Adams, J. (2004): The development of proteasome inhibitors as anticancer drugs, Cancer Cell, (vol. 5), No. 5, pp.417-21.

Adams, J.; Behnke, M.; Chen, S.; Cruickshank, A. A.; Dick, L. R.; Grenier, L.; Klunder, J. M.; Ma, Y. T.; Plamondon, L. and Stein, R. L. (1998): Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids, Bioorg Med Chem Lett, (vol. 8), No. 4, pp.333-8.

An, J.; Sun, Y.; Fisher, M. and Rettig, M. B. (2004): Antitumor effects of bortezomib (PS-341) on primary effusion lymphomas, Leukemia, (vol. 18), No. 10, pp.1699-704.

Anderson, S. P.; Howroyd, P.; Liu, J.; Qian, X.; Bahnemann, R.; Swanson, C.; Kwak, M. K.; Kensler, T. W. and Corton, J. C. (2004): The transcriptional response to a peroxisome proliferator-activated receptor alpha (PPAR alpha) agonist includes increased expression of proteome maintenance genes, J Biol Chem.

Bach, E. A.; Aguet, M. and Schreiber, R. D. (1997): The IFN gamma receptor: a paradigm for cytokine receptor signaling, Annu Rev Immunol, (vol. 15), pp.563-91.

Bailey, J. L.; Wang, X.; England, B. K.; Price, S. R.; Ding, X. and Mitch, W. E. (1996): The acidosis of chronic renal failure activates muscle proteolysis in rats by augmenting transcription of genes encoding proteins of the ATP-dependent ubiquitin-proteasome pathway, J Clin Invest, (vol. 97), No. 6, pp.1447-53.

Baracos, V. E.; DeVivo, C.; Hoyle, D. H. and Goldberg, A. L. (1995): Activation of the ATP-ubiquitin-proteasome pathway in skeletal muscle of cachectic rats bearing a hepatoma, Am J Physiol, (vol. 268), No. 5 Pt 1, pp.E996-1006.

Barton, L. F.; Cruz, M.; Rangwala, R.; Deepe, G. S., Jr. and Monaco, J. J. (2002): Regulation of Immunoproteasome Subunit Expression In Vivo Following Pathogenic Fungal Infection, J Immunol, (vol. 169), No. 6, pp.3046-3052.

Becskei, A. and Serrano, L. (2000): Engineering stability in gene networks by autoregulation, Nature, (vol. 405), No. 6786, pp.590-3.

Berlett, B. S. and Stadtman, E. R. (1997): Protein oxidation in aging, disease, and oxidative stress, J Biol Chem, (vol. 272), No. 33, pp.20313-6.

Blanquart, C.; Barbier, O.; Fruchart, J. C.; Staels, B. and Glineur, C. (2002): Peroxisome proliferator-activated receptor alpha (PPARalpha ) turnover by the ubiquitin-proteasome system controls the ligand-induced expression level of its target genes, J Biol Chem, (vol. 277), No. 40, pp.37254-9.

Bloom, D. A. and Jaiswal, A. K. (2003): Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1 gene expression, J Biol Chem, (vol. 278), No. 45, pp.44675-82.

Bochtler, M.; Ditzel, L.; Groll, M. and Huber, R. (1997): Crystal structure of heat shock locus V (HslV) from Escherichia coli, Proc Natl Acad Sci U S A, (vol. 94), No. 12, pp.6070-4.

Bogyo, M.; McMaster, J. S.; Gaczynska, M.; Tortorella, D.; Goldberg, A. L. and Ploegh, H. (1997): Covalent modification of the active site threonine of proteasomal beta subunits and the Escherichia coli homolog HslV by a new class of inhibitors, Proc Natl Acad Sci U S A, (vol. 94), No. 13, pp.6629-34.

Braun, S.; Hanselmann, C.; Gassmann, M. G.; auf dem Keller, U.; Born-Berclaz, C.; Chan, K.; Kan, Y. W. and Werner, S. (2002): Nrf2 transcription factor, a novel target of keratinocyte growth factor action which regulates gene expression and inflammation in the healing skin wound, Mol Cell Biol, (vol. 22), No. 15, pp.5492-505.

Breitschopf, K.; Zeiher, A. M. and Dimmeler, S. (2000): Ubiquitin-mediated degradation of the proapoptotic active form of bid. A functional consequence on apoptosis induction, J Biol Chem, (vol. 275), No. 28, pp.21648-52.

Brennan, C. M. and Steitz, J. A. (2001): HuR and mRNA stability, Cell Mol Life Sci, (vol. 58), No. 2, pp.266-77.

Brucet, M.; Marques, L.; Sebastian, C.; Lloberas, J. and Celada, A. (2004): Regulation of murine Tap1 and Lmp2 genes in macrophages by interferon gamma is mediated by STAT1 and IRF-1, Genes Immun, (vol. 5), No. 1, pp.26-35.

Burri, L.; Hockendorff, J.; Boehm, U.; Klamp, T.; Dohmen, R. J. and Levy, F. (2000): Identification and characterization of a mammalian protein interacting with 20S proteasome precursors, Proc Natl Acad Sci U S A, (vol. 97), No. 19, pp.10348-53.

Bush, K. T.; Goldberg, A. L. and Nigam, S. K. (1997): Proteasome inhibition leads to a heat-shock response, induction of endoplasmic reticulum chaperones, and thermotolerance, J Biol Chem, (vol. 272), No. 14, pp.9086-92.

Cagney, G.; Uetz, P. and Fields, S. (2001): Two-hybrid analysis of the Saccharomyces cerevisiae 26S proteasome, Physiol Genomics, (vol. 7), No. 1, pp.27-34.

Chang, C.; Gonzalez, F.; Rothermel, B.; Sun, L.; Johnston, S. A. and Kodadek, T. (2001): The Gal4 activation domain binds Sug2 protein, a proteasome component, in vivo and in vitro, J Biol Chem, (vol. 276), No. 33, pp.30956-63.

Chen, P. and Hochstrasser, M. (1996): Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly, Cell, (vol. 86), No. 6, pp.961-72.

Chesler, D. A.; McCutcheon, J. A. and Reiss, C. S. (2004): Posttranscriptional regulation of neuronal nitric oxide synthase expression by IFN-gamma, J Interferon Cytokine Res, (vol. 24), No. 2, pp.141-9.

Chu, S.; Blaisdell, C. J.; Bamford, P. and Ferro, T. J. (2004): Interferon-gamma regulates ClC-2 chloride channel in lung epithelial cells, Biochem Biophys Res Commun, (vol. 324), No. 1, pp.31-9.

Coux, O.; Tanaka, K. and Goldberg, A. L. (1996): Structure and functions of the 20S and 26S proteasomes, Annu Rev Biochem, (vol. 65), pp.801-47.

Cullinan, S. B.; Zhang, D.; Hannink, M.; Arvisais, E.; Kaufman, R. J. and Diehl, J. A. (2003): Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival, Mol Cell Biol, (vol. 23), No. 20, pp.7198-209.">

Dahlmann, B.; Kopp, F.; Kuehn, L.; Niedel, B.; Pfeifer, G.; Hegerl, R. and Baumeister, W. (1989): The multicatalytic proteinase (prosome) is ubiquitous from eukaryotes to archaebacteria, FEBS Lett, (vol. 251), No. 1-2, pp.125-31.">

Deroo, B. J. and Archer, T. K. (2002): Proteasome inhibitors reduce luciferase and beta -galactosidase activity in tissue culture cells, J Biol Chem.

Dick, L. R.; Cruikshank, A. A.; Grenier, L.; Melandri, F. D.; Nunes, S. L. and Stein, R. L. (1996): Mechanistic studies on the inactivation of the proteasome by lactacystin: a central role for clasto-lactacystin beta-lactone, J Biol Chem, (vol. 271), No. 13, pp.7273-6.

Dick, R. A. and Kensler, T. W. (2002): Chemoprotective potential of phase 2 enzyme inducers, Expert Rev Anticancer Ther, (vol. 2), No. 5, pp.581-92.

Dinkova-Kostova, A. T.; Holtzclaw, W. D.; Cole, R. N.; Itoh, K.; Wakabayashi, N.; Katoh, Y.; Yamamoto, M. and Talalay, P. (2002): Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants, Proc Natl Acad Sci U S A, (vol. 99), No. 18, pp.11908-13.

Drexler, H. C. (1998): Programmed cell death and the proteasome, Apoptosis, (vol. 3), No. 1, pp.1-7.

Du, J.; Mitch, W. E.; Wang, X. and Price, S. R. (2000): Glucocorticoids induce proteasome C3 subunit expression in L6 muscle cells by opposing the suppression of its transcription by NF-kappa B, J Biol Chem, (vol. 275), No. 26, pp.19661-6.

Dubiel, W.; Pratt, G.; Ferrell, K. and Rechsteiner, M. (1992): Purification of an 11 S regulator of the multicatalytic protease, J Biol Chem, (vol. 267), No. 31, pp.22369-77.

Durrant, D.; Liu, J.; Yang, H. S. and Lee, R. M. (2004): The bortezomib-induced mitochondrial damage is mediated by accumulation of active protein kinase C-delta, Biochem Biophys Res Commun, (vol. 321), No. 4, pp.905-8.

Edgell, C. J.; McDonald, C. C. and Graham, J. B. (1983): Permanent cell line expressing human factor VIII-related antigen established by hybridization, Proc Natl Acad Sci U S A, (vol. 80), No. 12, pp.3734-7.

Elbirt, K. K.; Whitmarsh, A. J.; Davis, R. J. and Bonkovsky, H. L. (1998): Mechanism of sodium arsenite-mediated induction of heme oxygenase-1 in hepatoma cells. Role of mitogen-activated protein kinases, J Biol Chem, (vol. 273), No. 15, pp.8922-31.

Eleuteri, A. M.; Cuccioloni, M.; Bellesi, J.; Lupidi, G.; Fioretti, E. and Angeletti, M. (2002): Interaction of Hsp90 with 20S proteasome: thermodynamic and kinetic characterization, Proteins, (vol. 48), No. 2, pp.169-77.

Fenteany, G.; Standaert, R. F.; Lane, W. S.; Choi, S.; Corey, E. J. and Schreiber, S. L. (1995): Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin, Science, (vol. 268), No. 5211, pp.726-31.

Fenteany, G.; Standaert, R. F.; Reichard, G. A.; Corey, E. J. and Schreiber, S. L. (1994): A beta-lactone related to lactacystin induces neurite outgrowth in a neuroblastoma cell line and inhibits cell cycle progression in an osteosarcoma cell line, Proc Natl Acad Sci U S A, (vol. 91), No. 8, pp.3358-62.

Foss, G. S. and Prydz, H. (1999): Interferon regulatory factor 1 mediates the interferon-gamma induction of the human immunoproteasome subunit multicatalytic endopeptidase complex-like 1, J Biol Chem, (vol. 274), No. 49, pp.35196-202.

Frentzel, S.; Kuhn-Hartmann, I.; Gernold, M.; Gott, P.; Seelig, A. and Kloetzel, P. M. (1993): The major-histocompatibility-complex-encoded beta-type proteasome subunits LMP2 and LMP7. Evidence that LMP2 and LMP7 are synthesized as proproteins and that cellular levels of both mRNA and LMP-containing 20S proteasomes are differentially regulated, Eur J Biochem, (vol. 216), No. 1, pp.119-26.

Frentzel, S.; Pesold-Hurt, B.; Seelig, A. and Kloetzel, P. M. (1994): 20 S proteasomes are assembled via distinct precursor complexes. Processing of LMP2 and LMP7 proproteins takes place in 13-16 S preproteasome complexes, J Mol Biol, (vol. 236), No. 4, pp.975-81.

Frentzel, S.; Troxell, M.; Haass, C.; Pesold-Hurt, B.; Glatzer, K. H. and Kloetzel, P. M. (1992): Molecular characterization of the genomic regions of the Drosophila alpha-type subunit proteasome genes PROS-Dm28.1 and PROS-Dm35, Eur J Biochem, (vol. 205), No. 3, pp.1043-51.

Gerards, W. L.; de Jong, W. W.; Bloemendal, H. and Boelens, W. (1998): The human proteasomal subunit HsC8 induces ring formation of other alpha-type subunits, J Mol Biol, (vol. 275), No. 1, pp.113-21.

Gerards, W. L.; Enzlin, J.; Haner, M.; Hendriks, I. L.; Aebi, U.; Bloemendal, H. and Boelens, W. (1997): The human alpha-type proteasomal subunit HsC8 forms a double ringlike structure, but does not assemble into proteasome-like particles with the beta-type subunits HsDelta or HsBPROS26, J Biol Chem, (vol. 272), No. 15, pp.10080-6.

Gille, C.; Goede, A.; Schloetelburg, C.; Preissner, R.; Kloetzel, P. M.; Gobel, U. B. and Frommel, C. (2003): A comprehensive view on proteasomal sequences: implications for the evolution of the proteasome, J Mol Biol, (vol. 326), No. 5, pp.1437-48.

Glas, R.; Bogyo, M.; McMaster, J. S.; Gaczynska, M. and Ploegh, H. L. (1998): A proteolytic system that compensates for loss of proteasome function, Nature, (vol. 392), No. 6676, pp.618-22.

Glickman, M. H.; Rubin, D. M.; Coux, O.; Wefes, I.; Pfeifer, G.; Cjeka, Z.; Baumeister, W.; Fried, V. A. and Finley, D. (1998): A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3, Cell, (vol. 94), No. 5, pp.615-23.

Glynne, R.; Kerr, L. A.; Mockridge, I.; Beck, S.; Kelly, A. and Trowsdale, J. (1993): The major histocompatibility complex-encoded proteasome component LMP7: alternative first exons and post-translational processing, Eur J Immunol, (vol. 23), No. 4, pp.860-6.

Gottesman, S. (1996): Proteases and their targets in Escherichia coli, Annu Rev Genet, (vol. 30), pp.465-506.

Grewal, S. I. and Moazed, D. (2003): Heterochromatin and epigenetic control of gene expression, Science, (vol. 301), No. 5634, pp.798-802.

Griffin, T. A.; Slack, J. P.; McCluskey, T. S.; Monaco, J. J. and Colbert, R. A. (2000): Identification of proteassemblin, a mammalian homologue of the yeast protein, Ump1p, that is required for normal proteasome assembly, Mol Cell Biol Res Commun, (vol. 3), No. 4, pp.212-7.

Groll, M.; Ditzel, L.; Lowe, J.; Stock, D.; Bochtler, M.; Bartunik, H. D. and Huber, R. (1997): Structure of 20S proteasome from yeast at 2.4 A resolution, Nature, (vol. 386), No. 6624, pp.463-71.

Groll, M.; Nazif, T.; Huber, R. and Bogyo, M. (2002): Probing structural determinants distal to the site of hydrolysis that control substrate specificity of the 20S proteasome, Chem Biol, (vol. 9), No. 5, pp.655-62.

Grzybowska, E. A.; Wilczynska, A. and Siedlecki, J. A. (2001): Regulatory functions of 3'UTRs, Biochem Biophys Res Commun, (vol. 288), No. 2, pp.291-5.

Guhaniyogi, J. and Brewer, G. (2001): Regulation of mRNA stability in mammalian cells, Gene, (vol. 265), No. 1-2, pp.11-23.

Hanada, M.; Sugawara, K.; Kaneta, K.; Toda, S.; Nishiyama, Y.; Tomita, K.; Yamamoto, H.; Konishi, M. and Oki, T. (1992): Epoxomicin, a new antitumor agent of microbial origin, J Antibiot (Tokyo), (vol. 45), No. 11, pp.1746-52.

Hayashi, M.; Ishibashi, T.; Tanaka, K. and Kasahara, M. (1997): The mouse genes encoding the third pair of beta-type proteasome subunits regulated reciprocally by IFN-gamma: structural comparison, chromosomal localization, and analysis of the promoter, J Immunol, (vol. 159), No. 6, pp.2760-70.

Heinemeyer, W.; Fischer, M.; Krimmer, T.; Stachon, U. and Wolf, D. H. (1997): The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing, J Biol Chem, (vol. 272), No. 40, pp.25200-9.

Heinemeyer, W.; Trondle, N.; Albrecht, G. and Wolf, D. H. (1994): PRE5 and PRE6, the last missing genes encoding 20S proteasome subunits from yeast? Indication for a set of 14 different subunits in the eukaryotic proteasome core, Biochemistry, (vol. 33), No. 40, pp.12229-37.

Hershko, A. and Ciechanover, A. (1992): The ubiquitin system for protein degradation, Annu Rev Biochem, (vol. 61), pp.761-807.

Hoeffler, J. P.; Meyer, T. E.; Yun, Y.; Jameson, J. L. and Habener, J. F. (1988): Cyclic AMP-responsive DNA-binding protein: structure based on a cloned placental cDNA, Science, (vol. 242), No. 4884, pp.1430-3.

Hu, J.; Meng, Q.; Roy, S. K.; Raha, A.; Zhang, J.; Hashimoto, K. and Kalvakolanu, D. V. (2002): A novel transactivating factor that regulates interferon-gamma-dependent gene expression, J Biol Chem, (vol. 277), No. 33, pp.30253-63.

Huang, H. C.; Nguyen, T. and Pickett, C. B. (2000): Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2-related factor 2, Proc Natl Acad Sci U S A, (vol. 97), No. 23, pp.12475-80.

Huang, H. C.; Nguyen, T. and Pickett, C. B. (2002): Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription, J Biol Chem, (vol. 277), No. 45, pp.42769-74.

Isaacs, A. and Lindenmann, J. (1957): Virus interference. I. The interferon, Proc R Soc Lond B Biol Sci, (vol. 147), No. 927, pp.258-67.

Itoh, K.; Chiba, T.; Takahashi, S.; Ishii, T.; Igarashi, K.; Katoh, Y.; Oyake, T.; Hayashi, N.; Satoh, K.; Hatayama, I.; Yamamoto, M. and Nabeshima, Y. (1997): An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements, Biochem Biophys Res Commun, (vol. 236), No. 2, pp.313-22.

Itoh, K.; Igarashi, K.; Hayashi, N.; Nishizawa, M. and Yamamoto, M. (1995): Cloning and characterization of a novel erythroid cell-derived CNC family transcription factor heterodimerizing with the small Maf family proteins, Mol Cell Biol, (vol. 15), No. 8, pp.4184-93.

Itoh, K.; Wakabayashi, N.; Katoh, Y.; Ishii, T.; Igarashi, K.; Engel, J. D. and Yamamoto, M. (1999): Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain, Genes Dev, (vol. 13), No. 1, pp.76-86.

Itoh, K.; Wakabayashi, N.; Katoh, Y.; Ishii, T.; O'Connor, T. and Yamamoto, M. (2003): Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles, Genes Cells, (vol. 8), No. 4, pp.379-91.

Jager, S.; Groll, M.; Huber, R.; Wolf, D. H. and Heinemeyer, W. (1999): Proteasome beta-type subunits: unequal roles of propeptides in core particle maturation and a hierarchy of active site function, J Mol Biol, (vol. 291), No. 4, pp.997-1013.

Jayarapu, K. and Griffin, T. A. (2004): Protein-protein interactions among human 20S proteasome subunits and proteassemblin, Biochem Biophys Res Commun, (vol. 314), No. 2, pp.523-8.

Ju, D.; Wang, L.; Mao, X. and Xie, Y. (2004): Homeostatic regulation of the proteasome via an Rpn4-dependent feedback circuit, Biochem Biophys Res Commun, (vol. 321), No. 1, pp.51-7.

Ju, D. and Xie, Y. (2004): Proteasomal Degradation of RPN4 via Two Distinct Mechanisms, Ubiquitin-dependent and -independent, J Biol Chem, (vol. 279), No. 23, pp.23851-4.

Kang, K. W.; Lee, S. J.; Park, J. W. and Kim, S. G. (2002): Phosphatidylinositol 3-kinase regulates nuclear translocation of NF-E2-related factor 2 through actin rearrangement in response to oxidative stress, Mol Pharmacol, (vol. 62), No. 5, pp.1001-10.

Kawazoe, Y.; Nakai, A.; Tanabe, M. and Nagata, K. (1998): Proteasome inhibition leads to the activation of all members of the heat-shock-factor family, Eur J Biochem, (vol. 255), No. 2, pp.356-62.

Kim, D.; Kim, S. H. and Li, G. C. (1999): Proteasome inhibitors MG132 and lactacystin hyperphosphorylate HSF1 and induce hsp70 and hsp27 expression, Biochem Biophys Res Commun, (vol. 254), No. 1, pp.264-8.

Kloetzel, P. M. (2001): Antigen processing by the proteasome, Nat Rev Mol Cell Biol, (vol. 2), No. 3, pp.179-87.

Kondagunta, G. V.; Drucker, B.; Schwartz, L.; Bacik, J.; Marion, S.; Russo, P.; Mazumdar, M. and Motzer, R. J. (2004): Phase II trial of bortezomib for patients with advanced renal cell carcinoma, J Clin Oncol, (vol. 22), No. 18, pp.3720-5.

Kruger, E.; Kloetzel, P. M. and Enenkel, C. (2001): 20S proteasome biogenesis, Biochimie, (vol. 83), No. 3-4, pp.289-93.

Kruger, E.; Kuckelkorn, U.; Sijts, A. and Kloetzel, P. M. (2003): The components of the proteasome system and their role in MHC class I antigen processing, Rev Physiol Biochem Pharmacol, (vol. 148), pp.81-104.

Kruger, E.; Zuhlke, D.; Witt, E.; Ludwig, H. and Hecker, M. (2001): Clp-mediated proteolysis in Gram-positive bacteria is autoregulated by the stability of a repressor, Embo J, (vol. 20), No. 4, pp.852-63.

Kuckelkorn, U.; Knuehl, C.; Boes-Fabian, B.; Drung, I. and Kloetzel, P. M. (2000): The effect of heat shock on 20S/26S proteasomes, Biol Chem, (vol. 381), No. 9-10, pp.1017-23.

Kwak, M. K.; Itoh, K.; Yamamoto, M. and Kensler, T. W. (2002): Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: role of antioxidant response element-like sequences in the nrf2 promoter, Mol Cell Biol, (vol. 22), No. 9, pp.2883-92.

Kwak, M. K.; Wakabayashi, N.; Greenlaw, J. L.; Yamamoto, M. and Kensler, T. W. (2003): Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway, Mol Cell Biol, (vol. 23), No. 23, pp.8786-94.

Kwon, Y. D.; Nagy, I.; Adams, P. D.; Baumeister, W. and Jap, B. K. (2004): Crystal Structures of the Rhodococcus Proteasome with and without its Pro-peptides: Implications for the Role of the Pro-peptide in Proteasome Assembly, J Mol Biol, (vol. 335), No. 1, pp.233-45.

La Volpe, A.; Ciaramella, M. and Bazzicalupo, P. (1988): Structure, evolution and properties of a novel repetitive DNA family in Caenorhabditis elegans, Nucleic Acids Res, (vol. 16), No. 17, pp.8213-31.

Le Hir, H.; Nott, A. and Moore, M. J. (2003): How introns influence and enhance eukaryotic gene expression, Trends Biochem Sci, (vol. 28), No. 4, pp.215-20.

Lee, D. H. and Goldberg, A. L. (1998): Proteasome inhibitors cause induction of heat shock proteins and trehalose, which together confer thermotolerance in Saccharomyces cerevisiae, Mol Cell Biol, (vol. 18), No. 1, pp.30-8.

Lee, J. M.; Hanson, J. M.; Chu, W. A. and Johnson, J. A. (2001): Phosphatidylinositol 3-kinase, not extracellular signal-regulated kinase, regulates activation of the antioxidant-responsive element in IMR-32 human neuroblastoma cells, J Biol Chem, (vol. 276), No. 23, pp.20011-6.

Levine, T. D.; Gao, F.; King, P. H.; Andrews, L. G. and Keene, J. D. (1993): Hel-N1: an autoimmune RNA-binding protein with specificity for 3' uridylate-rich untranslated regions of growth factor mRNAs, Mol Cell Biol, (vol. 13), No. 6, pp.3494-504.

Li, B. and Dou, Q. P. (2000): Bax degradation by the ubiquitin/proteasome-dependent pathway: involvement in tumor survival and progression, Proc Natl Acad Sci U S A, (vol. 97), No. 8, pp.3850-5.

Li, Y. and Jaiswal, A. K. (1992): Regulation of human NAD(P)H:quinone oxidoreductase gene. Role of AP1 binding site contained within human antioxidant response element, J Biol Chem, (vol. 267), No. 21, pp.15097-104.

Lopes, U. G.; Erhardt, P.; Yao, R. and Cooper, G. M. (1997): p53-dependent induction of apoptosis by proteasome inhibitors, J Biol Chem, (vol. 272), No. 20, pp.12893-6.

Lowe, J.; Stock, D.; Jap, B.; Zwickl, P.; Baumeister, W. and Huber, R. (1995): Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution, Science, (vol. 268), No. 5210, pp.533-9.

Ma, C. P.; Willy, P. J.; Slaughter, C. A. and DeMartino, G. N. (1993): PA28, an activator of the 20 S proteasome, is inactivated by proteolytic modification at its carboxyl terminus, J Biol Chem, (vol. 268), No. 30, pp.22514-9.

Macagno, A.; Kuehn, L.; de Giuli, R. and Groettrup, M. (2001): Pronounced up-regulation of the PA28alpha/beta proteasome regulator but little increase in the steady-state content of immunoproteasome during dendritic cell maturation, Eur J Immunol, (vol. 31), No. 11, pp.3271-80.

Makino, Y.; Yoshida, T.; Yogosawa, S.; Tanaka, K.; Muramatsu, M. and Tamura, T. A. (1999): Multiple mammalian proteasomal ATPases, but not proteasome itself, are associated with TATA-binding protein and a novel transcriptional activator, TIP120, Genes Cells, (vol. 4), No. 9, pp.529-39.

Mannhaupt, G.; Schnall, R.; Karpov, V.; Vetter, I. and Feldmann, H. (1999): Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast, FEBS Lett, (vol. 450), No. 1-2, pp.27-34.

Masson, P.; Lundgren, J. and Young, P. (2003): Drosophila Proteasome Regulator REGgamma: Transcriptional Activation by DNA Replication-related Factor DREF and Evidence for a Role in Cell Cycle Progression, J Mol Biol, (vol. 327), No. 5, pp.1001-12.

McCord, J. M. (2000): The evolution of free radicals and oxidative stress, Am J Med, (vol. 108), No. 8, pp.652-9.

McMahon, M.; Itoh, K.; Yamamoto, M. and Hayes, J. D. (2003): Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression, J Biol Chem, (vol. 278), No. 24, pp.21592-600.

Meiners, S.; Heyken, D.; Weller, A.; Ludwig, A.; Stangl, K.; Kloetzel, P. M. and Kruger, E. (2003): Inhibition of proteasome activity induces concerted expression of proteasome genes and de novo formation of mammalian proteasomes, J Biol Chem.

Meiners, S.; Laule, M.; Rother, W.; Guenther, C.; Prauka, I.; Muschick, P.; Baumann, G.; Kloetzel, P. M. and Stangl, K. (2002): Ubiquitin-proteasome pathway as a new target for the prevention of restenosis, Circulation, (vol. 105), No. 4, pp.483-9.

Meng, L.; Mohan, R.; Kwok, B. H.; Elofsson, M.; Sin, N. and Crews, C. M. (1999): Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity, Proc Natl Acad Sci U S A, (vol. 96), No. 18, pp.10403-8.

Mitch, W. E.; Bailey, J. L.; Wang, X.; Jurkovitz, C.; Newby, D. and Price, S. R. (1999): Evaluation of signals activating ubiquitin-proteasome proteolysis in a model of muscle wasting, Am J Physiol, (vol. 276), No. 5 Pt 1, pp.C1132-8.

Morito, N.; Yoh, K.; Itoh, K.; Hirayama, A.; Koyama, A.; Yamamoto, M. and Takahashi, S. (2003): Nrf2 regulates the sensitivity of death receptor signals by affecting intracellular glutathione levels, Oncogene, (vol. 22), No. 58, pp.9275-81.

Motohashi, H.; Katsuoka, F.; Engel, J. D. and Yamamoto, M. (2004): Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway, Proc Natl Acad Sci U S A, (vol. 101), No. 17, pp.6379-84.

Mullapudi, S.; Pullan, L.; Bishop, O. T.; Khalil, H.; Stoops, J. K.; Beckmann, R.; Kloetzel, P. M.; Krueger, E. and Penczek, P. A. (2004): Rearrangement of the 16S precursor subunits is essential for the formation of the active 20S proteasome, Biophys J.

Nandi, D.; Woodward, E.; Ginsburg, D. B. and Monaco, J. J. (1997): Intermediates in the formation of mouse 20S proteasomes: implications for the assembly of precursor beta subunits, Embo J, (vol. 16), No. 17, pp.5363-75.

Nguyen, T.; Sherratt, P. J.; Huang, H. C.; Yang, C. S. and Pickett, C. B. (2003): Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element. Degradation of Nrf2 by the 26 S proteasome, J Biol Chem, (vol. 278), No. 7, pp.4536-41.

Numazawa, S. and Yoshida, T. (2004): Nrf2-dependent gene expressions: a molecular toxicological aspect, J Toxicol Sci, (vol. 29), No. 2, pp.81-9.

Oguro, T.; Hayashi, M.; Nakajo, S.; Numazawa, S. and Yoshida, T. (1998): The expression of heme oxygenase-1 gene responded to oxidative stress produced by phorone, a glutathione depletor, in the rat liver; the relevance to activation of c-jun n-terminal kinase, J Pharmacol Exp Ther, (vol. 287), No. 2, pp.773-8.

Omura, S.; Fujimoto, T.; Otoguro, K.; Matsuzaki, K.; Moriguchi, R.; Tanaka, H. and Sasaki, Y. (1991): Lactacystin, a novel microbial metabolite, induces neuritogenesis of neuroblastoma cells, J Antibiot (Tokyo), (vol. 44), No. 1, pp.113-6.

Omura, S.; Matsuzaki, K.; Fujimoto, T.; Kosuge, K.; Furuya, T.; Fujita, S. and Nakagawa, A. (1991): Structure of lactacystin, a new microbial metabolite which induces differentiation of neuroblastoma cells, J Antibiot (Tokyo), (vol. 44), No. 1, pp.117-8.

Orlowski, M. (1990): The multicatalytic proteinase complex, a major extralysosomal proteolytic system, Biochemistry, (vol. 29), No. 45, pp.10289-97.

Ostrowska, H.; Wojcik, C.; Omura, S. and Worowski, K. (1997): Lactacystin, a specific inhibitor of the proteasome, inhibits human platelet lysosomal cathepsin A-like enzyme, Biochem Biophys Res Commun, (vol. 234), No. 3, pp.729-32.

Otterbein, L. E.; Bach, F. H.; Alam, J.; Soares, M.; Tao Lu, H.; Wysk, M.; Davis, R. J.; Flavell, R. A. and Choi, A. M. (2000): Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway, Nat Med, (vol. 6), No. 4, pp.422-8.

Park, I. N.; Cho, I. J. and Kim, S. G. (2004): Ceramide negatively regulates glutathione S-transferase gene transactivation via repression of hepatic nuclear factor-1 that is degraded by the ubiquitin proteasome system, Mol Pharmacol, (vol. 65), No. 6, pp.1475-84.

Peng, S. S.; Chen, C. Y.; Xu, N. and Shyu, A. B. (1998): RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein, Embo J, (vol. 17), No. 12, pp.3461-70.">">

Penner, G.; Gang, G.; Sun, X.; Wray, C. and Hasselgren, P. O. (2002): C/EBP DNA-binding activity is upregulated by a glucocorticoid-dependent mechanism in septic muscle, Am J Physiol Regul Integr Comp Physiol, (vol. 282), No. 2, pp.R439-44.

Player, M. R. and Torrence, P. F. (1998): The 2-5A system: modulation of viral and cellular processes through acceleration of RNA degradation, Pharmacol Ther, (vol. 78), No. 2, pp.55-113.

Price, S. R. (2003): Increased transcription of ubiquitin-proteasome system components: molecular responses associated with muscle atrophy, Int J Biochem Cell Biol, (vol. 35), No. 5, pp.617-28.

Price, S. R.; Bailey, J. L.; Wang, X.; Jurkovitz, C.; England, B. K.; Ding, X.; Phillips, L. S. and Mitch, W. E. (1996): Muscle wasting in insulinopenic rats results from activation of the ATP-dependent, ubiquitin-proteasome proteolytic pathway by a mechanism including gene transcription, J Clin Invest, (vol. 98), No. 8, pp.1703-8.

Pritts, T. A.; Hungness, E. S.; Hershko, D. D.; Robb, B. W.; Sun, X.; Luo, G. J.; Fischer, J. E.; Wong, H. R. and Hasselgren, P. O. (2002): Proteasome inhibitors induce heat shock response and increase IL-6 expression in human intestinal epithelial cells, Am J Physiol Regul Integr Comp Physiol, (vol. 282), No. 4, pp.R1016-26.

Ramana, C. V.; Gil, M. P.; Schreiber, R. D. and Stark, G. R. (2002): Stat1-dependent and -independent pathways in IFN-gamma-dependent signaling, Trends Immunol, (vol. 23), No. 2, pp.96-101.

Ramos, P. C.; Hockendorff, J.; Johnson, E. S.; Varshavsky, A. and Dohmen, R. J. (1998): Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly, Cell, (vol. 92), No. 4, pp.489-99.

Ramos, P. C.; Marques, A. J.; London, M. K. and Dohmen, R. J. (2004): Role of C-terminal extensions of subunits beta2 and beta7 in assembly and activity of eukaryotic proteasomes, J Biol Chem, (vol. 279), No. 14, pp.14323-30.

Reith, W.; Herrero-Sanchez, C.; Kobr, M.; Silacci, P.; Berte, C.; Barras, E.; Fey, S. and Mach, B. (1990): MHC class II regulatory factor RFX has a novel DNA-binding domain and a functionally independent dimerization domain, Genes Dev, (vol. 4), No. 9, pp.1528-40.

Rivett, A. J. (1989): The multicatalytic proteinase. Multiple proteolytic activities, J Biol Chem, (vol. 264), No. 21, pp.12215-9.

Rock, K. L.; Gramm, C.; Rothstein, L.; Clark, K.; Stein, R.; Dick, L.; Hwang, D. and Goldberg, A. L. (1994): Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules, Cell, (vol. 78), No. 5, pp.761-71.

Rushmore, T. H.; King, R. G.; Paulson, K. E. and Pickett, C. B. (1990): Regulation of glutathione S-transferase Ya subunit gene expression: identification of a unique xenobiotic-responsive element controlling inducible expression by planar aromatic compounds, Proc Natl Acad Sci U S A, (vol. 87), No. 10, pp.3826-30.

Rushmore, T. H.; Morton, M. R. and Pickett, C. B. (1991): The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity, J Biol Chem, (vol. 266), No. 18, pp.11632-9.

Sambrook, P. N.; Cohen, M. L.; Eisman, J. A.; Pocock, N. A.; Champion, G. D. and Yeates, M. G. (1989): Effects of low dose corticosteroids on bone mass in rheumatoid arthritis: a longitudinal study, Ann Rheum Dis, (vol. 48), No. 7, pp.535-8.

Sampath, P.; Mazumder, B.; Seshadri, V. and Fox, P. L. (2003): Transcript-selective translational silencing by gamma interferon is directed by a novel structural element in the ceruloplasmin mRNA 3' untranslated region, Mol Cell Biol, (vol. 23), No. 5, pp.1509-19.

Sampath, P.; Mazumder, B.; Seshadri, V.; Gerber, C. A.; Chavatte, L.; Kinter, M.; Ting, S. M.; Dignam, J. D.; Kim, S.; Driscoll, D. M. and Fox, P. L. (2004): Noncanonical function of glutamyl-prolyl-tRNA synthetase: gene-specific silencing of translation, Cell, (vol. 119), No. 2, pp.195-208.

Schmidtke, G.; Kraft, R.; Kostka, S.; Henklein, P.; Frommel, C.; Lowe, J.; Huber, R.; Kloetzel, P. M. and Schmidt, M. (1996): Analysis of mammalian 20S proteasome biogenesis: the maturation of beta-subunits is an ordered two-step mechanism involving autocatalysis, Embo J, (vol. 15), No. 24, pp.6887-98.

Schmidtke, G.; Schmidt, M. and Kloetzel, P. M. (1997): Maturation of mammalian 20 S proteasome: purification and characterization of 13 S and 16 S proteasome precursor complexes, J Mol Biol, (vol. 268), No. 1, pp.95-106.

Seemuller, E.; Lupas, A. and Baumeister, W. (1996): Autocatalytic processing of the 20S proteasome, Nature, (vol. 382), No. 6590, pp.468-71.

Sekhar, K. R.; Yan, X. X. and Freeman, M. L. (2002): Nrf2 degradation by the ubiquitin proteasome pathway is inhibited by KIAA0132, the human homolog to INrf2, Oncogene, (vol. 21), No. 44, pp.6829-34.

Shah, M. H.; Young, D.; Kindler, H. L.; Webb, I.; Kleiber, B.; Wright, J. and Grever, M. (2004): Phase II study of the proteasome inhibitor bortezomib (PS-341) in patients with metastatic neuroendocrine tumors, Clin Cancer Res, (vol. 10), No. 18 Pt 1, pp.6111-8.

Shang, L. L. and Dudley, S. C., Jr. (2004): Tandem promoters and developmentally regulated 5' and 3' mRNA untranslated regions of the mouse scn5a cardiac sodium channel, J Biol Chem.

Shaw, G. and Kamen, R. (1986): A conserved AU sequence from the 3' untranslated region of GM-CSF mRNA mediates selective mRNA degradation, Cell, (vol. 46), No. 5, pp.659-67.

Shibata, T.; Imaizumi, T.; Tamo, W.; Matsumiya, T.; Kumagai, M.; Cui, X. F.; Yoshida, H.; Takaya, S.; Fukuda, I. and Satoh, K. (2002): Proteasome inhibitor MG-132 enhances the expression of interleukin-6 inhuman umbilical vein endothelial cells: Involvement of MAP/ERK kinase, Immunol Cell Biol, (vol. 80), No. 3, pp.226-30.

Snyder, S. R.; Waring, J. F.; Zhu, S. Z.; Kaplan, S.; Schultz, J. and Ginder, G. D. (2001): A 3'-transcribed region of the HLA-A2 gene mediates posttranscriptional stimulation by IFN-gamma, J Immunol, (vol. 166), No. 6, pp.3966-74.

Stadtman, E. R. (1990): Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences, Free Radic Biol Med, (vol. 9), No. 4, pp.315-25.

Stewart, D.; Killeen, E.; Naquin, R.; Alam, S. and Alam, J. (2003): Degradation of transcription factor Nrf2 via the ubiquitin-proteasome pathway and stabilization by cadmium, J Biol Chem, (vol. 278), No. 4, pp.2396-402.

Talalay, P.; Dinkova-Kostova, A. T. and Holtzclaw, W. D. (2003): Importance of phase 2 gene regulation in protection against electrophile and reactive oxygen toxicity and carcinogenesis, Adv Enzyme Regul, (vol. 43), pp.121-34.

Tamura, T.; Osaka, F.; Kawamura, Y.; Higuti, T.; Ishida, N.; Nothwang, H. G.; Tsurumi, C.; Tanaka, K. and Ichihara, A. (1994): Isolation and characterization of alpha-type HC3 and beta-type HC5 subunit genes of human proteasomes, J Mol Biol, (vol. 244), No. 1, pp.117-24.

Tanahashi, N.; Kawahara, H.; Murakami, Y. and Tanaka, K. (1999): The proteasome-dependent proteolytic system, Mol Biol Rep, (vol. 26), No. 1-2, pp.3-9.

Tanaka, K. and Ichihara, A. (1989): Half-life of proteasomes (multiprotease complexes) in rat liver, Biochem Biophys Res Commun, (vol. 159), No. 3, pp.1309-15.

Tasheva, E. S. (2002): Analysis of the promoter region of human mimecan gene, Biochim Biophys Acta, (vol. 1575), No. 1-3, pp.123-9.

Tebo, J. M.; Datta, S.; Kishore, R.; Kolosov, M.; Major, J. A.; Ohmori, Y. and Hamilton, T. A. (2000): Interleukin-1-mediated stabilization of mouse KC mRNA depends on sequences in both 5'- and 3'-untranslated regions, J Biol Chem, (vol. 275), No. 17, pp.12987-93.

Tian, S.; Liu, W.; Wu, Y.; Rafi, H.; Segal, A. S. and Desir, G. V. (2002): Regulation of the voltage-gated K+ channel KCNA10 by KCNA4B, a novel beta-subunit, Am J Physiol Renal Physiol, (vol. 283), No. 1, pp.F142-9.

Walz, J.; Erdmann, A.; Kania, M.; Typke, D.; Koster, A. J. and Baumeister, W. (1998): 26S proteasome structure revealed by three-dimensional electron microscopy, J Struct Biol, (vol. 121), No. 1, pp.19-29.

Wang, L.; Mao, X.; Ju, D. and Xie, Y. (2004): Rpn4 Is a physiological substrate of the Ubr2 ubiquitin ligase, J Biol Chem.

Waxman, L.; Fagan, J. M. and Goldberg, A. L. (1987): Demonstration of two distinct high molecular weight proteases in rabbit reticulocytes, one of which degrades ubiquitin conjugates, J Biol Chem, (vol. 262), No. 6, pp.2451-7.

Wilkie, G. S.; Dickson, K. S. and Gray, N. K. (2003): Regulation of mRNA translation by 5'- and 3'-UTR-binding factors, Trends Biochem Sci, (vol. 28), No. 4, pp.182-8.

Witt, E.; Zantopf, D.; Schmidt, M.; Kraft, R.; Kloetzel, P. M. and Kruger, E. (2000): Characterisation of the newly identified human Ump1 homologue POMP and analysis of LMP7(beta 5i) incorporation into 20 S proteasomes, J Mol Biol, (vol. 301), No. 1, pp.1-9.

Wojcik, C. and DeMartino, G. N. (2001): Analysis of drosophila 26S proteasome using RNA interference, J Biol Chem.">">

Wojcik, C. and DeMartino, G. N. (2002): Analysis of Drosophila 26 S proteasome using RNA interference, J Biol Chem, (vol. 277), No. 8, pp.6188-97.

Xie, Y. and Varshavsky, A. (2001): RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: A negative feedback circuit, Proc Natl Acad Sci U S A, (vol. 98), No. 6, pp.3056-61.

Zaiss, D. M.; Standera, S.; Holzhutter, H.; Kloetzel, P. and Sijts, A. J. (1999): The proteasome inhibitor PI31 competes with PA28 for binding to 20S proteasomes, FEBS Lett, (vol. 457), No. 3, pp.333-8.

Zhang, D. D. and Hannink, M. (2003): Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress, Mol Cell Biol, (vol. 23), No. 22, pp.8137-51.

Zhou, M.; Wu, X. and Ginsberg, H. N. (1996): Evidence that a rapidly turning over protein, normally degraded by proteasomes, regulates hsp72 gene transcription in HepG2 cells, J Biol Chem, (vol. 271), No. 40, pp.24769-75.

Zuhl, F.; Seemuller, E.; Golbik, R. and Baumeister, W. (1997): Dissecting the assembly pathway of the 20S proteasome, FEBS Lett, (vol. 418), No. 1-2, pp.189-94.

Zwickl, P.; Lottspeich, F. and Baumeister, W. (1992): Expression of functional Thermoplasma acidophilum proteasomes in Escherichia coli, FEBS Lett, (vol. 312), No. 2-3, pp.157-60.

Zwickl, P.; Voges, D. and Baumeister, W. (1999): The proteasome: a macromolecular assembly designed for controlled proteolysis, Philos Trans R Soc Lond B Biol Sci, (vol. 354), No. 1389, pp.1501-11.

© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 4.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am: