[Seite 80↓]

[Seite 87↓]

Literaturverzeichnis

[1] Mocarski, E. S., Jr. and Kemble, G. W. (1996): Recombinant cytomegaloviruses for study of replication and pathogenesis, Intervirology, (vol. 39), No. 5-6, pp.320-30..

[2] Prosch, S.; Wendt, C. E.; Reinke, P.; Priemer, C.; Oppert, M.; Kruger, D. H.; Volk, H. D. and Docke, W. D. (2000): A novel link between stress and human cytomegalovirus (HCMV) infection: sympathetic hyperactivity stimulates HCMV activation, Virology, (vol. 272), No. 2, pp.357-65..

[3] Mehta, S. K.; Stowe, R. P.; Feiveson, A. H.; Tyring, S. K. and Pierson, D. L. (2000): Reactivation and shedding of cytomegalovirus in astronauts during spaceflight, J Infect Dis, (vol. 182), No. 6, pp.1761-4..

[4] Rubin, R. H. (2000): Prevention of cytomegalovirus infection in organ transplant recipients, Transpl Infect Dis, (vol. 2), No. 3, pp.99-100..

[5] Quinnan, G. V., Jr.; Kirmani, N.; Rook, A. H.; Manischewitz, J. F.; Jackson, L.; Moreschi, G.; Santos, G. W.; Saral, R. and Burns, W. H. (1982): Cytotoxic t cells in cytomegalovirus infection: HLA-restricted T-lymphocyte and non-T-lymphocyte cytotoxic responses correlate with recovery from cytomegalovirus infection in bone-marrow-transplant recipients, N Engl J Med, (vol. 307), No. 1, pp.7-13..

[6] Rook, A. H.; Smith, W. J.; Burdick, J. F.; Manischewitz, J. F.; Frederick, W.; Siegel, J. P.; Williams, G. M. and Quinnan, G. V. (1984): Virus-specific cytotoxic lymphocyte responses are predictive of the outcome of cytomegalovirus infection of renal transplant recipients, Transplant Proc, (vol. 16), No. 6, pp.1466-9..

[7] Reddehase, M. J.; Weiland, F.; Munch, K.; Jonjic, S.; Luske, A. and Koszinowski, U. H. (1985): Interstitial murine cytomegalovirus pneumonia after irradiation: characterization of cells that limit viral replication during established infection of the lungs, J Virol, (vol. 55), No. 2, pp.264-73..

[8] Reddehase, M. J.; Mutter, W.; Munch, K.; Buhring, H. J. and Koszinowski, U. H. (1987): CD8-positive T lymphocytes specific for murine cytomegalovirus immediate-early antigens mediate protective immunity, J Virol, (vol. 61), No. 10, pp.3102-8..

[9] Riddell, S. R.; Watanabe, K. S.; Goodrich, J. M.; Li, C. R.; Agha, M. E. and Greenberg, P. D. (1992): Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones, Science, (vol. 257), No. 5067, pp.238-41..

[10] Walter, E. A.; Greenberg, P. D.; Gilbert, M. J.; Finch, R. J.; Watanabe, K. S.; Thomas, E. D. and Riddell, S. R. (1995): Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor, N Engl J Med, (vol. 333), No. 16, pp.1038-44..

[11] Komanduri, K. V.; Viswanathan, M. N.; Wieder, E. D.; Schmidt, D. K.; Bredt, B. M.; Jacobson, M. A. and McCune, J. M. (1998): Restoration of cytomegalovirus-specific CD4+ T-lymphocyte responses after ganciclovir and highly active antiretroviral therapy in individuals infected with HIV-1, Nat Med, (vol. 4), No. 8, pp.953-6..

[12] Einsele, H.; Roosnek, E.; Rufer, N.; Sinzger, C.; Riegler, S.; Loffler, J.; Grigoleit, U.; Moris, A.; Rammensee, H. G.; Kanz, L.; Kleihauer, A.; Frank, F.; Jahn, G. and Hebart, H. (2002): Infusion of cytomegalovirus (CMV)-specific T cells for the treatment of CMV infection not responding to antiviral chemotherapy, Blood, (vol. 99), No. 11, pp.3916-22..

[13] Borysiewicz, L. K.; Hickling, J. K.; Graham, S.; Sinclair, J.; Cranage, M. P.; Smith, G. L. and Sissons, J. G. (1988): Human cytomegalovirus-specific cytotoxic T cells. Relative frequency of stage-specific CTL recognizing the 72-kD immediate early protein and glycoprotein B expressed by recombinant vaccinia viruses, J Exp Med, (vol. 168), No. 3, pp.919-31..

[14] Borysiewicz, L. K.; Graham, S.; Hickling, J. K.; Mason, P. D. and Sissons, J. G. (1988): Human cytomegalovirus-specific cytotoxic T cells: their precursor frequency and stage specificity, Eur J Immunol, (vol. 18), No. 2, pp.269-75..

[15] Alp, N. J.; Allport, T. D.; Van Zanten, J.; Rodgers, B.; Sissons, J. G. and Borysiewicz, L. K. (1991): Fine specificity of cellular immune responses in humans to human cytomegalovirus immediate-early 1 protein, J Virol, (vol. 65), No. 9, pp.4812-20..

[16] Thomsen, D. R.; Stenberg, R. M.; Goins, W. F. and Stinski, M. F. (1984): Promoter-regulatory region of the major immediate early gene of human cytomegalovirus, Proc Natl Acad Sci U S A, (vol. 81), No. 3, pp.659-63..

[17] Borysiewicz, L. K.; Morris, S.; Page, J. D. and Sissons, J. G. (1983): Human cytomegalovirus-specific cytotoxic T lymphocytes: requirements for in vitro generation and specificity, Eur J Immunol, (vol. 13), No. 10, pp.804-9..

[18] Grefte, J. M.; van der Gun, B. T.; Schmolke, S.; van der Giessen, M.; van Son, W. J.; Plachter, B.; Jahn, G. and The, T. H. (1992): The lower matrix protein pp65 is the principal viral antigen present in peripheral blood leukocytes during an active cytomegalovirus infection, J Gen Virol, (vol. 73), No. Pt 11, pp.2923-32..

[19] McLaughlin-Taylor, E.; Pande, H.; Forman, S. J.; Tanamachi, B.; Li, C. R.; Zaia, J. A.; Greenberg, P. D. and Riddell, S. R. (1994): Identification of the major late human cytomegalovirus matrix protein pp65 as a target antigen for CD8+ virus-specific cytotoxic T lymphocytes, J Med Virol, (vol. 43), No. 1, pp.103-10..

[20] Riddell, S. R.; Rabin, M.; Geballe, A. P.; Britt, W. J. and Greenberg, P. D. (1991): Class I MHC-restricted cytotoxic T lymphocyte recognition of cells infected with human cytomegalovirus does not require endogenous viral gene expression, J Immunol, (vol. 146), No. 8, pp.2795-804..

[21] Irmiere, A. and Gibson, W. (1983): Isolation and characterization of a noninfectious virion-like particle released from cells infected with human strains of cytomegalovirus, Virology, (vol. 130), No. 1, pp.118-33..

[22] Wills, M. R.; Carmichael, A. J.; Mynard, K.; Jin, X.; Weekes, M. P.; Plachter, B. and Sissons, J. G. (1996): The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specificity, and T-cell receptor usage of pp65-specific CTL, J Virol, (vol. 70), No. 11, pp.7569-79..

[23] Weekes, M. P.; Wills, M. R.; Mynard, K.; Carmichael, A. J. and Sissons, J. G. (1999): The memory cytotoxic T-lymphocyte (CTL) response to human cytomegalovirus infection contains individual peptide-specific CTL clones that have undergone extensive expansion in vivo, J Virol, (vol. 73), No. 3, pp.2099-108..

[24] Weekes, M. P.; Carmichael, A. J.; Wills, M. R.; Mynard, K. and Sissons, J. G. (1999): Human CD28-CD8+ T cells contain greatly expanded functional virus-specific memory CTL clones, J Immunol, (vol. 162), No. 12, pp.7569-77..

[25] Weekes, M. P.; Wills, M. R.; Mynard, K.; Hicks, R.; Sissons, J. G. and Carmichael, A. J. (1999): Large clonal expansions of human virus-specific memory cytotoxic T lymphocytes within the CD57+ CD28- CD8+ T-cell population, Immunology, (vol. 98), No. 3, pp.443-9..

[26] Bitmansour, A. D.; Waldrop, S. L.; Pitcher, C. J.; Khatamzas, E.; Kern, F.; Maino, V. C. and Picker, L. J. (2001): Clonotypic structure of the human CD4+ memory T cell response to cytomegalovirus, J Immunol, (vol. 167), No. 3, pp.1151-63..

[27] Frankenberg, N.; Pepperl-Klindworth, S.; Meyer, R. G. and Plachter, B. (2002): Identification of a conserved HLA-A2-restricted decapeptide from the IE1 protein (pUL123) of human cytomegalovirus, Virology, (vol. 295), No. 2, pp.208-16..

[28] Gautier, N.; Chavant, E.; Prieur, E.; Monsarrat, B.; Mazarguil, H.; Davrinche, C.; Gairin, J. E. and Davignon, J. L. (1996): Characterization of an epitope of the human cytomegalovirus protein IE1 recognized by a CD4+ T cell clone, Eur J Immunol, (vol. 26), No. 5, pp.1110-7..

[29] Gavin, M. A.; Gilbert, M. J.; Riddell, S. R.; Greenberg, P. D. and Bevan, M. J. (1993): Alkali hydrolysis of recombinant proteins allows for the rapid identification of class I MHC-restricted CTL epitopes, J Immunol, (vol. 151), No. 8, pp.3971-80..

[30] Kern, F.; Surel, I. P.; Brock, C.; Freistedt, B.; Radtke, H.; Scheffold, A.; Blasczyk, R.; Reinke, P.; Schneider-Mergener, J.; Radbruch, A.; Walden, P. and Volk, H. D. (1998): T-cell epitope mapping by flow cytometry, Nat Med, (vol. 4), No. 8, pp.975-8..

[31] Kern, F.; Surel, I. P.; Faulhaber, N.; Frommel, C.; Schneider-Mergener, J.; Schonemann, C.; Reinke, P. and Volk, H. D. (1999): Target structures of the CD8(+)-T-cell response to human cytomegalovirus: the 72-kilodalton major immediate-early protein revisited, J Virol, (vol. 73), No. 10, pp.8179-84..

[32] Kern, F.; Bunde, T.; Faulhaber, N.; Kiecker, F.; Khatamzas, E.; Rudawski, I. M.; Pruss, A.; Gratama, J. W.; Volkmer-Engert, R.; Ewert, R.; Reinke, P.; Volk, H. D. and Picker, L. J. (2002): Cytomegalovirus (CMV) phosphoprotein 65 makes a large contribution to shaping the T cell repertoire in CMV-exposed individuals, J Infect Dis, (vol. 185), No. 12, pp.1709-16..

[33] Khattab, B. A.; Lindenmaier, W.; Frank, R. and Link, H. (1997): Three T-cell epitopes within the C-terminal 265 amino acids of the matrix protein pp65 of human cytomegalovirus recognized by human lymphocytes, J Med Virol, (vol. 52), No. 1, pp.68-76..

[34] Kuzushima, K.; Hayashi, N.; Kimura, H. and Tsurumi, T. (2001): Efficient identification of HLA-A*2402-restricted cytomegalovirus-specific CD8(+) T-cell epitopes by a computer algorithm and an enzyme-linked immunospot assay, Blood, (vol. 98), No. 6, pp.1872-81..

[35] Longmate, J.; York, J.; La Rosa, C.; Krishnan, R.; Zhang, M.; Senitzer, D. and Diamond, D. J. (2001): Population coverage by HLA class-I restricted cytotoxic T-lymphocyte epitopes, Immunogenetics, (vol. 52), No. 3-4, pp.165-73..

[36] Masuoka, M.; Yoshimuta, T.; Hamada, M.; Okamoto, M.; Fumimori, T.; Honda, J.; Oizumi, K. and Itoh, K. (2001): Identification of the HLA-A24 peptide epitope within cytomegalovirus protein pp65 recognized by CMV-specific cytotoxic T lymphocytes, Viral Immunol, (vol. 14), No. 4, pp.369-77..

[37] Reddehase, M. J. (2000): The immunogenicity of human and murine cytomegaloviruses, Curr Opin Immunol, (vol. 12), No. 6, p.738..

[38] Retiere, C.; Prod'homme, V.; Imbert-Marcille, B. M.; Bonneville, M.; Vie, H. and Hallet, M. M. (2000): Generation of cytomegalovirus-specific human T-lymphocyte clones by using autologous B-lymphoblastoid cells with stable expression of pp65 or IE1 proteins: a tool to study the fine specificity of the antiviral response, J Virol, (vol. 74), No. 9, pp.3948-52..

[39] Davignon, J. L.; Castanie, P.; Yorke, J. A.; Gautier, N.; Clement, D. and Davrinche, C. (1996): Anti-human cytomegalovirus activity of cytokines produced by CD4+ T-cell clones specifically activated by IE1 peptides in vitro, J Virol, (vol. 70), No. 4, pp.2162-9..

[40] Solache, A.; Morgan, C. L.; Dodi, A. I.; Morte, C.; Scott, I.; Baboonian, C.; Zal, B.; Goldman, J.; Grundy, J. E. and Madrigal, J. A. (1999): Identification of three HLA-A*0201-restricted cytotoxic T cell epitopes in the cytomegalovirus protein pp65 that are conserved between eight strains of the virus, J Immunol, (vol. 163), No. 10, pp.5512-8..

[41] Khan, N.; Cobbold, M.; Keenan, R. and Moss, P. A. (2002): Comparative analysis of CD8+ T cell responses against human cytomegalovirus proteins pp65 and immediate early 1 shows similarities in precursor frequency, oligoclonality, and phenotype, J Infect Dis, (vol. 185), No. 8, pp.1025-34..

[42] Gyulai, Z.; Endresz, V.; Burian, K.; Pincus, S.; Toldy, J.; Cox, W. I.; Meric, C.; Plotkin, S.; Gonczol, E. and Berencsi, K. (2000): Cytotoxic T lymphocyte (CTL) responses to human cytomegalovirus pp65, IE1-Exon4, gB, pp150, and pp28 in healthy individuals: reevaluation of prevalence of IE1-specific CTLs, J Infect Dis, (vol. 181), No. 5, pp.1537-46..

[43] Kern, F.; Khatamzas, E.; Surel, I.; Frommel, C.; Reinke, P.; Waldrop, S. L.; Picker, L. J. and Volk, H. D. (1999): Distribution of human CMV-specific memory T cells among the CD8pos. subsets defined by CD57, CD27, and CD45 isoforms, Eur J Immunol, (vol. 29), No. 9, pp.2908-15..

[44] Gillespie, G. M.; Wills, M. R.; Appay, V.; O'Callaghan, C.; Murphy, M.; Smith, N.; Sissons, P.; Rowland-Jones, S.; Bell, J. I. and Moss, P. A. (2000): Functional heterogeneity and high frequencies of cytomegalovirus-specific CD8(+) T lymphocytes in healthy seropositive donors, J Virol, (vol. 74), No. 17, pp.8140-50..

[45] Sandberg, J. K.; Fast, N. M. and Nixon, D. F. (2001): Functional heterogeneity of cytokines and cytolytic effector molecules in human CD8+ T lymphocytes, J Immunol, (vol. 167), No. 1, pp.181-7..

[46] Gratama, J. W.; van Esser, J. W.; Lamers, C. H.; Tournay, C.; Lowenberg, B.; Bolhuis, R. L. and Cornelissen, J. J. (2001): Tetramer-based quantification of cytomegalovirus (CMV)-specific CD8+ T lymphocytes in T-cell-depleted stem cell grafts and after transplantation may identify patients at risk for progressive CMV infection, Blood, (vol. 98), No. 5, pp.1358-64..

[47] Hebart, H.; Daginik, S.; Stevanovic, S.; Grigoleit, U.; Dobler, A.; Baur, M.; Rauser, G.; Sinzger, C.; Jahn, G.; Loeffler, J.; Kanz, L.; Rammensee, H. G. and Einsele, H. (2002): Sensitive detection of human cytomegalovirus peptide-specific cytotoxic T-lymphocyte responses by interferon-gamma-enzyme-linked immunospot assay and flow cytometry in healthy individuals and in patients after allogeneic stem cell transplantation, Blood, (vol. 99), No. 10, pp.3830-7..

[48] Heise, W. (Edit.) (1998): Die CMV-Erkrankung - Klinisches Krankheitsspektrum, Diagnose und Therapie (vol., 1.. ed., Media Bibliothek, Pharmacia & Upjohn.

[49] Emery, V. C.; Cope, A. V.; Bowen, E. F.; Gor, D. and Griffiths, P. D. (1999): The dynamics of human cytomegalovirus replication in vivo, J Exp Med, (vol. 190), No. 2, pp.177-82..

[50] Sissons, J. G.; Bain, M. and Wills, M. R. (2002): Latency and reactivation of human cytomegalovirus, J Infect, (vol. 44), No. 2, pp.73-7..

[51] Rasmussen, L. (1999): Molecular pathogenesis of human cytomegalovirus infection, Transpl Infect Dis, (vol. 1), No. 2, pp.127-34..

[52] de Ory Manchon, F.; Sanz Moreno, J. C.; Castaneda Lopez, R.; Ramirez Fernandez, R.; Leon Rega, P. and Pachon del Amo, I. (2001): [Cytomegalovirus seroepidemiology in the community of Madrid], Rev Esp Salud Publica, (vol. 75), No. 1, pp.55-62..

[53] Loenen, W. A.; Bruggeman, C. A. and Wiertz, E. J. (2001): Immune evasion by human cytomegalovirus: lessons in immunology and cell biology, Semin Immunol, (vol. 13), No. 1, pp.41-9..

[54] Gilbert, M. J.; Riddell, S. R.; Plachter, B. and Greenberg, P. D. (1996): Cytomegalovirus selectively blocks antigen processing and presentation of its immediate-early gene product, Nature, (vol. 383), No. 6602, pp.720-2..

[55] Docke, W. D.; Prosch, S.; Fietze, E.; Kimel, V.; Zuckermann, H.; Klug, C.; Syrbe, U.; Kruger, D. H.; von Baehr, R. and Volk, H. D. (1994): Cytomegalovirus reactivation and tumour necrosis factor, Lancet, (vol. 343), No. 8892, pp.268-9..

[56] Fietze, E.; Prosch, S.; Reinke, P.; Stein, J.; Docke, W. D.; Staffa, G.; Loning, S.; Devaux, S.; Emmrich, F.; von Baehr, R. and et al. (1994): Cytomegalovirus infection in transplant recipients. The role of tumor necrosis factor, Transplantation, (vol. 58), No. 6, pp.675-80..

[57] Grangeot-Keros, L. and Cointe, D. (2001): Diagnosis and prognostic markers of HCMV infection, J Clin Virol, (vol. 21), No. 3, pp.213-21..

[58] Grauhan, O.; Muller, J.; Pfitzmann, R.; Knosalla, C.; Siniawski, H.; Fietze, E.; Volk, H. D. and Hetzer, R. (1997): Humoral rejection after heart transplantation: reliability of intramyocardial electrogram recordings (IMEG) and myocardial biopsy, Transpl Int, (vol. 10), No. 6, pp.439-45..

[59] Plotkin, S. A.; Farquhar, J. and Horberger, E. (1976): Clinical trials of immunization with the Towne 125 strain of human cytomegalovirus, J Infect Dis, (vol. 134), No. 5, pp.470-5..

[60] Diamond, D. J.; York, J.; Sun, J. Y.; Wright, C. L. and Forman, S. J. (1997): Development of a candidate HLA A*0201 restricted peptide-based vaccine against human cytomegalovirus infection, Blood, (vol. 90), No. 5, pp.1751-67..

[61] Grossi, P. and Baldanti, F. (1997): Treatment of ganciclovir-resistant human cytomegalovirus infection, J Nephrol, (vol. 10), No. 3, pp.146-51..

[62] Harty, J. T.; Tvinnereim, A. R. and White, D. W. (2000): CD8+ T cell effector mechanisms in resistance to infection, Annu Rev Immunol, (vol. 18), No., pp.275-308..

[63] Picker, L. J.; Singh, M. K.; Zdraveski, Z.; Treer, J. R.; Waldrop, S. L.; Bergstresser, P. R. and Maino, V. C. (1995): Direct demonstration of cytokine synthesis heterogeneity among human memory/effector T cells by flow cytometry, Blood, (vol. 86), No. 4, pp.1408-19..

[64] Rammensee, H. G.; Bachmann, J. and Stevanovic, S. (1997): MHC Ligands and Peptide Motifs, Landes Bioscience, (vol. 1), No. 6, pp.905-11..

[65] Fields, G. B. and Noble, R. L. (1990): Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids, Int J Pept Protein Res, (vol. 35), No. 3, pp.161-214..

[66] Waldrop, S. L.; Pitcher, C. J.; Peterson, D. M.; Maino, V. C. and Picker, L. J. (1997): Determination of antigen-specific memory/effector CD4+ T cell frequencies by flow cytometry: evidence for a novel, antigen-specific homeostatic mechanism in HIV-associated immunodeficiency, J Clin Invest, (vol. 99), No. 7, pp.1739-50..

[67] Hoffmeister, B., Kiecker, F., Surel, I., Khatamzas, E., Schuster, V., Volk, H.D., Kern, F. ( 2002, ): Evaluation of the frequency of virus-specific CD8+ T cells by cytokine flow cytometry, Körholz, D. and Kiess, W., Ed, Cytokines and Colony Stimulating Factors - Methods and Protocols (Vol. 215), p.^pp.

[68] Hoffmeister, B., Kiecker, Tesfa, L., V., Volk, H.D., Picker, L.J., Kern, F. (2003): Methods for mapping T cell epitopes by flow cytometry, (vol. in press), No.

[69] Hoffmeister, B.; Kiecker, F.; Surel, I.; Khatamzas, E.; Schuster, V.; Volk, H. D. and Kern, F. (2003): Evaluation of the frequency of virus-specific CD8+ T cells by cytokine flow cytometry, Methods Mol Biol, (vol. 215), No., pp.59-69.

[70] Muche, J. M.; Lukowsky, A.; Asadullah, K.; Gellrich, S. and Sterry, W. (1997): Demonstration of frequent occurrence of clonal T cells in the peripheral blood of patients with primary cutaneous T-cell lymphoma, Blood, (vol. 90), No. 4, pp.1636-42..

[71] Lukowsky, A.; Richter, S.; Dijkstal, K.; Sterry, W. and Muche, J. M. (2002): A T-cell receptor gamma polymerase chain reaction assay using capillary electrophoresis for the diagnosis of cutaneous T-cell lymphomas, Diagn Mol Pathol, (vol. 11), No. 2, pp.59-66..

[72] Suni, M. A.; Picker, L. J. and Maino, V. C. (1998): Detection of antigen-specific T cell cytokine expression in whole blood by flow cytometry, J Immunol Methods, (vol. 212), No. 1, pp.89-98..

[73] Nomura, L. E.; Walker, J. M. and Maecker, H. T. (2000): Optimization of whole blood antigen-specific cytokine assays for CD4(+) T cells, Cytometry, (vol. 40), No. 1, pp.60-8..

[74] Waldrop, S. L.; Davis, K. A.; Maino, V. C. and Picker, L. J. (1998): Normal human CD4+ memory T cells display broad heterogeneity in their activation threshold for cytokine synthesis, J Immunol, (vol. 161), No. 10, pp.5284-95..

[75] Ljungman, P.; Griffiths, P. and Paya, C. (2002): Definitions of cytomegalovirus infection and disease in transplant recipients, Clin Infect Dis, (vol. 34), No. 8, pp.1094-7..

[76] Argaet, V. P.; Schmidt, C. W.; Burrows, S. R.; Silins, S. L.; Kurilla, M. G.; Doolan, D. L.; Suhrbier, A.; Moss, D. J.; Kieff, E.; Suclley, T. B. and et al. (1994): Dominant selection of an invariant T cell antigen receptor in response to persistent infection by Epstein-Barr virus, J Exp Med, (vol. 180), No. 6, pp.2335-40.

[77] Utz, U.; Banks, D.; Jacobson, S. and Biddison, W. E. (1996): Analysis of the T-cell receptor repertoire of human T-cell leukemia virus type 1 (HTLV-1) Tax-specific CD8+ cytotoxic T lymphocytes from patients with HTLV-1-associated disease: evidence for oligoclonal expansion, J Virol, (vol. 70), No. 2, pp.843-51.

[78] Kalams, S. A.; Johnson, R. P.; Trocha, A. K.; Dynan, M. J.; Ngo, H. S.; D'Aquila, R. T.; Kurnick, J. T. and Walker, B. D. (1994): Longitudinal analysis of T cell receptor (TCR) gene usage by human immunodeficiency virus 1 envelope-specific cytotoxic T lymphocyte clones reveals a limited TCR repertoire, J Exp Med, (vol. 179), No. 4, pp.1261-71.

[79] Betts, M. R.; Casazza, J. P.; Patterson, B. A.; Waldrop, S.; Trigona, W.; Fu, T. M.; Kern, F.; Picker, L. J. and Koup, R. A. (2000): Putative immunodominant human immunodeficiency virus-specific CD8(+) T-cell responses cannot be predicted by major histocompatibility complex class I haplotype, J Virol, (vol. 74), No. 19, pp.9144-51..

[80] Mason, P. M. and Parham, P. (1998): HLA class I region sequences, 1998, Tissue Antigens, (vol. 51), No. 4 Pt 2, pp.417-66..

[81] Celis, E.; Fikes, J.; Wentworth, P.; Sidney, J.; Southwood, S.; Maewal, A.; Del Guercio, M. F.; Sette, A. and Livingston, B. (1994): Identification of potential CTL epitopes of tumor-associated antigen MAGE-1 for five common HLA-A alleles, Mol Immunol, (vol. 31), No. 18, pp.1423-30..

[82] del Guercio, M. F.; Sidney, J.; Hermanson, G.; Perez, C.; Grey, H. M.; Kubo, R. T. and Sette, A. (1995): Binding of a peptide antigen to multiple HLA alleles allows definition of an A2-like supertype, J Immunol, (vol. 154), No. 2, pp.685-93..

[83] Sette, A. and Sidney, J. (1998): HLA supertypes and supermotifs: a functional perspective on HLA polymorphism, Curr Opin Immunol, (vol. 10), No. 4, pp.478-82..

[84] Sette, A. and Sidney, J. (1999): Nine major HLA class I supertypes account for the vast preponderance of HLA-A and -B polymorphism, Immunogenetics, (vol. 50), No. 3-4, pp.201-12..

[85] Sidney, J.; Grey, H. M.; Southwood, S.; Celis, E.; Wentworth, P. A.; del Guercio, M. F.; Kubo, R. T.; Chesnut, R. W. and Sette, A. (1996): Definition of an HLA-A3-like supermotif demonstrates the overlapping peptide-binding repertoires of common HLA molecules, Hum Immunol, (vol. 45), No. 2, pp.79-93..

[86] Polic, B.; Hengel, H.; Krmpotic, A.; Trgovcich, J.; Pavic, I.; Luccaronin, P.; Jonjic, S. and Koszinowski, U. H. (1998): Hierarchical and redundant lymphocyte subset control precludes cytomegalovirus replication during latent infection, J Exp Med, (vol. 188), No. 6, pp.1047-54..


© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 3.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am:
27.05.2004