2448876

[51] Pugin, J.; Heumann, I. D.; Tomasz, A.; Kravchenko, V. V.; Akamatsu, Y.; Nishijima, M.; Glauser, M. P.; Tobias, P. S. und Ulevitch, R. J. (1994): CD14 is a pattern recognition receptor, Immunity (1) [6], Seite 509-16..

[52] Haziot, A.; Chen, S.; Ferrero, E.; Low, M. G.; Silber, R. und Goyert, S. M. (1988): The monocyte differentiation antigen, CD14, is anchored to the cell membrane by a phosphatidylinositol linkage, J Immunol (141) [2], Seite 547-52..

[53] Anderson, K. V.; Jurgens, G. und Nusslein-Volhard, C. (1985): Establishment of dorsal-ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product, Cell (42) [3], Seite 779-89..

[54] Lemaitre, B.; Nicolas, E.; Michaut, L.; Reichhart, J. M. und Hoffmann, J. A. (1996): The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults, Cell (86) [6], Seite 973-83..

[55] Medzhitov, R.; Preston-Hurlburt, P. und Janeway, C. A., Jr. (1997): A human homologue of the Drosophila Toll protein signals activation of adaptive immunity, Nature (388) [6640], Seite 394-7..

[56] Martin, M. U. und Wesche, H. (2002): Summary and comparison of the signaling mechanisms of the Toll/interleukin-1 receptor family, Biochim Biophys Acta (1592) [3], Seite 265-80.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=12421671

[57] Takeda, K. und Akira, S. (2003): Toll receptors and pathogen resistance, Cell Microbiol (5) [3], Seite 143-53.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=12614458

[58] Aliprantis, A. O.; Yang, R. B.; Mark, M. R.; Suggett, S.; Devaux, B.; Radolf, J. D.; Klimpel, G. R.; Godowski, P. und Zychlinsky, A. (1999): Cell activation and apoptosis by bacterial lipoproteins through toll- like receptor-2, Science (285) [5428], Seite 736-9.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10426996

[59] Underhill, D. M.; Ozinsky, A.; Hajjar, A. M.; Stevens, A.; Wilson, C. B.; Bassetti, M. und Aderem, A. (1999): The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens, Nature (401) [6755], Seite 811-5.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10548109

[60] Opitz, B.; Schroder, N. W.; Spreitzer, I.; Michelsen, K. S.; Kirschning, C. J.; Hallatschek, W.; Zahringer, U.; Hartung, T.; Gobel, U. B. und Schumann, R. R. (2001): Toll-like receptor-2 mediates Treponema glycolipid and lipoteichoic acid-induced NF-kappaB translocation, J Biol Chem (276) [25], Seite 22041-7.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11285258

[61] Poltorak, A.; He, X.; Smirnova, I.; Liu, M. Y.; Huffel, C. V.; Du, X.; Birdwell, D.; Alejos, E.; Silva, M.; Galanos, C.; Freudenberg, M.; Ricciardi-Castagnoli, P.; Layton, B. und Beutler, B. (1998): Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene, Science (282) [5396], Seite 2085-8..

[62] Qureshi, S. T.; Lariviere, L.; Leveque, G.; Clermont, S.; Moore, K. J.; Gros, P. und Malo, D. (1999): Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4), J Exp Med (189) [4], Seite 615-25..

[63] Arbour, N. C.; Lorenz, E.; Schutte, B. C.; Zabner, J.; Kline, J. N.; Jones, M.; Frees, K.; Watt, J. L. und Schwartz, D. A. (2000): TLR4 mutations are associated with endotoxin hyporesponsiveness in humans, Nat Genet (25) [2], Seite 187-91.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10835634

[64] Shimazu, R.; Akashi, S.; Ogata, H.; Nagai, Y.; Fukudome, K.; Miyake, K. und Kimoto, M. (1999): MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll- like receptor 4, J Exp Med (189) [11], Seite 1777-82..

[65] Dziarski, R.; Wang, Q.; Miyake, K.; Kirschning, C. J. und Gupta, D. (2001): MD-2 enables Toll-like receptor 2 (TLR2)-mediated responses to lipopolysaccharide and enhances TLR2-mediated responses to Gram- positive and Gram-negative bacteria and their cell wall components, J Immunol (166) [3], Seite 1938-44..

[66] Visintin, A.; Mazzoni, A.; Spitzer, J. A. und Segal, D. M. (2001): Secreted MD-2 is a large polymeric protein that efficiently confers lipopolysaccharide sensitivity to Toll-like receptor 4, Proc Natl Acad Sci U S A (98) [21], Seite 12156-61..

[67] Alexopoulou, L.; Holt, A. C.; Medzhitov, R. und Flavell, R. A. (2001): Recognition of double-stranded RNA and activation of NF-kappaB by Toll- like receptor 3, Nature (413) [6857], Seite 732-8.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11607032

[68] Hayashi, F.; Smith, K. D.; Ozinsky, A.; Hawn, T. R.; Yi, E. C.; Goodlett, D. R.; Eng, J. K.; Akira, S.; Underhill, D. M. und Aderem, A. (2001): The innate immune response to bacterial flagellin is mediated by Toll- like receptor 5, Nature (410) [6832], Seite 1099-103.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11323673

[69] Hemmi, H.; Kaisho, T.; Takeuchi, O.; Sato, S.; Sanjo, H.; Hoshino, K.; Horiuchi, T.; Tomizawa, H.; Takeda, K. und Akira, S. (2002): Small anti-viral compounds activate immune cells via the TLR7 MyD88- dependent signaling pathway, Nat Immunol (3) [2], Seite 196-200.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11812998

[70] Hemmi, H.; Takeuchi, O.; Kawai, T.; Kaisho, T.; Sato, S.; Sanjo, H.; Matsumoto, M.; Hoshino, K.; Wagner, H.; Takeda, K. und Akira, S. (2000): A Toll-like receptor recognizes bacterial DNA, Nature (408) [6813], Seite 740-5.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11130078

[71] Baumann, H. und Gauldie, J. (1994): The acute phase response, Immunol Today (15) [2], Seite 74-80..

[72] Gabay, C. und Kushner, I. (1999): Acute-phase proteins and other systemic responses to inflammation, N Engl J Med (340) [6], Seite 448-54..

[73] Schumann, R. R.; Kirschning, C. J.; Unbehaun, A.; Aberle, H.; Knopf, H. P.; Lamping, N.; Ulevitch, R. J. und Herrmann, F. (Reprint Author) (1996): The lipopolysaccharide binding protein is a secretory class 1 acute phase protein whose gene is transcriptionally activated by aprf/stat 3 and other cytokine inducible nuclear proteins, Molecular And Cellular Biology. Jul (16) [7], Seite 3490-3503.

[74] Unbehaun, A. (1999): Die Expression des Lipopolysaccarid Bindenden Proteins (LBP), Dissertation, Fachbereich Medizien, Humboldt-Universität Berlin.

[75] Fiedler, G. (1998): Die Wirkung anti-inflammatorischer Zytokine auf die LBP-Transkript-Akkumulation in Hepatomzellinien, Dissertation, Fachbereich Medizin, Humboldt-Universität Berlin.

[76] Bone, R. C. (1995): Sepsis, sepsis syndrome, and the systemic inflammatory response syndrome (SIRS). Gulliver in Laputa, Jama (273) [2], Seite 155-6..

[77] Sibbald, W. J.; Doig, G. und Inman, K. J. (1995): Sepsis, SIRS and infection, Intensive Care Med (21) [4], Seite 299-301..

[78] Glauser, M. P.; Zanetti, G.; Baumgartner, J. D. und Cohen, J. (1991): Septic shock: pathogenesis, Lancet (338) [8769], Seite 732-6..

[79] Rangel-Frausto, M. S.; Pittet, D.; Costigan, M.; Hwang, T.; Davis, C. S. und Wenzel, R. P. (1995): The natural history of the systemic inflammatory response syndrome (SIRS). A prospective study, Jama (273) [2], Seite 117-23..

[80] Darville, T.; Giroir, B. und Jacobs, R. (1993): The systemic inflammatory response syndrome (SIRS): immunology and potential immunotherapy, Infection (21) [5], Seite 279-90..

[81] Allen, J. R.; Hightower, A. W.; Martin, S. M. und Dixon, R. E. (1981): Secular trends in nosocomial infections: 1970-1979, Am J Med (70) [2], Seite 389-92..

[82] Parrillo, J. E.; Parker, M. M.; Natanson, C.; Suffredini, A. F.; Danner, R. L.; Cunnion, R. E. und Ognibene, F. P. (1990): Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy, Ann Intern Med (113) [3], Seite 227-42..

[83] Vincent, J. L.; de Carvalho, F. B. und De Backer, D. (2002): Management of septic shock, Ann Med (34) [7-8], Seite 606-13. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=12553501

[84] Borish, L. C. und Steinke, J. W. (2003): 2. Cytokines and chemokines, J Allergy Clin Immunol (111) [2 Suppl], Seite S460-75.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=12592293

[85] Simpson, R. J.; Hammacher, A.; Smith, D. K.; Matthews, J. M. und Ward, L. D. (1997): Interleukin-6: structure-function relationships, Protein Sci (6) [5], Seite 929-55..

[86] Gauldie, J.; Northemann, W. und Fey, G. H. (1990): IL-6 functions as an exocrine hormone in inflammation. Hepatocytes undergoing acute phase responses require exogenous IL-6, J Immunol (144) [10], Seite 3804-8..

[87] Castell, J. V.; Gomez-Lechon, M. J.; David, M.; Andus, T.; Geiger, T.; Trullenque, R.; Fabra, R. und Heinrich, P. C. (1989): Interleukin-6 is the major regulator of acute phase protein synthesis in adult human hepatocytes, FEBS Lett (242) [2], Seite 237-9..

[88] Tilg, H.; Trehu, E.; Atkins, M. B.; Dinarello, C. A. und Mier, J. W. (1994): Interleukin-6 (IL-6) as an anti-inflammatory cytokine: induction of circulating IL-1 receptor antagonist and soluble tumor necrosis factor receptor p55, Blood (83) [1], Seite 113-8..

[89] Bot, F. J.; van Eijk, L.; Broeders, L.; Aarden, L. A. und Lowenberg, B. (1989): Interleukin-6 synergizes with M-CSF in the formation of macrophage colonies from purified human marrow progenitor cells, Blood (73) [2], Seite 435-7..

[90] Suematsu, S.; Matsusaka, T.; Matsuda, T.; Ohno, S.; Miyazaki, J.; Yamamura, K.; Hirano, T. und Kishimoto, T. (1992): Generation of plasmacytomas with the chromosomal translocation t(12;15) in interleukin 6 transgenic mice, Proc Natl Acad Sci U S A (89) [1], Seite 232-5..

[91] Fattori, E.; Cappelletti, M.; Costa, P.; Sellitto, C.; Cantoni, L.; Carelli, M.; Faggioni, R.; Fantuzzi, G.; Ghezzi, P. und Poli, V. (1994): Defective inflammatory response in interleukin 6-deficient mice, J Exp Med (180) [4], Seite 1243-50..

[92] Kopf, M.; Baumann, H.; Freer, G.; Freudenberg, M.; Lamers, M.; Kishimoto, T.; Zinkernagel, R.; Bluethmann, H. und Kohler, G. (1994): Impaired immune and acute-phase responses in interleukin-6-deficient mice, Nature (368) [6469], Seite 339-42..

[93] Yamasaki, K.; Taga, T.; Hirata, Y.; Yawata, H.; Kawanishi, Y.; Seed, B.; Taniguchi, T.; Hirano, T. und Kishimoto, T. (1988): Cloning and expression of the human interleukin-6 (BSF-2/IFN beta 2) receptor, Science (241) [4867], Seite 825-8.. http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/referer?http://www.ncbi.nlm.nih.gov/htbin-post/Omim/getmim%3ffield=medline_uid&search=3136546

[94] Hibi, M.; Nakajima, K. und Hirano, T. (1996): IL-6 cytokine family and signal transduction: a model of the cytokine system, J Mol Med (74) [1], Seite 1-12..

[95] Taga, T.; Hibi, M.; Hirata, Y.; Yamasaki, K.; Yasukawa, K.; Matsuda, T.; Hirano, T. und Kishimoto, T. (1989): Interleukin-6 triggers the association of its receptor with a possible signal transducer, gp130, Cell (58) [3], Seite 573-81..

[96] Lutticken, C.; Wegenka, U. M.; Yuan, J.; Buschmann, J.; Schindler, C.; Ziemiecki, A.; Harpur, A. G.; Wilks, A. F.; Yasukawa, K.; Taga, T. und et al. (1994): Association of transcription factor APRF and protein kinase Jak1 with the interleukin-6 signal transducer gp130, Science (263) [5143], Seite 89-92.. http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/referer?http://www.ncbi.nlm.nih.gov/htbin-post/Omim/getmim%3ffield=medline_uid&search=8272872

[97] Heinrich, P. C.; Behrmann, I.; Muller-Newen, G.; Schaper, F. und Graeve, L. (1998): Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway, Biochem J (334) [Pt 2], Seite 297-314.. http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/referer?http://www.biochemj.org/bj/334/0297/bj3340297.htm http://www.biochemj.org/bj/334/0297/bj3340297.htm

[98] Aktin, E (1960): The pathogenesis of fever, Physiol Rev, Seite 580-646.

[99] Merriman, C. R.; Pulliam, L. A. und Kampschmidt, R. F. (1977): Comparison of leukocytic pyrogen and leukocytic endogenous mediator, Proc Soc Exp Biol Med (154) [2], Seite 224-7..

[100] Dinarello, C. A. und Wolff, S. M. (1993): The role of interleukin-1 in disease, N Engl J Med (328) [2], Seite 106-13.. http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/referer?http://www.ncbi.nlm.nih.gov/htbin-post/Omim/getmim%3ffield=medline_uid&search=8439348

[101] Morikage, T.; Mizushima, Y.; Sakamoto, K. und Yano, S. (1990): Prevention of fatal infections by recombinant human interleukin 1 alpha in normal and anticancer drug-treated mice, Cancer Res (50) [7], Seite 2099-104..

[102] Li, P.; Allen, H.; Banerjee, S.; Franklin, S.; Herzog, L.; Johnston, C.; McDowell, J.; Paskind, M.; Rodman, L.; Salfeld, J. und et al. (1995): Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock, Cell (80) [3], Seite 401-11..

[103] Arend, W. P. (2002): The balance between IL-1 and IL-1Ra in disease, Cytokine Growth Factor Rev (13) [4-5], Seite 323-40.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=12220547

[104] Colotta, F.; Re, F.; Muzio, M.; Bertini, R.; Polentarutti, N.; Sironi, M.; Giri, J. G.; Dower, S. K.; Sims, J. E. und Mantovani, A. (1993): Interleukin-1 type II receptor: a decoy target for IL-1 that is regulated by IL-4, Science (261) [5120], Seite 472-5.. http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/referer?http://www.ncbi.nlm.nih.gov/htbin-post/Omim/getmim%3ffield=medline_uid&search=8332913

[105] Means, T. K.; Golenbock, D. T. und Fenton, M. J. (2000): The biology of Toll-like receptors, Cytokine Growth Factor Rev (11) [3], Seite 219-32..

[106] Muegge, K.; Vila, M.; Gusella, G. L.; Musso, T.; Herrlich, P.; Stein, B. und Durum, S. K. (1993): Interleukin 1 induction of the c-jun promoter, Proc Natl Acad Sci U S A (90) [15], Seite 7054-8..

[107] Desilets, A.; Gheorghiu, I.; Yu, S. J.; Seidman, E. G. und Asselin, C. (2000): Inhibition by deacetylase inhibitors of IL-1-dependent induction of haptoglobin involves CCAAT/Enhancer-binding protein isoforms in intestinal epithelial cells, Biochem Biophys Res Commun (276) [2], Seite 673-9..

[108] Carswell, E. A.; Old, L. J.; Kassel, R. L.; Green, S.; Fiore, N. und Williamson, B. (1975): An endotoxin-induced serum factor that causes necrosis of tumors, Proc Natl Acad Sci U S A (72) [9], Seite 3666-70..

[109] Wallach, D.; Varfolomeev, E. E.; Malinin, N. L.; Goltsev, Y. V.; Kovalenko, A. V. und Boldin, M. P. (1999): Tumor necrosis factor receptor and Fas signaling mechanisms, Annu Rev Immunol (17), Seite 331-67.

[110] Derijard, B.; Raingeaud, J.; Barrett, T.; Wu, I. H.; Han, J.; Ulevitch, R. J. und Davis, R. J. (1995): Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms, Science (267) [5198], Seite 682-5.. http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/referer?http://www.ncbi.nlm.nih.gov/htbin-post/Omim/getmim%3ffield=medline_uid&search=7839144

[111] Ghosh, S.; May, M. J. und Kopp, E. B. (1998): NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses, Annu Rev Immunol (16), Seite 225-60.

[112] Schacke, H.; Docke, W. D. und Asadullah, K. (2002): Mechanisms involved in the side effects of glucocorticoids, Pharmacol Ther (96) [1], Seite 23-43.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=12441176

[113] Hadley, M. E. (2000): Endrocrinology, Prentice Hall.

[114] Fiorentino, D. F.; Bond, M. W. und Mosmann, T. R. (1989): Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones, J Exp Med (170) [6], Seite 2081-95..

[115] Howard, M.; O'Garra, A.; Ishida, H.; de Waal Malefyt, R. und de Vries, J. (1992): Biological properties of interleukin 10, J Clin Immunol (12) [4], Seite 239-47..

[116] Tan, J. C.; Indelicato, S. R.; Narula, S. K.; Zavodny, P. J. und Chou, C. C. (1993): Characterization of interleukin-10 receptors on human and mouse cells, J Biol Chem (268) [28], Seite 21053-9.. http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/referer?http://www.ncbi.nlm.nih.gov/htbin-post/Omim/getmim%3ffield=medline_uid&search=8407942

[117] Liu, Y.; Wei, S. H.; Ho, A. S.; de Waal Malefyt, R. und Moore, K. W. (1994): Expression cloning and characterization of a human IL-10 receptor, J Immunol (152) [4], Seite 1821-9..

[118] de Waal Malefyt, R.; Yssel, H.; Roncarolo, M. G.; Spits, H. und de Vries, J. E. (1992): Interleukin-10, Curr Opin Immunol (4) [3], Seite 314-20..

[119] Bogdan, C.; Vodovotz, Y. und Nathan, C. (1991): Macrophage deactivation by interleukin 10, J Exp Med (174) [6], Seite 1549-55..

[120] Howard, M.; Muchamuel, T.; Andrade, S. und Menon, S. (1993): Interleukin 10 protects mice from lethal endotoxemia, J Exp Med (177) [4], Seite 1205-8..

[121] Gerard, C.; Bruyns, C.; Marchant, A.; Abramowicz, D.; Vandenabeele, P.; Delvaux, A.; Fiers, W.; Goldman, M. und Velu, T. (1993): Interleukin 10 reduces the release of tumor necrosis factor and prevents lethality in experimental endotoxemia, J Exp Med (177) [2], Seite 547-50..

[122] Derynck, R.; Jarrett, J. A.; Chen, E. Y.; Eaton, D. H.; Bell, J. R.; Assoian, R. K.; Roberts, A. B.; Sporn, M. B. und Goeddel, D. V. (1985): Human transforming growth factor-beta complementary DNA sequence and expression in normal and transformed cells, Nature (316), Seite 701-5.

[123] Massague, J. (1998): TGF-beta signal transduction, Annu Rev Biochem (67), Seite 753-91.

[124] Letterio, J. J. und Roberts, A. B. (1998): Regulation of immune responses by TGF-beta, Annu Rev Immunol (16), Seite 137-61.

[125] Markowitz, S. D. und Roberts, A. B. (1996): Tumor suppressor activity of the TGF-beta pathway in human cancers [see comments], Cytokine Growth Factor Rev (7), Seite 93-102.

[126] O'Kane, S. und Ferguson, M. W. (1997): Transforming growth factor beta s and wound healing, Int J Biochem Cell Biol (29), Seite 63-78.

[127] Campos, S. P.; Wang, Y.; Koj, A. und Baumann, H. (1993): Divergent transforming growth factor-beta effects on IL-6 regulation of acute phase plasma proteins in rat hepatoma cells, J Immunol (151), Seite 7128-37.

[128] Koj, A. (1998): Termination of acute-phase response: role of some cytokines and anti- inflammatory drugs, Gen Pharmacol (31) [1], Seite 9-18..

[129] Mackiewicz, A.; Ganapathi, M. K.; Schultz, D.; Brabenec, A.; Weinstein, J.; Kelley, M. F. und Kushner, I. (1990): Transforming growth factor beta 1 regulates production of acute-phase proteins, Proc Natl Acad Sci U S A (87), Seite 1491-5.

[130] Morrone, G.; Cortese, R. und Sorrentino, V. (1989): Post-transcriptional control of negative acute phase genes by transforming growth factor beta, Embo J (8), Seite 3767-71.

[131] Heldin, C. H.; Miyazono, K. und ten Dijke, P. (1997): TGF-beta signalling from cell membrane to nucleus through SMAD proteins, Nature (390) [6659], Seite 465-71..

[132] Knippers, R. (2001): Molekulare Genetik, Thieme.

[133] Tansey, W. P. (2001): Transcriptional activation: risky business, Genes Dev (15) [9], Seite 1045-50.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11331599

[134] Latchman, D. S. (1995): Eukaryotic Transcription Factors, Academic Press, Seite 71-97.

[135] Roberts, S. G. (2000): Mechanisms of action of transcription activation and repression domains, Cell Mol Life Sci (57) [8-9], Seite 1149-60..

[136] Karin, M.; Liu, Z. g. und Zandi, E. (1997): AP-1 function and regulation, Curr Opin Cell Biol (9) [2], Seite 240-6.

[137] Halazonetis, T. D.; Georgopoulos, K.; Greenberg, M. E. und Leder, P. (1988): c-Jun dimerizes with itself and with c-Fos, forming complexes of different DNA binding affinities, Cell (55) [5], Seite 917-24..

[138] Karin, M. (1995): The regulation of AP-1 activity by mitogen-activated protein kinases, J Biol Chem (270) [28], Seite 16483-6.. http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/referer?http://www.jbc.org/cgi/content/full/270/28/16483

[139] Wasylyk, B.; Wasylyk, C.; Flores, P.; Begue, A.; Leprince, D. und Stehelin, D. (1990): The c-ets proto-oncogenes encode transcription factors that cooperate with c-Fos and c-Jun for transcriptional activation, Nature (346) [6280], Seite 191-3..

[140] Jonat, C.; Rahmsdorf, H. J.; Park, K. K.; Cato, A. C.; Gebel, S.; Ponta, H. und Herrlich, P. (1990): Antitumor promotion and antiinflammation: down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone, Cell (62) [6], Seite 1189-204..

[141] Johnson, P. F.; Landschulz, W. H.; Graves, B. J. und McKnight, S. L. (1987): Identification of a rat liver nuclear protein that binds to the enhancer core element of three animal viruses, Genes Dev (1) [2], Seite 133-46..

[142] Xanthopoulos, K. G.; Mirkovitch, J.; Decker, T.; Kuo, C. F. und Darnell, J. E., Jr. (1989): Cell-specific transcriptional control of the mouse DNA-binding protein mC/EBP, Proc Natl Acad Sci U S A (86) [11], Seite 4117-21..

[143] Poli, V. (1998): The role of C/EBP isoforms in the control of inflammatory and native immunity functions, J Biol Chem (273) [45], Seite 29279-82..

[144] Lekstrom-Himes, J. und Xanthopoulos, K. G. (1998): Biological role of the CCAAT/enhancer-binding protein family of transcription factors, J Biol Chem (273) [44], Seite 28545-8.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=9786841

[145] Akira, S.; Isshiki, H.; Sugita, T.; Tanabe, O.; Kinoshita, S.; Nishio, Y.; Nakajima, T.; Hirano, T. und Kishimoto, T. (1990): A nuclear factor for IL-6 expression (NF-IL6) is a member of a C/EBP family, Embo J (9) [6], Seite 1897-906.. http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/referer?http://www.ncbi.nlm.nih.gov/htbin-post/Omim/getmim%3ffield=medline_uid&search=2112087

[146] Poli, V.; Mancini, F. P. und Cortese, R. (1990): IL-6DBP, a nuclear protein involved in interleukin-6 signal transduction, defines a new family of leucine zipper proteins related to C/EBP, Cell (63) [3], Seite 643-53..

[147] Poli, V. und Cortese, R. (1989): Interleukin 6 induces a liver-specific nuclear protein that binds to the promoter of acute-phase genes, Proc Natl Acad Sci U S A (86) [21], Seite 8202-6..

[148] Akira, S. und Kishimoto, T. (1992): IL-6 and NF-IL6 in acute-phase response and viral infection, Immunol Rev (127), Seite 25-50..

[149] Buck, M.; Turler, H. und Chojkier, M. (1994): LAP (NF-IL-6), a tissue-specific transcriptional activator, is an inhibitor of hepatoma cell proliferation, Embo J (13) [4], Seite 851-60..

[150] Ramji, D. P. und Foka, P. (2002): CCAAT/enhancer-binding proteins: structure, function and regulation, Biochem J (365) [Pt 3], Seite 561-75.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=12006103

[151] Darnell, J. E., Jr.; Kerr, I. M. und Stark, G. R. (1994): Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins, Science (264) [5164], Seite 1415-21.. http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/referer?http://www.ncbi.nlm.nih.gov/htbin-post/Omim/getmim%3ffield=medline_uid&search=8197455

[152] Ihle, J. N. und Kerr, I. M. (1995): Jaks and Stats in signaling by the cytokine receptor superfamily, Trends Genet (11) [2], Seite 69-74.. http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/referer?http://www.ncbi.nlm.nih.gov/htbin-post/Omim/getmim%3ffield=medline_uid&search=7716810

[153] Schindler, C. W. (2002): Series introduction. JAK-STAT signaling in human disease, J Clin Invest (109) [9], Seite 1133-7.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11994400

[154] Li, Q. und Verma, I. M. (2002): NF-kappaB regulation in the immune system, Nat Rev Immunol (2) [10], Seite 725-34.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=12360211

[155] Caamano, J. und Hunter, C. A. (2002): NF-kappaB family of transcription factors: central regulators of innate and adaptive immune functions, Clin Microbiol Rev (15) [3], Seite 414-29.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=12097249

[156] Derynck, R.; Zhang, Y. und Feng, X. H. (1998): Smads: transcriptional activators of TGF-beta responses, Cell (95) [6], Seite 737-40..

[157] Zhang, Y.; Feng, X. H. und Derynck, R. (1998): Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-beta-induced transcription, Nature (394) [6696], Seite 909-13..

[158] Liberati, N. T.; Datto, M. B.; Frederick, J. P.; Shen, X.; Wong, C.; Rougier-Chapman, E. M. und Wang, X. F. (1999): Smads bind directly to the Jun family of AP-1 transcription factors, Proc Natl Acad Sci U S A (96) [9], Seite 4844-9..

[159] Wong, C.; Rougier-Chapman, E. M.; Frederick, J. P.; Datto, M. B.; Liberati, N. T.; Li, J. M. und Wang, X. F. (1999): Smad3-Smad4 and AP-1 complexes synergize in transcriptional activation of the c-Jun promoter by transforming growth factor beta, Mol Cell Biol (19) [3], Seite 1821-30..

[160] Hocevar, B. A.; Brown, T. L. und Howe, P. H. (1999): TGF-beta induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway, Embo J (18) [5], Seite 1345-56..

[161] Attisano, L. und Wrana, J. L. (2000): Smads as transcriptional co-modulators, Curr Opin Cell Biol (12) [2], Seite 235-43..

[162] Derynck, R.; Gelbart, W. M.; Harland, R. M.; Heldin, C. H.; Kern, S. E.; Massague, J.; Melton, D. A.; Mlodzik, M.; Padgett, R. W.; Roberts, A. B.; Smith, J.; Thomsen, G. H.; Vogelstein, B. und Wang, X. F. (1996): Nomenclature: vertebrate mediators of TGFbeta family signals [letter], Cell (87), Seite 173.

[163] Lagna, G.; Hata, A.; Hemmati-Brivanlou, A. und Massague, J. (1996): Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways, Nature (383) [6603], Seite 832-6..

[164] Liu, F.; Hata, A.; Baker, J. C.; Doody, J.; Carcamo, J.; Harland, R. M. und Massague, J. (1996): A human Mad protein acting as a BMP-regulated transcriptional activator, Nature (381) [6583], Seite 620-3..

[165] Wrana, J. L. und Attisano, L. (2000): The Smad pathway, Cytokine Growth Factor Rev (11), Seite 5-13.

[166] Gilks, C. B.; Bear, S. E.; Grimes, H. L. und Tsichlis, P. N. (1993): Progression of interleukin-2 (IL-2)-dependent rat T cell lymphoma lines to IL-2-independent growth following activation of a gene (Gfi-1) encoding a novel zinc finger protein, Mol Cell Biol (13) [3], Seite 1759-68.. http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/referer?http://www.ncbi.nlm.nih.gov/htbin-post/Omim/getmim%3ffield=medline_uid&search=8441411

[167] Zweidler-Mckay, P. A.; Grimes, H. L.; Flubacher, M. M. und Tsichlis, P. N. (1996): Gfi-1 encodes a nuclear zinc finger protein that binds DNA and functions as a transcriptional repressor, Mol Cell Biol (16) [8], Seite 4024-34..

[168] Schmidt, T.; Karsunky, H.; Rodel, B.; Zevnik, B.; Elsasser, H. P. und Moroy, T. (1998): Evidence implicating Gfi-1 and Pim-1 in pre-T-cell differentiation steps associated with beta-selection, Embo J (17) [18], Seite 5349-59..

[169] Tong, B.; Grimes, H. L.; Yang, T. Y.; Bear, S. E.; Qin, Z.; Du, K.; El-Deiry, W. S. und Tsichlis, P. N. (1998): The Gfi-1B proto-oncoprotein represses p21WAF1 and inhibits myeloid cell differentiation, Mol Cell Biol (18) [5], Seite 2462-73.. http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/referer?http://www.ncbi.nlm.nih.gov/htbin-post/Omim/getmim%3ffield=medline_uid&search=9566867

[170] Rodel, B.; Tavassoli, K.; Karsunky, H.; Schmidt, T.; Bachmann, M.; Schaper, F.; Heinrich, P.; Shuai, K.; Elsasser, H. P. und Moroy, T. (2000): The zinc finger protein Gfi-1 can enhance STAT3 signaling by interacting with the STAT3 inhibitor PIAS3, Embo J (19) [21], Seite 5845-55..

[171] Sakai, D. D.; Helms, S.; Carlstedt-Duke, J.; Gustafsson, J. A.; Rottman, F. M. und Yamamoto, K. R. (1988): Hormone-mediated repression: a negative glucocorticoid response element from the bovine prolactin gene, Genes Dev (2), Seite 1144-54.

[172] Hollenberg, S. M.; Weinberger, C.; Ong, E. S.; Cerelli, G.; Oro, A.; Lebo, R.; Thompson, E. B.; Rosenfeld, M. G. und Evans, R. M. (1985): Primary structure and expression of a functional human glucocorticoid receptor cDNA, Nature (318), Seite 635-41.

[173] Akerblom, I. E.; Slater, E. P.; Beato, M.; Baxter, J. D. und Mellon, P. L. (1988): Negative regulation by glucocorticoids through interference with a cAMP responsive enhancer, Science (241), Seite 350-3.

[174] Drouin, J.; Trifiro, M. A.; Plante, R. K.; Nemer, M.; Eriksson, P. und Wrange, O. (1989): Glucocorticoid receptor binding to a specific DNA sequence is required for hormone-dependent repression of pro-opiomelanocortin gene transcription, Mol Cell Biol (9), Seite 5305-14.

[175] Mordacq, J. C. und Linzer, D. I. (1989): Co-localization of elements required for phorbol ester stimulation and glucocorticoid repression of proliferin gene expression, Genes Dev (3), Seite 760-9.

[176] Ray, A.; LaForge, K. S. und Sehgal, P. B. (1990): On the mechanism for efficient repression of the interleukin-6 promoter by glucocorticoids: enhancer, TATA box, and RNA start site (Inr motif) occlusion, Mol Cell Biol (10), Seite 5736-46.

[177] Adler, S.; Waterman, M. L.; He, X. und Rosenfeld, M. G. (1988): Steroid receptor-mediated inhibition of rat prolactin gene expression does not require the receptor DNA-binding domain, Cell (52) [5], Seite 685-95..

[178] Almawi, W. Y. und Tamim, H. (2001): Posttranscriptional mechanisms of glucocorticoid antiproliferative effects: glucocorticoids inhibit IL-6-induced proliferation of B9 hybridoma cells, Cell Transplant (10) [2], Seite 161-4.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11332630

[179] Cato, A. C. und Wade, E. (1996): Molecular mechanisms of anti-inflammatory action of glucocorticoids, Bioessays (18) [5], Seite 371-8..

[180] Pfahl, M. (1993): Nuclear receptor/AP-1 interaction, Endocr Rev (14) [5], Seite 651-8..

[181] Wilson, T. und Treisman, R. (1988): Removal of poly(A) and consequent degradation of c-fos mRNA facilitated by 3' AU-rich sequences, Nature (336) [6197], Seite 396-9..

[182] Jacobson, A. und Peltz, S. W. (1996): Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells, Annu Rev Biochem (65), Seite 693-739.

[183] Ming, X. F.; Kaiser, M. und Moroni, C. (1998): c-jun N-terminal kinase is involved in AUUUA-mediated interleukin-3 mRNA turnover in mast cells, Embo J (17) [20], Seite 6039-48..

[184] Winzen, R.; Kracht, M.; Ritter, B.; Wilhelm, A.; Chen, C. Y.; Shyu, A. B.; Muller, M.; Gaestel, M.; Resch, K. und Holtmann, H. (1999): The p38 MAP kinase pathway signals for cytokine-induced mRNA stabilization via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism, Embo J (18) [18], Seite 4969-80..

[185] Aden, D. P.; Fogel, A.; Plotkin, S.; Damjanov, I. und Knowles, B. B. (1979): Controlled synthesis of HBsAg in a differentiated human liver carcinoma- derived cell line, Nature (282) [5739], Seite 615-6..

[186] Lieber, M.; Smith, B.; Szakal, A.; Nelson-Rees, W. und Todaro, G. (1976): A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells, Int J Cancer (17) [1], Seite 62-70..

[187] Schindler, U. und Baichwal, V. R. (1994): Three NF-kappa B binding sites in the human E-selectin gene required for maximal tumor necrosis factor alpha-induced expression, Mol Cell Biol (14) [9], Seite 5820-31.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=7520526

[188] Quandt, K.; Frech, K.; Karas, H.; Wingender, E. und Werner, T. (1995): MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data, Nucleic Acids Res (23) [23], Seite 4878-84.. http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/referer?http://www.oup.co.uk/nar/Volume_23/Issue_23/5s0483_gml.abs.html http://www.oup.co.uk/nar/Volume_23/Issue_23/5s0483_gml.abs.html

[189] Zawel, L.; Dai, J. L.; Buckhaults, P.; Zhou, S.; Kinzler, K. W.; Vogelstein, B. und Kern, S. E. (1998): Human Smad3 and Smad4 are sequence-specific transcription activators, Mol Cell (1) [4], Seite 611-7.

[190] Shi, Y.; Wang, Y. F.; Jayaraman, L.; Yang, H.; Massague, J. und Pavletich, N. P. (1998): Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-beta signaling, Cell (94), Seite 585-94.

[191] Jonk, L. J.; Itoh, S.; Heldin, C. H.; ten, Dijke P. und Kruijer, W. (1998): Identification and functional characterization of a Smad binding element (SBE) in the JunB promoter that acts as a transforming growth factor-beta, activin, and bone morphogenetic protein-inducible enhancer, J Biol Chem (273) [33], Seite 21145-52.

[192] Massague, J. und Wotton, D. (2000): Transcriptional control by the TGF-beta/Smad signaling system, Embo J (19), Seite 1745-54.

[193] Nakabayashi, H.; Taketa, K.; Miyano, K.; Yamane, T. und Sato, J. (1982): Growth of human hepatoma cells lines with differentiated functions in chemically defined medium, Cancer Res (42) [9], Seite 3858-63..

[194] Lai, E. und Darnell, J. E., Jr. (1991): Transcriptional control in hepatocytes: a window on development, Trends Biochem Sci (16) [11], Seite 427-30..

[195] Kirschning, C. J. (1996): Genomische Charakterisierung und Analyse der transkriptionellen Regulation des humanen Lipopolysaccharid Bindenden Proteins (LBP), Dissertation, Fachbereich Biologie, Freie Universität Berlin.

[196] Streetz, K. L.; Wustefeld, T.; Klein, C.; Manns, M. P. und Trautwein, C. (2001): Mediators of inflammation and acute phase response in the liver, Cell Mol Biol (Noisy-le-grand) (47) [4], Seite 661-73.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11502073

[197] Akira, S. (1997): IL-6-regulated transcription factors, Int J Biochem Cell Biol (29) [12], Seite 1401-18..

[198] Wang, S. und Evers, B. M. (1998): Cytokine-mediated differential induction of hepatic activator protein-1 genes, Surgery (123) [2], Seite 191-8.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=9481405

[199] O'Neill, L. A. und Greene, C. (1998): Signal transduction pathways activated by the IL-1 receptor family: ancient signaling machinery in mammals, insects, and plants, J Leukoc Biol (63) [6], Seite 650-7.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=9620655

[200] O'Neill, L. A. (2000): The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense, Sci STKE (2000) [44], Seite RE1.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11752602

[201] Betts, J. C.; Cheshire, J. K.; Akira, S.; Kishimoto, T. und Woo, P. (1993): The role of NF-kappa B and NF-IL6 transactivating factors in the synergistic activation of human serum amyloid A gene expression by interleukin-1 and interleukin-6, J Biol Chem (268) [34], Seite 25624-31.

[202] Shimizu, H. und Yamamoto, K. (1994): NF-kappa B and C/EBP transcription factor families synergistically function in mouse serum amyloid A gene expression induced by inflammatory cytokines, Gene (149) [2], Seite 305-10.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=7959007

[203] Matsusaka, T.; Fujikawa, K.; Nishio, Y.; Mukaida, N.; Matsushima, K.; Kishimoto, T. und Akira, S. (1993): Transcription factors NF-IL6 and NF-kappa B synergistically activate transcription of the inflammatory cytokines, interleukin 6 and interleukin 8, Proc Natl Acad Sci U S A (90) [21], Seite 10193-7.

[204] Johnson, G. L. und Lapadat, R. (2002): Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases, Science (298) [5600], Seite 1911-2.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=12471242

[205] Schuringa, J. J.; Jonk, L. J.; Dokter, W. H.; Vellenga, E. und Kruijer, W. (2000): Interleukin-6-induced STAT3 transactivation and Ser727 phosphorylation involves Vav, Rac-1 and the kinase SEK-1/MKK-4 as signal transduction components, Biochem J (347 Pt 1), Seite 89-96.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10727406

[206] Zauberman, A.; Zipori, D.; Krupsky, M. und Ben-Levy, R. (1999): Stress activated protein kinase p38 is involved in IL-6 induced transcriptional activation of STAT3, Oncogene (18) [26], Seite 3886-93.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10445852

[207] Lin, M. T.; Juan, C. Y.; Chang, K. J.; Chen, W. J. und Kuo, M. L. (2001): IL-6 inhibits apoptosis and retains oxidative DNA lesions in human gastric cancer AGS cells through up-regulation of anti-apoptotic gene mcl-1, Carcinogenesis (22) [12], Seite 1947-53.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11751424

[208] Depraetere, S.; Willems, J. und Joniau, M. (1991): Stimulation of CRP secretion in HepG2 cells: cooperative effect of dexamethasone and interleukin 6, Agents Actions (34) [3-4], Seite 369-75.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=1667244

[209] Powell, D.; Lee, P. D.; DePaolis, L. A.; Morris, S. L. und Suwanichkul, A. (1993): Dexamethasone stimulates expression of insulin-like growth factor binding protein-1 in HEP G2 human hepatoma cells, Growth Regul (3) [1], Seite 11-3.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=7683515

[210] Claverie, J. M. und Sauvaget, I. (1985): Assessing the biological significance of primary structure consensus patterns using sequence databanks. I. Heat-shock and glucocorticoid control elements in eukaryotic promoters, Comput Appl Biosci (1) [2], Seite 95-104.

[211] Okret, S.; Poellinger, L.; Dong, Y. und Gustafsson, J. A. (1986): Down-regulation of glucocorticoid receptor mRNA by glucocorticoid hormones and recognition by the receptor of a specific binding sequence within a receptor cDNA clone, Proc Natl Acad Sci U S A (83), Seite 5899-903.

[212] Tanaka, H.; Dong, Y.; Li, Q.; Okret, S. und Gustafsson, J. A. (1991): Identification and characterization of a cis-acting element that interferes with glucocorticoid-inducible activation of the mouse mammary tumor virus promoter, Proc Natl Acad Sci U S A (88), Seite 5393-7.

[213] Nishio, Y.; Isshiki, H.; Kishimoto, T. und Akira, S. (1993): A nuclear factor for interleukin-6 expression (NF-IL6) and the glucocorticoid receptor synergistically activate transcription of the rat alpha 1-acid glycoprotein gene via direct protein-protein interaction, Mol Cell Biol (13), Seite 1854-62.

[214] Chan, G. C.; Hess, P.; Meenakshi, T.; Carlstedt-Duke, J.; Gustafsson, J. A. und Payvar, F. (1991): Delayed secondary glucocorticoid response elements. Unusual nucleotide motifs specify glucocorticoid receptor binding to transcribed regions of alpha 2u-globulin DNA, J Biol Chem (266), Seite 22634-44.

[215] Karin, M.; Haslinger, A.; Holtgreve, H.; Richards, R. I.; Krauter, P.; Westphal, H. M. und Beato, M. (1984): Characterization of DNA sequences through which cadmium and glucocorticoid hormones induce human metallothionein-IIA gene, Nature (308), Seite 513-9.

[216] Schooltink, H.; Schmitz-Van de Leur, H.; Heinrich, P. C. und Rose-John, S. (1992): Up-regulation of the interleukin-6-signal transducing protein (gp130) by interleukin-6 and dexamethasone in HepG2 cells, FEBS Lett (297) [3], Seite 263-5.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=1544406

[217] Varma, V. K.; Smith, T. K.; Sorci-Thomas, M. und Ettinger, W. H., Jr. (1992): Dexamethasone increases apolipoprotein A-I concentrations in medium and apolipoprotein A-I mRNA abundance from Hep G2 cells, Metabolism (41) [10], Seite 1075-80.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=1328818

[218] Levy, J. R.; Krystal, G.; Glickman, P. und Dastvan, F. (1991): Effects of media conditions, insulin, and dexamethasone on insulin- receptor mRNA and promoter activity in HepG2 cells, Diabetes (40) [1], Seite 58-65.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=1849849

[219] Kancha, R. K. und Hussain, M. M. (1996): Up-regulation of the low density lipoprotein receptor-related protein by dexamethasone in HepG2 cells, Biochim Biophys Acta (1301) [3], Seite 213-20.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=8664331

[220] Diederich, M.; Wellman, M. und Siest, G. (1994): Localization of a regulatory region on the 5'-untranslated region of human hepatoma HepG2 gamma-glutamyltransferase mRNA and response to dexamethasone and antisense oligonucleotide treatment, FEBS Lett (356) [2-3], Seite 307-10.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=7805861

[221] Waite, K. A. und Eng, C. (2003): From developmental disorder to heritable cancer: it's all in the BMP/TGF-beta family, Nat Rev Genet (4) [10], Seite 763-73. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14526373

[222] Dennler, S.; Itoh, S.; Vivien, D.; ten Dijke, P.; Huet, S. und Gauthier, J. M. (1998): Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene, Embo J (17), Seite 3091-100.

[223] Chen, X.; Rubock, M. J. und Whitman, M. (1996): A transcriptional partner for MAD proteins in TGF-beta signalling [published erratum appears in Nature 1996 Dec 19-26;384(6610):648], Nature (383), Seite 691-6.

[224] Massague, J. und Chen, Y. G. (2000): Controlling TGF-beta signaling, Genes Dev (14), Seite 627-44.

[225] Gorelik, L.; Fields, P. E. und Flavell, R. A. (2000): Cutting edge: TGF-beta inhibits Th type 2 development through inhibition of GATA-3 expression, J Immunol (165) [9], Seite 4773-7..

[226] Wotton, D.; Lo, R. S.; Lee, S. und Massague, J. (1999): A Smad transcriptional corepressor, Cell (97) [1], Seite 29-39..

[227] Akiyoshi, S.; Inoue, H.; Hanai, J.; Kusanagi, K.; Nemoto, N.; Miyazono, K. und Kawabata, M. (1999): c-Ski acts as a transcriptional co-repressor in transforming growth factor-beta signaling through interaction with smads, J Biol Chem (274) [49], Seite 35269-77..

[228] Miyazono, K.; ten Dijke, P. und Heldin, C. H. (2000): TGF-beta signaling by Smad proteins, Adv Immunol (75), Seite 115-57.

[229] Zawel, L.; Yu, J.; Torrance, C. J.; Markowitz, S.; Kinzler, K. W.; Vogelstein, B. und Zhou, S. (2002): DEC1 is a downstream target of TGF-beta with sequence-specific transcriptional repressor activities, Proc Natl Acad Sci U S A (99) [5], Seite 2848-53..

[230] Jardine, H.; MacNee, W.; Donaldson, K. und Rahman, I. (2002): Molecular mechanism of TGF-beta {sub1)-induced glutathione depletion in alveolar epithelial cells: involvement of AP-1/ARE and Fra-1, J Biol Chem (23), Seite 23.

[231] Grimes, H. L.; Chan, T. O.; Zweidler-McKay, P. A.; Tong, B. und Tsichlis, P. N. (1996): The Gfi-1 proto-oncoprotein contains a novel transcriptional repressor domain, SNAG, and inhibits G1 arrest induced by interleukin-2 withdrawal, Mol Cell Biol (16) [11], Seite 6263-72..

[232] Wang, T.; Zou, J.; Cunningham, C. und Secombes, C. J. (2002): Cloning and functional characterisation of the interleukin-1 beta 1 promoter of rainbow trout (Oncorhynchus mykiss), Biochim Biophys Acta (1575) [1-3], Seite 108-16..

[233] Brehm, A. und Kouzarides, T. (1999): Retinoblastoma protein meets chromatin, Trends Biochem Sci (24) [4], Seite 142-5.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10322419

[234] Brehm, A.; Miska, E. A.; McCance, D. J.; Reid, J. L.; Bannister, A. J. und Kouzarides, T. (1998): Retinoblastoma protein recruits histone deacetylase to repress transcription, Nature (391) [6667], Seite 597-601.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=9468139

[235] Kirov, N. C.; Lieberman, P. M. und Rushlow, C. (1996): The transcriptional corepressor DSP1 inhibits activated transcription by disrupting TFIIA-TBP complex formation, Embo J (15) [24], Seite 7079-87.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=9003783

[236] Lehming, N.; Thanos, D.; Brickman, J. M.; Ma, J.; Maniatis, T. und Ptashne, M. (1994): An HMG-like protein that can switch a transcriptional activator to a repressor, Nature (371) [6493], Seite 175-9.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=8072548

[237] Nakao, A.; Afrakhte, M.; Moren, A.; Nakayama, T.; Christian, J. L.; Heuchel, R.; Itoh, S.; Kawabata, M.; Heldin, N. E.; Heldin, C. H. und ten Dijke, P. (1997): Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling, Nature (389) [6651], Seite 631-5.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=9335507

[238] Nakao, A.; Okumura, K. und Ogawa, H. (2002): Smad7: a new key player in TGF-beta-associated disease, Trends Mol Med (8) [8], Seite 361-3.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=12127716

[239] Berk, A. J. (1989): Regulation of eukaryotic transcription factors by post-translational modification, Biochim Biophys Acta (1009) [2], Seite 103-9.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=2529903

[240] Beckett, D. (2001): Regulated assembly of transcription factors and control of transcription initiation, J Mol Biol (314) [3], Seite 335-52.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11846548

[241] Yu, B. und Wright, S. D. (1996): Catalytic properties of lipopolysaccharide (LPS) binding protein. Transfer of LPS to soluble CD14, J Biol Chem (271) [8], Seite 4100-5..


© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 4.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am:
20.10.2005