[1] Carding, S. R. and Egan, P. J. (2002): Gammadelta T cells: functional plasticity and heterogeneity, Nat Rev Immunol 2 [5], pp.336-45.

[2] Kabelitz, D.; Wesch, D. and He, W. (2007): Perspectives of gammadelta T cells in tumor immunology, Cancer Res 67 [1], pp.5-8.

[3] Rudolph, M. G.; Stanfield, R. L. and Wilson, I. A. (2006): How TCRs bind MHCs, peptides, and coreceptors, Annu Rev Immunol 24, pp.419-66.

[4] Rudolph, M. G.; Luz, J. G. and Wilson, I. A. (2002): Structural and thermodynamic correlates of T cell signaling, Annu Rev Biophys Biomol Struct 31, pp.121-49.

[5] Marrack, P.; Scott-Browne, J. P.; Dai, S.; Gapin, L. and Kappler, J. W. (2008): Evolutionarily conserved amino acids that control TCR-MHC interaction, Annu Rev Immunol 26, pp.171-203.

[6] Garcia, K. C.; Degano, M.; Stanfield, R. L.; Brunmark, A.; Jackson, M. R.; Peterson, P. A.; Teyton, L. and Wilson, I. A. (1996): An alphabeta T cell receptor structure at 2.5 A and its orientation in the TCR-MHC complex, Science 274 [5285], pp.209-19.

[7] Leisegang, M.; Engels, B.; Meyerhuber, P.; Kieback, E.; Sommermeyer, D.; Xue, S. A.; Reuss, S.; Stauss, H. and Uckert, W. (2008): Enhanced functionality of T cell receptor-redirected T cells is defined by the transgene cassette, J Mol Med.

[8] Kearse, K. P.; Roberts, J. L.; Munitz, T. I.; Wiest, D. L.; Nakayama, T. and Singer, A. (1994): Developmental regulation of alpha beta T cell antigen receptor expression results from differential stability of nascent TCR alpha proteins within the endoplasmic reticulum of immature and mature T cells, Embo J 13 [19], pp.4504-14.

[9] Manolios, N.; Letourneur, F.; Bonifacino, J. S. and Klausner, R. D. (1991): Pairwise, cooperative and inhibitory interactions describe the assembly and probable structure of the T-cell antigen receptor, Embo J 10 [7], pp.1643-51.

[10] Sun, Z. J.; Kim, K. S.; Wagner, G. and Reinherz, E. L. (2001): Mechanisms contributing to T cell receptor signaling and assembly revealed by the solution structure of an ectodomain fragment of the CD3 epsilon gamma heterodimer, Cell 105 [7], pp.913-23.

[11] Alarcon, B.; Swamy, M.; van Santen, H. M. and Schamel, W. W. (2006): T-cell antigen-receptor stoichiometry: pre-clustering for sensitivity, EMBO Rep 7 [5], pp.490-5.

[12] Call, M. E.; Pyrdol, J. and Wucherpfennig, K. W. (2004): Stoichiometry of the T-cell receptor-CD3 complex and key intermediates assembled in the endoplasmic reticulum, Embo J 23 [12], pp.2348-57.

[13] Boniface, J. J.; Rabinowitz, J. D.; Wulfing, C.; Hampl, J.; Reich, Z.; Altman, J. D.; Kantor, R. M.; Beeson, C.; McConnell, H. M. and Davis, M. M. (1998): Initiation of signal transduction through the T cell receptor requires the multivalent engagement of peptide/MHC ligands [corrected], Immunity 9 [4], pp.459-66.

[14] Minguet, S.; Swamy, M.; Alarcon, B.; Luescher, I. F. and Schamel, W. W. (2007): Full activation of the T cell receptor requires both clustering and conformational changes at CD3, Immunity 26 [1], pp.43-54.

[15] Stone, J. D. and Stern, L. J. (2006): CD8 T cells, like CD4 T cells, are triggered by multivalent engagement of TCRs by MHC-peptide ligands but not by monovalent engagement, J Immunol 176 [3], pp.1498-505.

[16] Ghendler, Y.; Smolyar, A.; Chang, H. C. and Reinherz, E. L. (1998): One of the CD3epsilon subunits within a T cell receptor complex lies in close proximity to the Cbeta FG loop, J Exp Med 187 [9], pp.1529-36.

[17] Geisler, C.; Rubin, B.; Caspar-Bauguil, S.; Champagne, E.; Vangsted, A.; Hou, X. and Gajhede, M. (1992): Structural mutations of C-domains in members of the Ig superfamily. Consequences for the interactions between the T cell antigen receptor and the zeta 2 homodimer, J Immunol 148 [11], pp.3469-77.

[18] Ehrlich, P. (1909): Ueber den jetzigen Stand der Karzinomforschung, Ned. Tijdschr. Geneeskd. 5 [(Part 1)], pp.273-90.

[19] Thomas, L. (1959): Discussion, Lawrence, H.S., Ed, Cellular and Humoral Aspects of the Hypersensitivitive States, Hoeber-Harper, New York.

[20] Burnet, FM. (1970): The concept of immunological surveillance, Prog. Exp. Tumor Res. [12], pp.1-27.

[21] Qin, Z. and Blankenstein, T. (2004): A cancer immunosurveillance controversy, Nat Immunol 5 [1], pp.3-4; author reply 4-5.

[22] Dunn, G. P.; Old, L. J. and Schreiber, R. D. (2004): The three Es of cancer immunoediting, Annu Rev Immunol 22, pp.329-60.

[23] Novellino, L.; Castelli, C. and Parmiani, G. (2005): A listing of human tumor antigens recognized by T cells: March 2004 update, Cancer Immunol Immunother 54 [3], pp.187-207.

[24] Willimsky, G. and Blankenstein, T. (2005): Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance, Nature 437 [7055], pp.141-6.

[25] Zhang, B.; Bowerman, N. A.; Salama, J. K.; Schmidt, H.; Spiotto, M. T.; Schietinger, A.; Yu, P.; Fu, Y. X.; Weichselbaum, R. R.; Rowley, D. A.; Kranz, D. M. and Schreiber, H. (2007): Induced sensitization of tumor stroma leads to eradication of established cancer by T cells, J Exp Med 204 [1], pp.49-55.

[26] Kolb, H. J.; Schattenberg, A.; Goldman, J. M.; Hertenstein, B.; Jacobsen, N.; Arcese, W.; Ljungman, P.; Ferrant, A.; Verdonck, L.; Niederwieser, D.; van Rhee, F.; Mittermueller, J.; de Witte, T.; Holler, E. and Ansari, H. (1995): Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients, Blood 86 [5], pp.2041-50.

[27] Falkenburg, J. H.; Wafelman, A. R.; Joosten, P.; Smit, W. M.; van Bergen, C. A.; Bongaerts, R.; Lurvink, E.; van der Hoorn, M.; Kluck, P.; Landegent, J. E.; Kluin-Nelemans, H. C.; Fibbe, W. E. and Willemze, R. (1999): Complete remission of accelerated phase chronic myeloid leukemia by treatment with leukemia-reactive cytotoxic T lymphocytes, Blood 94 [4], pp.1201-8.

[28] Bleakley, M. and Riddell, S. R. (2004): Molecules and mechanisms of the graft-versus-leukaemia effect, Nat Rev Cancer 4 [5], pp.371-80.

[29] Goulmy, E. (2004): Minor histocompatibility antigens: allo target molecules for tumor-specific immunotherapy, Cancer J 10 [1], pp.1-7.

[30] Horowitz, M. M.; Gale, R. P.; Sondel, P. M.; Goldman, J. M.; Kersey, J.; Kolb, H. J.; Rimm, A. A.; Ringden, O.; Rozman, C.; Speck, B. and et al. (1990): Graft-versus-leukemia reactions after bone marrow transplantation, Blood 75 [3], pp.555-62.

[31] Rooney, C. M.; Smith, C. A.; Ng, C. Y.; Loftin, S. K.; Sixbey, J. W.; Gan, Y.; Srivastava, D. K.; Bowman, L. C.; Krance, R. A.; Brenner, M. K. and Heslop, H. E. (1998): Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients, Blood 92 [5], pp.1549-55.

[32] Roskrow, M. A.; Suzuki, N.; Gan, Y.; Sixbey, J. W.; Ng, C. Y.; Kimbrough, S.; Hudson, M.; Brenner, M. K.; Heslop, H. E. and Rooney, C. M. (1998): Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes for the treatment of patients with EBV-positive relapsed Hodgkin's disease, Blood 91 [8], pp.2925-34.

[33] Haque, T.; Wilkie, G. M.; Taylor, C.; Amlot, P. L.; Murad, P.; Iley, A.; Dombagoda, D.; Britton, K. M.; Swerdlow, A. J. and Crawford, D. H. (2002): Treatment of Epstein-Barr-virus-positive post-transplantation lymphoproliferative disease with partly HLA-matched allogeneic cytotoxic T cells, Lancet 360 [9331], pp.436-42.

[34] Comoli, P.; Labirio, M.; Basso, S.; Baldanti, F.; Grossi, P.; Furione, M.; Vigano, M.; Fiocchi, R.; Rossi, G.; Ginevri, F.; Gridelli, B.; Moretta, A.; Montagna, D.; Locatelli, F.; Gerna, G. and Maccario, R. (2002): Infusion of autologous Epstein-Barr virus (EBV)-specific cytotoxic T cells for prevention of EBV-related lymphoproliferative disorder in solid organ transplant recipients with evidence of active virus replication, Blood 99 [7], pp.2592-8.

[35] Walter, E. A.; Greenberg, P. D.; Gilbert, M. J.; Finch, R. J.; Watanabe, K. S.; Thomas, E. D. and Riddell, S. R. (1995): Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor, N Engl J Med 333 [16], pp.1038-44.

[36] Reusser, P.; Attenhofer, R.; Hebart, H.; Helg, C.; Chapuis, B. and Einsele, H. (1997): Cytomegalovirus-specific T-cell immunity in recipients of autologous peripheral blood stem cell or bone marrow transplants, Blood 89 [10], pp.3873-9.

[37] Peggs, K. S.; Verfuerth, S.; Pizzey, A.; Khan, N.; Guiver, M.; Moss, P. A. and Mackinnon, S. (2003): Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines, Lancet 362 [9393], pp.1375-7.

[38] Dudley, M. E. and Rosenberg, S. A. (2003): Adoptive-cell-transfer therapy for the treatment of patients with cancer, Nat Rev Cancer 3 [9], pp.666-75.

[39] Yannelli, J. R.; Hyatt, C.; McConnell, S.; Hines, K.; Jacknin, L.; Parker, L.; Sanders, M. and Rosenberg, S. A. (1996): Growth of tumor-infiltrating lymphocytes from human solid cancers: summary of a 5-year experience, Int J Cancer 65 [4], pp.413-21.

[40] Yee, C.; Thompson, J. A.; Byrd, D.; Riddell, S. R.; Roche, P.; Celis, E. and Greenberg, P. D. (2002): Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells, Proc Natl Acad Sci U S A 99 [25], pp.16168-73.

[41] Dudley, M. E.; Wunderlich, J. R.; Robbins, P. F.; Yang, J. C.; Hwu, P.; Schwartzentruber, D. J.; Topalian, S. L.; Sherry, R.; Restifo, N. P.; Hubicki, A. M.; Robinson, M. R.; Raffeld, M.; Duray, P.; Seipp, C. A.; Rogers-Freezer, L.; Morton, K. E.; Mavroukakis, S. A.; White, D. E. and Rosenberg, S. A. (2002): Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes, Science 298 [5594], pp.850-4.

[42] Eshhar, Z.; Waks, T.; Gross, G. and Schindler, D. G. (1993): Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors, Proc Natl Acad Sci U S A 90 [2], pp.720-4.

[43] Eshhar, Z. (1997): Tumor-specific T-bodies: towards clinical application, Cancer Immunol Immunother 45 [3-4], pp.131-6.

[44] Lamers, C. H.; Langeveld, S. C.; Groot-van Ruijven, C. M.; Debets, R.; Sleijfer, S. and Gratama, J. W. (2007): Gene-modified T cells for adoptive immunotherapy of renal cell cancer maintain transgene-specific immune functions in vivo, Cancer Immunol Immunother 56 [12], pp.1875-83.

[45] Xue, S. A.; Gao, L.; Hart, D.; Gillmore, R.; Qasim, W.; Thrasher, A.; Apperley, J.; Engels, B.; Uckert, W.; Morris, E. and Stauss, H. (2005): Elimination of human leukemia cells in NOD/SCID mice by WT1-TCR gene-transduced human T cells, Blood 106 [9], pp.3062-7.

[46] Stanislawski, T.; Voss, R. H.; Lotz, C.; Sadovnikova, E.; Willemsen, R. A.; Kuball, J.; Ruppert, T.; Bolhuis, R. L.; Melief, C. J.; Huber, C.; Stauss, H. J. and Theobald, M. (2001): Circumventing tolerance to a human MDM2-derived tumor antigen by TCR gene transfer, Nat Immunol 2 [10], pp.962-70.

[47] Kuball, J.; Schuler, M.; Antunes Ferreira, E.; Herr, W.; Neumann, M.; Obenauer-Kutner, L.; Westreich, L.; Huber, C.; Wolfel, T. and Theobald, M. (2002): Generating p53-specific cytotoxic T lymphocytes by recombinant adenoviral vector-based vaccination in mice, but not man, Gene Ther 9 [13], pp.833-43.

[48] Li, Y.; Moysey, R.; Molloy, P. E.; Vuidepot, A. L.; Mahon, T.; Baston, E.; Dunn, S.; Liddy, N.; Jacob, J.; Jakobsen, B. K. and Boulter, J. M. (2005): Directed evolution of human T-cell receptors with picomolar affinities by phage display, Nat Biotechnol 23 [3], pp.349-54.

[49] Holler, P. D.; Holman, P. O.; Shusta, E. V.; O'Herrin, S.; Wittrup, K. D. and Kranz, D. M. (2000): In vitro evolution of a T cell receptor with high affinity for peptide/MHC, Proc Natl Acad Sci U S A 97 [10], pp.5387-92.

[50] Chlewicki, L. K.; Holler, P. D.; Monti, B. C.; Clutter, M. R. and Kranz, D. M. (2005): High-affinity, peptide-specific T cell receptors can be generated by mutations in CDR1, CDR2 or CDR3, J Mol Biol 346 [1], pp.223-39.

[51] Schumacher, T. N. (2002): T-cell-receptor gene therapy, Nat Rev Immunol 2 [7], pp.512-9.

[52] Engels, B. and Uckert, W. (2007): Redirecting T lymphocyte specificity by T cell receptor gene transfer--a new era for immunotherapy, Mol Aspects Med 28 [1], pp.115-42.

[53] Stauss, H. J.; Cesco-Gaspere, M.; Thomas, S.; Hart, D. P.; Xue, S. A.; Holler, A.; Wright, G.; Perro, M.; Little, A. M.; Pospori, C.; King, J. and Morris, E. C. (2007): Monoclonal T-cell receptors: new reagents for cancer therapy, Mol Ther 15 [10], pp.1744-50.

[54] Rosenberg, S. A.; Restifo, N. P.; Yang, J. C.; Morgan, R. A. and Dudley, M. E. (2008): Adoptive cell transfer: a clinical path to effective cancer immunotherapy, Nat Rev Cancer 8 [4], pp.299-308.

[55] Morgan, R. A.; Dudley, M. E.; Wunderlich, J. R.; Hughes, M. S.; Yang, J. C.; Sherry, R. M.; Royal, R. E.; Topalian, S. L.; Kammula, U. S.; Restifo, N. P.; Zheng, Z.; Nahvi, A.; de Vries, C. R.; Rogers-Freezer, L. J.; Mavroukakis, S. A. and Rosenberg, S. A. (2006): Cancer regression in patients after transfer of genetically engineered lymphocytes, Science 314 [5796], pp.126-9.

[56] Engels, B.; Cam, H.; Schuler, T.; Indraccolo, S.; Gladow, M.; Baum, C.; Blankenstein, T. and Uckert, W. (2003): Retroviral vectors for high-level transgene expression in T lymphocytes, Hum Gene Ther 14 [12], pp.1155-68.

[57] Kammertoens, T.; Schuler, T. and Blankenstein, T. (2005): Immunotherapy: target the stroma to hit the tumor, Trends Mol Med 11 [5], pp.225-31.

[58] Blankenstein, T. (2005): The role of tumor stroma in the interaction between tumor and immune system, Curr Opin Immunol 17 [2], pp.180-6.

[59] Overwijk, W. W.; Theoret, M. R.; Finkelstein, S. E.; Surman, D. R.; de Jong, L. A.; Vyth-Dreese, F. A.; Dellemijn, T. A.; Antony, P. A.; Spiess, P. J.; Palmer, D. C.; Heimann, D. M.; Klebanoff, C. A.; Yu, Z.; Hwang, L. N.; Feigenbaum, L.; Kruisbeek, A. M.; Rosenberg, S. A. and Restifo, N. P. (2003): Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells, J Exp Med 198 [4], pp.569-80.

[60] Weinhold, M.; Sommermeyer, D.; Uckert, W. and Blankenstein, T. (2007): Dual T cell receptor expressing CD8+ T cells with tumor- and self-specificity can inhibit tumor growth without causing severe autoimmunity, J Immunol 179 [8], pp.5534-42.

[61] Sommermeyer, D.; Neudorfer, J.; Weinhold, M.; Leisegang, M.; Engels, B.; Noessner, E.; Heemskerk, M. H.; Charo, J.; Schendel, D. J.; Blankenstein, T.; Bernhard, H. and Uckert, W. (2006): Designer T cells by T cell receptor replacement, Eur J Immunol 36 [11], pp.3052-9.

[62] Heemskerk, M. H.; Hagedoorn, R. S.; van der Hoorn, M. A.; van der Veken, L. T.; Hoogeboom, M.; Kester, M. G.; Willemze, R. and Falkenburg, J. H. (2007): Efficiency of T-cell receptor expression in dual-specific T cells is controlled by the intrinsic qualities of the TCR chains within the TCR-CD3 complex, Blood 109 [1], pp.235-43.

[63] Kuball, J.; Dossett, M. L.; Wolfl, M.; Ho, W. Y.; Voss, R. H.; Fowler, C. and Greenberg, P. D. (2007): Facilitating matched pairing and expression of TCR chains introduced into human T cells, Blood 109 [6], pp.2331-8.

[64] Cohen, C. J.; Li, Y. F.; El-Gamil, M.; Robbins, P. F.; Rosenberg, S. A. and Morgan, R. A. (2007): Enhanced antitumor activity of T cells engineered to express T-cell receptors with a second disulfide bond, Cancer Res 67 [8], pp.3898-903.

[65] Chang, H. C.; Bao, Z.; Yao, Y.; Tse, A. G.; Goyarts, E. C.; Madsen, M.; Kawasaki, E.; Brauer, P. P.; Sacchettini, J. C.; Nathenson, S. G. and et al. (1994): A general method for facilitating heterodimeric pairing between two proteins: application to expression of alpha and beta T-cell receptor extracellular segments, Proc Natl Acad Sci U S A 91 [24], pp.11408-12.

[66] Voss, R. H.; Willemsen, R. A.; Kuball, J.; Grabowski, M.; Engel, R.; Intan, R. S.; Guillaume, P.; Romero, P.; Huber, C. and Theobald, M. (2008): Molecular design of the Calpha interface favors specific pairing of introduced TCRalpha in human T cells, J Immunol 180 [1], pp.391-401.

[67] Voss, R. H.; Kuball, J.; Engel, R.; Guillaume, P.; Romero, P.; Huber, C. and Theobald, M. (2006): Redirection of T cells by delivering a transgenic mouse-derived MDM2 tumor antigen-specific TCR and its humanized derivative is governed by the CD8 coreceptor and affects natural human TCR expression, Immunol Res 34 [1], pp.67-87.

[68] Cohen, C. J.; Zhao, Y.; Zheng, Z.; Rosenberg, S. A. and Morgan, R. A. (2006): Enhanced antitumor activity of murine-human hybrid T-cell receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability, Cancer Res 66 [17], pp.8878-86.

[69] Willemsen, R. A.; Weijtens, M. E.; Ronteltap, C.; Eshhar, Z.; Gratama, J. W.; Chames, P. and Bolhuis, R. L. (2000): Grafting primary human T lymphocytes with cancer-specific chimeric single chain and two chain TCR, Gene Ther 7 [16], pp.1369-77.

[70] van der Veken, L. T.; Hagedoorn, R. S.; van Loenen, M. M.; Willemze, R.; Falkenburg, J. H. and Heemskerk, M. H. (2006): Alphabeta T-cell receptor engineered gammadelta T cells mediate effective antileukemic reactivity, Cancer Res 66 [6], pp.3331-7.

[71] Hah, C.; Kim, M. and Kim, K. (2005): Induction of peripheral tolerance in dual TCR T cells: an evidence for non-dominant signaling by one TCR, J Biochem Mol Biol 38 [3], pp.334-42.

[72] Gladow, M.; Uckert, W. and Blankenstein, T. (2004): Dual T cell receptor T cells with two defined specificities mediate tumor suppression via both receptors, Eur J Immunol 34 [7], pp.1882-91.

[73] Hafler, D. A. and Weiner, H. L. (1995): Immunologic mechanisms and therapy in multiple sclerosis, Immunol Rev 144, pp.75-107.

[74] Bach, J. F. and Chatenoud, L. (2001): Tolerance to islet autoantigens in type 1 diabetes, Annu Rev Immunol 19, pp.131-61.

[75] Heemskerk, M. H.; Hoogeboom, M.; Hagedoorn, R.; Kester, M. G.; Willemze, R. and Falkenburg, J. H. (2004): Reprogramming of virus-specific T cells into leukemia-reactive T cells using T cell receptor gene transfer, J Exp Med 199 [7], pp.885-94.

[76] Kershaw, M. H.; Westwood, J. A. and Hwu, P. (2002): Dual-specific T cells combine proliferation and antitumor activity, Nat Biotechnol 20 [12], pp.1221-7.

[77] Cooper, L. J.; Al-Kadhimi, Z.; Serrano, L. M.; Pfeiffer, T.; Olivares, S.; Castro, A.; Chang, W. C.; Gonzalez, S.; Smith, D.; Forman, S. J. and Jensen, M. C. (2005): Enhanced antilymphoma efficacy of CD19-redirected influenza MP1-specific CTLs by cotransfer of T cells modified to present influenza MP1, Blood 105 [4], pp.1622-31.

[78] Hacein-Bey-Abina, S.; von Kalle, C.; Schmidt, M.; Le Deist, F.; Wulffraat, N.; McIntyre, E.; Radford, I.; Villeval, J. L.; Fraser, C. C.; Cavazzana-Calvo, M. and Fischer, A. (2003): A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency, N Engl J Med 348 [3], pp.255-6.

[79] Hacein-Bey-Abina, S.; Von Kalle, C.; Schmidt, M.; McCormack, M. P.; Wulffraat, N.; Leboulch, P.; Lim, A.; Osborne, C. S.; Pawliuk, R.; Morillon, E.; Sorensen, R.; Forster, A.; Fraser, P.; Cohen, J. I.; de Saint Basile, G.; Alexander, I.; Wintergerst, U.; Frebourg, T.; Aurias, A.; Stoppa-Lyonnet, D.; Romana, S.; Radford-Weiss, I.; Gross, F.; Valensi, F.; Delabesse, E.; Macintyre, E.; Sigaux, F.; Soulier, J.; Leiva, L. E.; Wissler, M.; Prinz, C.; Rabbitts, T. H.; Le Deist, F.; Fischer, A. and Cavazzana-Calvo, M. (2003): LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1, Science 302 [5644], pp.415-9.

[80] Baum, C. (2007): Fourth case of leukemia in the first SCID-XI gene therapy trial and the diversity of gene therapy, Commentary from the Board of the European society of Gene and Cell Therapy.

[81] Deichmann, A.; Hacein-Bey-Abina, S.; Schmidt, M.; Garrigue, A.; Brugman, M. H.; Hu, J.; Glimm, H.; Gyapay, G.; Prum, B.; Fraser, C. C.; Fischer, N.; Schwarzwaelder, K.; Siegler, M. L.; de Ridder, D.; Pike-Overzet, K.; Howe, S. J.; Thrasher, A. J.; Wagemaker, G.; Abel, U.; Staal, F. J.; Delabesse, E.; Villeval, J. L.; Aronow, B.; Hue, C.; Prinz, C.; Wissler, M.; Klanke, C.; Weissenbach, J.; Alexander, I.; Fischer, A.; von Kalle, C. and Cavazzana-Calvo, M. (2007): Vector integration is nonrandom and clustered and influences the fate of lymphopoiesis in SCID-X1 gene therapy, J Clin Invest 117 [8], pp.2225-32.

[82] Schwarzwaelder, K.; Howe, S. J.; Schmidt, M.; Brugman, M. H.; Deichmann, A.; Glimm, H.; Schmidt, S.; Prinz, C.; Wissler, M.; King, D. J.; Zhang, F.; Parsley, K. L.; Gilmour, K. C.; Sinclair, J.; Bayford, J.; Peraj, R.; Pike-Overzet, K.; Staal, F. J.; de Ridder, D.; Kinnon, C.; Abel, U.; Wagemaker, G.; Gaspar, H. B.; Thrasher, A. J. and von Kalle, C. (2007): Gammaretrovirus-mediated correction of SCID-X1 is associated with skewed vector integration site distribution in vivo, J Clin Invest 117 [8], pp.2241-9.

[83] Wu, X.; Li, Y.; Crise, B. and Burgess, S. M. (2003): Transcription start regions in the human genome are favored targets for MLV integration, Science 300 [5626], pp.1749-51.

[84] Laufs, S.; Gentner, B.; Nagy, K. Z.; Jauch, A.; Benner, A.; Naundorf, S.; Kuehlcke, K.; Schiedlmeier, B.; Ho, A. D.; Zeller, W. J. and Fruehauf, S. (2003): Retroviral vector integration occurs in preferred genomic targets of human bone marrow-repopulating cells, Blood 101 [6], pp.2191-8.

[85] Kustikova, O.; Fehse, B.; Modlich, U.; Yang, M.; Dullmann, J.; Kamino, K.; von Neuhoff, N.; Schlegelberger, B.; Li, Z. and Baum, C. (2005): Clonal dominance of hematopoietic stem cells triggered by retroviral gene marking, Science 308 [5725], pp.1171-4.

[86] Giordano, F. A.; Fehse, B.; Hotz-Wagenblatt, A.; Jonnakuty, S.; del Val, C.; Appelt, J. U.; Nagy, K. Z.; Kuehlcke, K.; Naundorf, S.; Zander, A. R.; Zeller, W. J.; Ho, A. D.; Fruehauf, S. and Laufs, S. (2006): Retroviral vector insertions in T-lymphocytes used for suicide gene therapy occur in gene groups with specific molecular functions, Bone Marrow Transplant 38 [3], pp.229-35.

[87] Recchia, A.; Bonini, C.; Magnani, Z.; Urbinati, F.; Sartori, D.; Muraro, S.; Tagliafico, E.; Bondanza, A.; Stanghellini, M. T.; Bernardi, M.; Pescarollo, A.; Ciceri, F.; Bordignon, C. and Mavilio, F. (2006): Retroviral vector integration deregulates gene expression but has no consequence on the biology and function of transplanted T cells, Proc Natl Acad Sci U S A 103 [5], pp.1457-62.

[88] Thornhill, S. I.; Schambach, A.; Howe, S. J.; Ulaganathan, M.; Grassman, E.; Williams, D.; Schiedlmeier, B.; Sebire, N. J.; Gaspar, H. B.; Kinnon, C.; Baum, C. and Thrasher, A. J. (2008): Self-inactivating gammaretroviral vectors for gene therapy of X-linked severe combined immunodeficiency, Mol Ther 16 [3], pp.590-8.

[89] Yanez-Munoz, R. J.; Balaggan, K. S.; MacNeil, A.; Howe, S. J.; Schmidt, M.; Smith, A. J.; Buch, P.; MacLaren, R. E.; Anderson, P. N.; Barker, S. E.; Duran, Y.; Bartholomae, C.; von Kalle, C.; Heckenlively, J. R.; Kinnon, C.; Ali, R. R. and Thrasher, A. J. (2006): Effective gene therapy with nonintegrating lentiviral vectors, Nat Med 12 [3], pp.348-53.

[90] Ginsburg, D. S. and Calos, M. P. (2005): Site-specific integration with phiC31 integrase for prolonged expression of therapeutic genes, Adv Genet 54, pp.179-87.

[91] Vassaux, G. and Martin-Duque, P. (2004): Use of suicide genes for cancer gene therapy: study of the different approaches, Expert Opin Biol Ther 4 [4], pp.519-30.

[92] Niculescu-Duvaz, I. and Springer, C. J. (2005): Introduction to the background, principles, and state of the art in suicide gene therapy, Mol Biotechnol 30 [1], pp.71-88.

[93] Freeman, S. M.; Whartenby, K. A.; Freeman, J. L.; Abboud, C. N. and Marrogi, A. J. (1996): In situ use of suicide genes for cancer therapy, Semin Oncol 23 [1], pp.31-45.

[94] Ciceri, F.; Bonini, C.; Gallo-Stampino, C. and Bordignon, C. (2005): Modulation of GvHD by suicide-gene transduced donor T lymphocytes: clinical applications in mismatched transplantation, Cytotherapy 7 [2], pp.144-9.

[95] Bonini, C.; Bondanza, A.; Perna, S. K.; Kaneko, S.; Traversari, C.; Ciceri, F. and Bordignon, C. (2007): The suicide gene therapy challenge: how to improve a successful gene therapy approach, Mol Ther 15 [7], pp.1248-52.

[96] Tiberghien, P. (2001): Use of suicide gene-expressing donor T-cells to control alloreactivity after haematopoietic stem cell transplantation, J Intern Med 249 [4], pp.369-77.

[97] Tiberghien, P.; Ferrand, C.; Lioure, B.; Milpied, N.; Angonin, R.; Deconinck, E.; Certoux, J. M.; Robinet, E.; Saas, P.; Petracca, B.; Juttner, C.; Reynolds, C. W.; Longo, D. L.; Herve, P. and Cahn, J. Y. (2001): Administration of herpes simplex-thymidine kinase-expressing donor T cells with a T-cell-depleted allogeneic marrow graft, Blood 97 [1], pp.63-72.

[98] Bonini, C.; Ferrari, G.; Verzeletti, S.; Servida, P.; Zappone, E.; Ruggieri, L.; Ponzoni, M.; Rossini, S.; Mavilio, F.; Traversari, C. and Bordignon, C. (1997): HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia, Science 276 [5319], pp.1719-24.

[99] Riddell, S. R.; Elliott, M.; Lewinsohn, D. A.; Gilbert, M. J.; Wilson, L.; Manley, S. A.; Lupton, S. D.; Overell, R. W.; Reynolds, T. C.; Corey, L. and Greenberg, P. D. (1996): T-cell mediated rejection of gene-modified HIV-specific cytotoxic T lymphocytes in HIV-infected patients, Nat Med 2 [2], pp.216-23.

[100] Ciceri, F.; Bonini, C.; Marktel, S.; Zappone, E.; Servida, P.; Bernardi, M.; Pescarollo, A.; Bondanza, A.; Peccatori, J.; Rossini, S.; Magnani, Z.; Salomoni, M.; Benati, C.; Ponzoni, M.; Callegaro, L.; Corradini, P.; Bregni, M.; Traversari, C. and Bordignon, C. (2007): Antitumor effects of HSV-TK-engineered donor lymphocytes after allogeneic stem-cell transplantation, Blood 109 [11], pp.4698-707.

[101] Berger, C.; Flowers, M. E.; Warren, E. H. and Riddell, S. R. (2006): Analysis of transgene-specific immune responses that limit the in vivo persistence of adoptively transferred HSV-TK-modified donor T cells after allogeneic hematopoietic cell transplantation, Blood 107 [6], pp.2294-302.

[102] Traversari, C.; Marktel, S.; Magnani, Z.; Mangia, P.; Russo, V.; Ciceri, F.; Bonini, C. and Bordignon, C. (2007): The potential immunogenicity of the TK suicide gene does not prevent full clinical benefit associated with the use of TK-transduced donor lymphocytes in HSCT for hematologic malignancies, Blood 109 [11], pp.4708-15.

[103] Frank, O.; Rudolph, C.; Heberlein, C.; von Neuhoff, N.; Schrock, E.; Schambach, A.; Schlegelberger, B.; Fehse, B.; Ostertag, W.; Stocking, C. and Baum, C. (2004): Tumor cells escape suicide gene therapy by genetic and epigenetic instability, Blood 104 [12], pp.3543-9.

[104] Deschamps, M.; Mercier-Lethondal, P.; Certoux, J. M.; Henry, C.; Lioure, B.; Pagneux, C.; Cahn, J. Y.; Deconinck, E.; Robinet, E.; Tiberghien, P. and Ferrand, C. (2007): Deletions within the HSV-tk transgene in long-lasting circulating gene-modified T cells infused with a hematopoietic graft, Blood 110 [12], pp.3842-52.

[105] Junker, K.; Koehl, U.; Zimmerman, S.; Stein, S.; Schwabe, D.; Klingebiel, T. and Grez, M. (2003): Kinetics of cell death in T lymphocytes genetically modified with two novel suicide fusion genes, Gene Ther 10 [14], pp.1189-97.

[106] Thomis, D. C.; Marktel, S.; Bonini, C.; Traversari, C.; Gilman, M.; Bordignon, C. and Clackson, T. (2001): A Fas-based suicide switch in human T cells for the treatment of graft-versus-host disease, Blood 97 [5], pp.1249-57.

[107] Straathof, K. C.; Pule, M. A.; Yotnda, P.; Dotti, G.; Vanin, E. F.; Brenner, M. K.; Heslop, H. E.; Spencer, D. M. and Rooney, C. M. (2005): An inducible caspase 9 safety switch for T-cell therapy, Blood 105 [11], pp.4247-54.

[108] Tey, S. K.; Dotti, G.; Rooney, C. M.; Heslop, H. E. and Brenner, M. K. (2007): Inducible caspase 9 suicide gene to improve the safety of allodepleted T cells after haploidentical stem cell transplantation, Biol Blood Marrow Transplant 13 [8], pp.913-24.

[109] Berger, C.; Blau, C. A.; Huang, M. L.; Iuliucci, J. D.; Dalgarno, D. C.; Gaschet, J.; Heimfeld, S.; Clackson, T. and Riddell, S. R. (2004): Pharmacologically regulated Fas-mediated death of adoptively transferred T cells in a nonhuman primate model, Blood 103 [4], pp.1261-9.

[110] Quintarelli, C.; Vera, J. F.; Savoldo, B.; Giordano Attianese, G. M.; Pule, M.; Foster, A. E.; Heslop, H. E.; Rooney, C. M.; Brenner, M. K. and Dotti, G. (2007): Co-expression of cytokine and suicide genes to enhance the activity and safety of tumor-specific cytotoxic T lymphocytes, Blood 110 [8], pp.2793-802.

[111] Introna, M.; Barbui, A. M.; Bambacioni, F.; Casati, C.; Gaipa, G.; Borleri, G.; Bernasconi, S.; Barbui, T.; Golay, J.; Biondi, A. and Rambaldi, A. (2000): Genetic modification of human T cells with CD20: a strategy to purify and lyse transduced cells with anti-CD20 antibodies, Hum Gene Ther 11 [4], pp.611-20.

[112] van Meerten, T.; Claessen, M. J.; Hagenbeek, A. and Ebeling, S. B. (2006): The CD20/alphaCD20 'suicide' system: novel vectors with improved safety and expression profiles and efficient elimination of CD20-transgenic T cells, Gene Ther 13 [9], pp.789-97.

[113] Serafini, M.; Bonamino, M.; Golay, J. and Introna, M. (2004): Elongation factor 1 (EF1alpha) promoter in a lentiviral backbone improves expression of the CD20 suicide gene in primary T lymphocytes allowing efficient rituximab-mediated lysis, Haematologica 89 [1], pp.86-95.

[114] Smith, M. R. (2003): Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance, Oncogene 22 [47], pp.7359-68.

[115] van Meerten, T.; van Rijn, R. S.; Hol, S.; Hagenbeek, A. and Ebeling, S. B. (2006): Complement-induced cell death by rituximab depends on CD20 expression level and acts complementary to antibody-dependent cellular cytotoxicity, Clin Cancer Res 12 [13], pp.4027-35.

[116] Algino, K. M.; Thomason, R. W.; King, D. E.; Montiel, M. M. and Craig, F. E. (1996): CD20 (pan-B cell antigen) expression on bone marrow-derived T cells, Am J Clin Pathol 106 [1], pp.78-81.

[117] Serafini, M.; Manganini, M.; Borleri, G.; Bonamino, M.; Imberti, L.; Biondi, A.; Golay, J.; Rambaldi, A. and Introna, M. (2004): Characterization of CD20-transduced T lymphocytes as an alternative suicide gene therapy approach for the treatment of graft-versus-host disease, Hum Gene Ther 15 [1], pp.63-76.

[118] Yuan, R. R.; Wong, P.; McDevitt, M. R.; Doubrovina, E.; Leiner, I.; Bornmann, W.; O'Reilly, R.; Pamer, E. G. and Scheinberg, D. A. (2004): Targeted deletion of T-cell clones using alpha-emitting suicide MHC tetramers, Blood 104 [8], pp.2397-402.

[119] Hess, P. R.; Barnes, C.; Woolard, M. D.; Johnson, M. D.; Cullen, J. M.; Collins, E. J. and Frelinger, J. A. (2007): Selective deletion of antigen-specific CD8+ T cells by MHC class I tetramers coupled to the type I ribosome-inactivating protein saporin, Blood 109 [8], pp.3300-7.

[120] Casares, S.; Stan, A. C.; Bona, C. A. and Brumeanu, T. D. (2001): Antigen-specific downregulation of T cells by doxorubicin delivered through a recombinant MHC II--peptide chimera, Nat Biotechnol 19 [2], pp.142-7.

[121] O'Herrin, S. M.; Slansky, J. E.; Tang, Q.; Markiewicz, M. A.; Gajewski, T. F.; Pardoll, D. M.; Schneck, J. P. and Bluestone, J. A. (2001): Antigen-specific blockade of T cells in vivo using dimeric MHC peptide, J Immunol 167 [5], pp.2555-60.

[122] Casares, S.; Bona, C. A. and Brumeanu, T. D. (2001): Modulation of CD4 T cell function by soluble MHC II-peptide chimeras, Int Rev Immunol 20 [5], pp.547-73.

[123] Maile, R.; Wang, B.; Schooler, W.; Meyer, A.; Collins, E. J. and Frelinger, J. A. (2001): Antigen-specific modulation of an immune response by in vivo administration of soluble MHC class I tetramers, J Immunol 167 [7], pp.3708-14.

[124] Casares, S.; Zong, C. S.; Radu, D. L.; Miller, A.; Bona, C. A. and Brumeanu, T. D. (1999): Antigen-specific signaling by a soluble, dimeric peptide/major histocompatibility complex class II/Fc chimera leading to T helper cell type 2 differentiation, J Exp Med 190 [4], pp.543-53.

[125] Uckert, W.; Kammertons, T.; Haack, K.; Qin, Z.; Gebert, J.; Schendel, D. J. and Blankenstein, T. (1998): Double suicide gene (cytosine deaminase and herpes simplex virus thymidine kinase) but not single gene transfer allows reliable elimination of tumor cells in vivo, Hum Gene Ther 9 [6], pp.855-65.

[126] O'Brien, T. A.; Tuong, D. T.; Basso, L. M.; McIvor, R. S. and Orchard, P. J. (2006): Coexpression of the uracil phosphoribosyltransferase gene with a chimeric human nerve growth factor receptor/cytosine deaminase fusion gene, using a single retroviral vector, augments cytotoxicity of transduced human T cells exposed to 5-fluorocytosine, Hum Gene Ther 17 [5], pp.518-30.

[127] Woods, N. B.; Muessig, A.; Schmidt, M.; Flygare, J.; Olsson, K.; Salmon, P.; Trono, D.; von Kalle, C. and Karlsson, S. (2003): Lentiviral vector transduction of NOD/SCID repopulating cells results in multiple vector integrations per transduced cell: risk of insertional mutagenesis, Blood 101 [4], pp.1284-9.

[128] Sussman, J. J.; Parihar, R.; Winstead, K. and Finkelman, F. D. (2004): Prolonged culture of vaccine-primed lymphocytes results in decreased antitumor killing and change in cytokine secretion, Cancer Res 64 [24], pp.9124-30.

[129] Stitz, J.; Buchholz, C. J.; Engelstadter, M.; Uckert, W.; Bloemer, U.; Schmitt, I. and Cichutek, K. (2000): Lentiviral vectors pseudotyped with envelope glycoproteins derived from gibbon ape leukemia virus and murine leukemia virus 10A1, Virology 273 [1], pp.16-20.

[130] Kurts, C.; Heath, W. R.; Carbone, F. R.; Allison, J.; Miller, J. F. and Kosaka, H. (1996): Constitutive class I-restricted exogenous presentation of self antigens in vivo, J Exp Med 184 [3], pp.923-30.

[131] Morita, S.; Kojima, T. and Kitamura, T. (2000): Plat-E: an efficient and stable system for transient packaging of retroviruses, Gene Ther 7 [12], pp.1063-6.

[132] Letourneur, F. and Malissen, B. (1989): Derivation of a T cell hybridoma variant deprived of functional T cell receptor alpha and beta chain transcripts reveals a nonfunctional alpha-mRNA of BW5147 origin, Eur J Immunol 19 [12], pp.2269-74.

[133] Karttunen, J.; Sanderson, S. and Shastri, N. (1992): Detection of rare antigen-presenting cells by the lacZ T-cell activation assay suggests an expression cloning strategy for T-cell antigens, Proc Natl Acad Sci U S A 89 [13], pp.6020-4.

[134] Heemskerk, M. H.; Hoogeboom, M.; de Paus, R. A.; Kester, M. G.; van der Hoorn, M. A.; Goulmy, E.; Willemze, R. and Falkenburg, J. H. (2003): Redirection of antileukemic reactivity of peripheral T lymphocytes using gene transfer of minor histocompatibility antigen HA-2-specific T-cell receptor complexes expressing a conserved alpha joining region, Blood 102 [10], pp.3530-40.

[135] Bendtsen, J. D.; Nielsen, H.; von Heijne, G. and Brunak, S. (2004): Improved prediction of signal peptides: SignalP 3.0, J Mol Biol 340 [4], pp.783-95.

[136] Reuss, S.; Biese, P.; Cosset, F. L.; Takeuchi, Y. and Uckert, W. (2007): Suspension packaging cell lines for the simplified generation of T-cell receptor encoding retrovirus vector particles, Gene Ther 14 [7], pp.595-603.

[137] McNicol, A. M.; Bendle, G.; Holler, A.; Matjeka, T.; Dalton, E.; Rettig, L.; Zamoyska, R.; Uckert, W.; Xue, S. A. and Stauss, H. J. (2007): CD8alpha/alpha homodimers fail to function as co-receptor for a CD8-dependent TCR, Eur J Immunol 37 [6], pp.1634-41.

[138] Berger, C.; Jensen, M. C.; Lansdorp, P. M.; Gough, M.; Elliott, C. and Riddell, S. R. (2008): Adoptive transfer of effector CD8 T cells derived from central memory cells establishes persistent T cell memory in primates, J Clin Invest 118 [1], pp.294-305.

[139] Kurts, C.; Miller, J. F.; Subramaniam, R. M.; Carbone, F. R. and Heath, W. R. (1998): Major histocompatibility complex class I-restricted cross-presentation is biased towards high dose antigens and those released during cellular destruction, J Exp Med 188 [2], pp.409-14.

[140] de Witte, M. A.; Coccoris, M.; Wolkers, M. C.; van den Boom, M. D.; Mesman, E. M.; Song, J. Y.; van der Valk, M.; Haanen, J. B. and Schumacher, T. N. (2006): Targeting self-antigens through allogeneic TCR gene transfer, Blood 108 [3], pp.870-7.

[141] Jorritsma, A.; Gomez-Eerland, R.; Dokter, M.; van de Kasteele, W.; Zoet, Y. M.; Doxiadis, II; Rufer, N.; Romero, P.; Morgan, R. A.; Schumacher, T. N. and Haanen, J. B. (2007): Selecting highly affine and well-expressed TCRs for gene therapy of melanoma, Blood 110 [10], pp.3564-72.

[142] Daudt, L.; Maccario, R.; Locatelli, F.; Turin, I.; Silla, L.; Montini, E.; Percivalle, E.; Giugliani, R.; Avanzini, M. A.; Moretta, A. and Montagna, D. (2008): Interleukin-15 Favors the Expansion of Central Memory CD8+ T Cells in Ex Vivo Generated, Antileukemia Human Cytotoxic T Lymphocyte Lines, J Immunother.

[143] Kishore, U. and Reid, K. B. (2000): C1q: structure, function, and receptors, Immunopharmacology 49 [1-2], pp.159-70.

[144] Fehse, B.; Kustikova, O. S.; Li, Z.; Wahlers, A.; Bohn, W.; Beyer, W. R.; Chalmers, D.; Tiberghien, P.; Kuhlcke, K.; Zander, A. R. and Baum, C. (2002): A novel 'sort-suicide' fusion gene vector for T cell manipulation, Gene Ther 9 [23], pp.1633-8.

[145] Antony, P. A.; Piccirillo, C. A.; Akpinarli, A.; Finkelstein, S. E.; Speiss, P. J.; Surman, D. R.; Palmer, D. C.; Chan, C. C.; Klebanoff, C. A.; Overwijk, W. W.; Rosenberg, S. A. and Restifo, N. P. (2005): CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells, J Immunol 174 [5], pp.2591-601.

[146] Dummer, W.; Niethammer, A. G.; Baccala, R.; Lawson, B. R.; Wagner, N.; Reisfeld, R. A. and Theofilopoulos, A. N. (2002): T cell homeostatic proliferation elicits effective antitumor autoimmunity, J Clin Invest 110 [2], pp.185-92.

[147] Gattinoni, L.; Klebanoff, C. A.; Palmer, D. C.; Wrzesinski, C.; Kerstann, K.; Yu, Z.; Finkelstein, S. E.; Theoret, M. R.; Rosenberg, S. A. and Restifo, N. P. (2005): Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells, J Clin Invest 115 [6], pp.1616-26.

[148] Beck, C.; Cayeux, S.; Lupton, S. D.; Dorken, B. and Blankenstein, T. (1995): The thymidine kinase/ganciclovir-mediated "suicide" effect is variable in different tumor cells, Hum Gene Ther 6 [12], pp.1525-30.

[149] Hilpert, K.; Hansen, G.; Wessner, H.; Kuttner, G.; Welfle, K.; Seifert, M. and Hohne, W. (2001): Anti-c-myc antibody 9E10: epitope key positions and variability characterized using peptide spot synthesis on cellulose, Protein Eng 14 [10], pp.803-6.

[150] Salfeld, J. G. (2007): Isotype selection in antibody engineering, Nat Biotechnol 25 [12], pp.1369-72.

[151] Strome, S. E.; Sausville, E. A. and Mann, D. (2007): A mechanistic perspective of monoclonal antibodies in cancer therapy beyond target-related effects, Oncologist 12 [9], pp.1084-95.

[152] Jefferis, R. (2007): Antibody therapeutics: isotype and glycoform selection, Expert Opin Biol Ther 7 [9], pp.1401-13.

[153] Mirick, G. R.; Bradt, B. M.; Denardo, S. J. and Denardo, G. L. (2004): A review of human anti-globulin antibody (HAGA, HAMA, HACA, HAHA) responses to monoclonal antibodies. Not four letter words, Q J Nucl Med Mol Imaging 48 [4], pp.251-7.

[154] Lonberg, N. (2008): Human monoclonal antibodies from transgenic mice, Handb Exp Pharmacol [181], pp.69-97.

[155] Reichert, J. M.; Rosensweig, C. J.; Faden, L. B. and Dewitz, M. C. (2005): Monoclonal antibody successes in the clinic, Nat Biotechnol 23 [9], pp.1073-8.

[156] Samuels, J.; Ng, Y. S.; Coupillaud, C.; Paget, D. and Meffre, E. (2005): Human B cell tolerance and its failure in rheumatoid arthritis, Ann N Y Acad Sci 1062, pp.116-26.

[157] Goodnow, C. C.; Crosbie, J.; Jorgensen, H.; Brink, R. A. and Basten, A. (1989): Induction of self-tolerance in mature peripheral B lymphocytes, Nature 342 [6248], pp.385-91.

[158] Maine, G. N. and Mulé, J. J. (2002): Making room for T cells, J. Clin. Invest. 110 [2], pp.157-159.

[159] Liu, H.; Rhodes, M.; Wiest, D. L. and Vignali, D. A. (2000): On the dynamics of TCR:CD3 complex cell surface expression and downmodulation, Immunity 13 [5], pp.665-75.

[160] Goldrath, A. W.; Luckey, C. J.; Park, R.; Benoist, C. and Mathis, D. (2004): The molecular program induced in T cells undergoing homeostatic proliferation, Proc Natl Acad Sci U S A 101 [48], pp.16885-90.

[161] Kume, A.; Koremoto, M.; Mizukami, H.; Okada, T.; Hanazono, Y.; Sugamura, K. and Ozawa, K. (2002): Selective growth advantage of wild-type lymphocytes in X-linked SCID recipients, Bone Marrow Transplant 30 [2], pp.113-8.

[162] Hertenstein, B.; Wagner, B.; Bunjes, D.; Duncker, C.; Raghavachar, A.; Arnold, R.; Heimpel, H. and Schrezenmeier, H. (1995): Emergence of CD52-, phosphatidylinositolglycan-anchor-deficient T lymphocytes after in vivo application of Campath-1H for refractory B-cell non-Hodgkin lymphoma, Blood 86 [4], pp.1487-92.

[163] Jurianz, K.; Ziegler, S.; Garcia-Schuler, H.; Kraus, S.; Bohana-Kashtan, O.; Fishelson, Z. and Kirschfink, M. (1999): Complement resistance of tumor cells: basal and induced mechanisms, Mol Immunol 36 [13-14], pp.929-39.

[164] Gorter, A. and Meri, S. (1999): Immune evasion of tumor cells using membrane-bound complement regulatory proteins, Immunol Today 20 [12], pp.576-82.

[165] Okroj, M.; Hsu, Y. F.; Ajona, D.; Pio, R. and Blom, A. M. (2008): Non-small cell lung cancer cells produce a functional set of complement factor I and its soluble cofactors, Mol Immunol 45 [1], pp.169-79.

[166] Van Wauwe, J. P.; De Mey, J. R. and Goossens, J. G. (1980): OKT3: a monoclonal anti-human T lymphocyte antibody with potent mitogenic properties, J Immunol 124 [6], pp.2708-13.

[167] Granger, S.; Janossy, G.; Francis, G.; Blacklock, H.; Poulter, L. W. and Hoffbrand, A. V. (1982): Elimination of T-lymphocytes from human bone marrow with monoclonal T-antibodies and cytolytic complement, Br J Haematol 50 [2], pp.367-74.

[168] Hirsch, R.; Eckhaus, M.; Auchincloss, H., Jr.; Sachs, D. H. and Bluestone, J. A. (1988): Effects of in vivo administration of anti-T3 monoclonal antibody on T cell function in mice. I. Immunosuppression of transplantation responses, J Immunol 140 [11], pp.3766-72.

[169] Hirsch, R.; Gress, R. E.; Pluznik, D. H.; Eckhaus, M. and Bluestone, J. A. (1989): Effects of in vivo administration of anti-CD3 monoclonal antibody on T cell function in mice. II. In vivo activation of T cells, J Immunol 142 [3], pp.737-43.

[170] Ellenhorn, J. D.; Hirsch, R.; Hartley, J. P. and Bluestone, J. A. (1989): Dose-dependent activation of murine T cells following in vivo administration of anti-murine CD3, Transplant Proc 21 [1 Pt 1], pp.1013-4.

[171] Schiweck, W.; Buxbaum, B.; Schatzlein, C.; Neiss, H. G. and Skerra, A. (1997): Sequence analysis and bacterial production of the anti-c-myc antibody 9E10: the V(H) domain has an extended CDR-H3 and exhibits unusual solubility, FEBS Lett 414 [1], pp.33-8.

© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 4.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am: