Literature

[1] Harwood, Colin (1989): Bacillus (vol. 2), Biotechnology Handbooks , Plenum Press.

[2] Ingle, M. B. and Erickson, R. J. (1978): Bacterial alpha-amylases, Adv Appl Microbiol, (vol. 24), pp.257-78.

[3] Fogarty, W.M. (1983): Microbial amylases, Fogarty, W.M., Ed, Microbial enzymes and Biotechnology, pp. pp 1-92, Applied Science, London.

[4] M. Kilian, U.Steiner, B.Krebs, H.Junge, G.Schmiedeknecht, R.Hain 2000 FZB24 Bacillus subtilis-mode of action of a microbial agent enhancing plant vitality Secondary Author: 1/00, Pflazenschutz-Nachrichten Bayer 72-93

[5] Krebs, B., Höding, B., Kübart, S. M., Workie, A., Junge, H., Schmiedeknecht, G., Grosch, R., Bochow, H. & Hevesi, M. (1998): Use of Bacillus subtilis as biocontrol agent. 1. Activities and characterization of Bacillus subtilis strains., J Plant Dis Prot , (vol. 105), pp.181-197.

[6] Idriss, E. E.; Makarewicz, O.; Farouk, A.; Rosner, K.; Greiner, R.; Bochow, H.; Richter, T. and Borriss, R. (2002): Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect, Microbiology, (vol. 148), No. Pt 7, pp.2097-109.

[7] Kunst, F.; Ogasawara, N.; Moszer, I.; Albertini, A. M.; Alloni, G.; Azevedo, V.; Bertero, M. G.; Bessieres, P.; Bolotin, A.; Borchert, S.; Borriss, R.; Boursier, L.; Brans, A.; Braun, M.; Brignell, S. C.; Bron, S.; Brouillet, S.; Bruschi, C. V.; Caldwell, B.; Capuano, V.; Carter, N. M.; Choi, S. K.; Codani, J. J.; Connerton, I. F.; Danchin, A. and et al. (1997): The complete genome sequence of the gram-positive bacterium Bacillus subtilis, Nature, (vol. 390), No. 6657, pp.249-56.

[8] Fleischmann, R. D.; Adams, M. D.; White, O.; Clayton, R. A.; Kirkness, E. F.; Kerlavage, A. R.; Bult, C. J.; Tomb, J. F.; Dougherty, B. A.; Merrick, J. M. and et al. (1995): Whole-genome random sequencing and assembly of Haemophilus influenzae Rd, Science, (vol. 269), No. 5223, pp.496-512.

[9] Ivanova, N.; Sorokin, A.; Anderson, I.; Galleron, N.; Candelon, B.; Kapatral, V.; Bhattacharyya, A.; Reznik, G.; Mikhailova, N.; Lapidus, A.; Chu, L.; Mazur, M.; Goltsman, E.; Larsen, N.; D'Souza, M.; Walunas, T.; Grechkin, Y.; Pusch, G.; Haselkorn, R.; Fonstein, M.; Ehrlich, S. D.; Overbeek, R. and Kyrpides, N. (2003): Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis, Nature, (vol. 423), No. 6935, pp.87-91.

[10] Read, T. D.; Peterson, S. N.; Tourasse, N.; Baillie, L. W.; Paulsen, I. T.; Nelson, K. E.; Tettelin, H.; Fouts, D. E.; Eisen, J. A.; Gill, S. R.; Holtzapple, E. K.; Okstad, O. A.; Helgason, E.; Rilstone, J.; Wu, M.; Kolonay, J. F.; Beanan, M. J.; Dodson, R. J.; Brinkac, L. M.; Gwinn, M.; DeBoy, R. T.; Madpu, R.; Daugherty, S. C.; Durkin, A. S.; Haft, D. H.; Nelson, W. C.; Peterson, J. D.; Pop, M.; Khouri, H. M.; Radune, D.; Benton, J. L.; Mahamoud, Y.; Jiang, L.; Hance, I. R.; Weidman, J. F.; Berry, K. J.; Plaut, R. D.; Wolf, A. M.; Watkins, K. L.; Nierman, W. C.; Hazen, A.; Cline, R.; Redmond, C.; Thwaite, J. E.; White, O.; Salzberg, S. L.; Thomason, B.; Friedlander, A. M.; Koehler, T. M.; Hanna, P. C.; Kolsto, A. B. and Fraser, C. M. (2003): The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria, Nature, (vol. 423), No. 6935, pp.81-6.

[11] Veith, B.; Herzberg, C.; Steckel, S.; Feesche, J.; Maurer, K. H.; Ehrenreich, P.; Baumer, S.; Henne, A.; Liesegang, H.; Merkl, R.; Ehrenreich, A. and Gottschalk, G. (2004): The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential, J Mol Microbiol Biotechnol, (vol. 7), No. 4, pp.204-11.

[12] Adams, M. D.; Celniker, S. E.; Holt, R. A.; Evans, C. A.; Gocayne, J. D.; Amanatides, P. G.; Scherer, S. E.; Li, P. W.; Hoskins, R. A.; Galle, R. F.; George, R. A.; Lewis, S. E.; Richards, S.; Ashburner, M.; Henderson, S. N.; Sutton, G. G.; Wortman, J. R.; Yandell, M. D.; Zhang, Q.; Chen, L. X.; Brandon, R. C.; Rogers, Y. H.; Blazej, R. G.; Champe, M.; Pfeiffer, B. D.; Wan, K. H.; Doyle, C.; Baxter, E. G.; Helt, G.; Nelson, C. R.; Gabor, G. L.; Abril, J. F.; Agbayani, A.; An, H. J.; Andrews-Pfannkoch, C.; Baldwin, D.; Ballew, R. M.; Basu, A.; Baxendale, J.; Bayraktaroglu, L.; Beasley, E. M.; Beeson, K. Y.; Benos, P. V.; Berman, B. P.; Bhandari, D.; Bolshakov, S.; Borkova, D.; Botchan, M. R.; Bouck, J.; Brokstein, P.; Brottier, P.; Burtis, K. C.; Busam, D. A.; Butler, H.; Cadieu, E.; Center, A.; Chandra, I.; Cherry, J. M.; Cawley, S.; Dahlke, C.; Davenport, L. B.; Davies, P.; de Pablos, B.; Delcher, A.; Deng, Z.; Mays, A. D.; Dew, I.; Dietz, S. M.; Dodson, K.; Doup, L. E.; Downes, M.; Dugan-Rocha, S.; Dunkov, B. C.; Dunn, P.; Durbin, K. J.; Evangelista, C. C.; Ferraz, C.; Ferriera, S.; Fleischmann, W.; Fosler, C.; Gabrielian, A. E.; Garg, N. S.; Gelbart, W. M.; Glasser, K.; Glodek, A.; Gong, F.; Gorrell, J. H.; Gu, Z.; Guan, P.; Harris, M.; Harris, N. L.; Harvey, D.; Heiman, T. J.; Hernandez, J. R.; Houck, J.; Hostin, D.; Houston, K. A.; Howland, T. J.; Wei, M. H.; Ibegwam, C.; Jalali, M.; Kalush, F.; Karpen, G. H.; Ke, Z.; Kennison, J. A.; Ketchum, K. A.; Kimmel, B. E.; Kodira, C. D.; Kraft, C.; Kravitz, S.; Kulp, D.; Lai, Z.; Lasko, P.; Lei, Y.; Levitsky, A. A.; Li, J.; Li, Z.; Liang, Y.; Lin, X.; Liu, X.; Mattei, B.; McIntosh, T. C.; McLeod, M. P.; McPherson, D.; Merkulov, G.; Milshina, N. V.; Mobarry, C.; Morris, J.; Moshrefi, A.; Mount, S. M.; Moy, M.; Murphy, B.; Murphy, L.; Muzny, D. M.; Nelson, D. L.; Nelson, D. R.; Nelson, K. A.; Nixon, K.; Nusskern, D. R.; Pacleb, J. M.; Palazzolo, M.; Pittman, G. S.; Pan, S.; Pollard, J.; Puri, V.; Reese, M. G.; Reinert, K.; Remington, K.; Saunders, R. D.; Scheeler, F.; Shen, H.; Shue, B. C.; Siden-Kiamos, I.; Simpson, M.; Skupski, M. P.; Smith, T.; Spier, E.; Spradling, A. C.; Stapleton, M.; Strong, R.; Sun, E.; Svirskas, R.; Tector, C.; Turner, R.; Venter, E.; Wang, A. H.; Wang, X.; Wang, Z. Y.; Wassarman, D. A.; Weinstock, G. M.; Weissenbach, J.; Williams, S. M.; WoodageT; Worley, K. C.; Wu, D.; Yang, S.; Yao, Q. A.; Ye, J.; Yeh, R. F.; Zaveri, J. S.; Zhan, M.; Zhang, G.; Zhao, Q.; Zheng, L.; Zheng, X. H.; Zhong, F. N.; Zhong, W.; Zhou, X.; Zhu, S.; Zhu, X.; Smith, H. O.; Gibbs, R. A.; Myers, E. W.; Rubin, G. M. and Venter, J. C. (2000): The genome sequence of Drosophila melanogaster, Science, (vol. 287), No. 5461, pp.2185-95.

[13] Mural, R. J.; Adams, M. D.; Myers, E. W.; Smith, H. O.; Miklos, G. L.; Wides, R.; Halpern, A.; Li, P. W.; Sutton, G. G.; Nadeau, J.; Salzberg, S. L.; Holt, R. A.; Kodira, C. D.; Lu, F.; Chen, L.; Deng, Z.; Evangelista, C. C.; Gan, W.; Heiman, T. J.; Li, J.; Li, Z.; Merkulov, G. V.; Milshina, N. V.; Naik, A. K.; Qi, R.; Shue, B. C.; Wang, A.; Wang, J.; Wang, X.; Yan, X.; Ye, J.; Yooseph, S.; Zhao, Q.; Zheng, L.; Zhu, S. C.; Biddick, K.; Bolanos, R.; Delcher, A. L.; Dew, I. M.; Fasulo, D.; Flanigan, M. J.; Huson, D. H.; Kravitz, S. A.; Miller, J. R.; Mobarry, C. M.; Reinert, K.; Remington, K. A.; Zhang, Q.; Zheng, X. H.; Nusskern, D. R.; Lai, Z.; Lei, Y.; Zhong, W.; Yao, A.; Guan, P.; Ji, R. R.; Gu, Z.; Wang, Z. Y.; Zhong, F.; Xiao, C.; Chiang, C. C.; Yandell, M.; Wortman, J. R.; Amanatides, P. G.; Hladun, S. L.; Pratts, E. C.; Johnson, J. E.; Dodson, K. L.; Woodford, K. J.; Evans, C. A.; Gropman, B.; Rusch, D. B.; Venter, E.; Wang, M.; Smith, T. J.; Houck, J. T.; Tompkins, D. E.; Haynes, C.; Jacob, D.; Chin, S. H.; Allen, D. R.; Dahlke, C. E.; Sanders, R.; Li, K.; Liu, X.; Levitsky, A. A.; Majoros, W. H.; Chen, Q.; Xia, A. C.; Lopez, J. R.; Donnelly, M. T.; Newman, M. H.; Glodek, A.; Kraft, C. L.; Nodell, M.; Ali, F.; An, H. J.; Baldwin-Pitts, D.; Beeson, K. Y.; Cai, S.; Carnes, M.; Carver, A.; Caulk, P. M.; Center, A.; Chen, Y. H.; Cheng, M. L.; Coyne, M. D.; Crowder, M.; Danaher, S.; Davenport, L. B.; Desilets, R.; Dietz, S. M.; Doup, L.; Dullaghan, P.; Ferriera, S.; Fosler, C. R.; Gire, H. C.; Gluecksmann, A.; Gocayne, J. D.; Gray, J.; Hart, B.; Haynes, J.; Hoover, J.; Howland, T.; Ibegwam, C.; Jalali, M.; Johns, D.; Kline, L.; Ma, D. S.; MacCawley, S.; Magoon, A.; Mann, F.; May, D.; McIntosh, T. C.; Mehta, S.; Moy, L.; Moy, M. C.; Murphy, B. J.; Murphy, S. D.; Nelson, K. A.; Nuri, Z.; Parker, K. A.; Prudhomme, A. C.; Puri, V. N.; Qureshi, H.; Raley, J. C.; Reardon, M. S.; Regier, M. A.; Rogers, Y. H.; Romblad, D. L.; Schutz, J.; Scott, J. L.; Scott, R.; Sitter, C. D.; Smallwood, M.; Sprague, A. C.; Stewart, E.; Strong, R. V.; Suh, E.; Sylvester, K.; Thomas, R.; Tint, N. N.; Tsonis, C.; Wang, G.; Wang, G.; Williams, M. S.; Williams, S. M.; Windsor, S. M.; Wolfe, K.; Wu, M. M.; Zaveri, J.; Chaturvedi, K.; Gabrielian, A. E.; Ke, Z.; Sun, J.; Subramanian, G.; Venter, J. C.; Pfannkoch, C. M.; Barnstead, M. and Stephenson, L. D. (2002): A comparison of whole-genome shotgun-derived mouse chromosome 16 and the human genome, Science, (vol. 296), No. 5573, pp.1661-71.

[14] Dunham, I.; Shimizu, N.; Roe, B. A.; Chissoe, S.; Hunt, A. R.; Collins, J. E.; Bruskiewich, R.; Beare, D. M.; Clamp, M.; Smink, L. J.; Ainscough, R.; Almeida, J. P.; Babbage, A.; Bagguley, C.; Bailey, J.; Barlow, K.; Bates, K. N.; Beasley, O.; Bird, C. P.; Blakey, S.; Bridgeman, A. M.; Buck, D.; Burgess, J.; Burrill, W. D.; O'Brien, K. P. and et al. (1999): The DNA sequence of human chromosome 22, Nature, (vol. 402), No. 6761, pp.489-95.

[15] Madigan M.T. , J.M. Martinko, J. Parker (2000): Microbial growth control, P.F.Corey, Ed, Brock biology of microorganisms, ninth. ed., Prentice Hall, New Jersey.

[16] Priest, F.G. (1989): Products and Applications, Harwood, C. R., Ed, Bacillus (Vol. 2), pp. 303-305, Plenum Press, New York.

[17] Katz, E. and Demain, A. L. (1977): The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions, Bacteriol Rev, (vol. 41), No. 2, pp.449-74.

[18] Hancock, R. E. and Chapple, D. S. (1999): Peptide antibiotics, Antimicrob Agents Chemother, (vol. 43), No. 6, pp.1317-23.

[19] Finking, R. and Marahiel, M. A. (2004): Biosynthesis of nonribosomal peptides, Annu Rev Microbiol, (vol. 58), pp.453-88.

[20] Sankaranarayanan, R.; Dock-Bregeon, A. C.; Romby, P.; Caillet, J.; Springer, M.; Rees, B.; Ehresmann, C.; Ehresmann, B. and Moras, D. (1999): The structure of threonyl-tRNA synthetase-tRNA(Thr) complex enlightens its repressor activity and reveals an essential zinc ion in the active site, Cell, (vol. 97), No. 3, pp.371-81.

[21] Eriani, G.; Delarue, M.; Poch, O.; Gangloff, J. and Moras, D. (1990): Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs, Nature, (vol. 347), No. 6289, pp.203-6.

[22] Ogle, J. M.; Carter, A. P. and Ramakrishnan, V. (2003): Insights into the decoding mechanism from recent ribosome structures, Trends Biochem Sci, (vol. 28), No. 5, pp.259-66.

[23] McAuliffe, O.; Ross, R. P. and Hill, C. (2001): Lantibiotics: structure, biosynthesis and mode of action, FEMS Microbiol Rev, (vol. 25), No. 3, pp.285-308.

[24] Sahl, H. G. and Bierbaum, G. (1998): Lantibiotics: biosynthesis and biological activities of uniquely modified peptides from gram-positive bacteria, Annu Rev Microbiol, (vol. 52), pp.41-79.

[25] Sahl, H. G.; Jack, R. W. and Bierbaum, G. (1995): Biosynthesis and biological activities of lantibiotics with unique post-translational modifications, Eur J Biochem, (vol. 230), No. 3, pp.827-53.

[26] Jung, G. (1991): Lantobiotics: a survey, Nisin and novel lantibiotics, pp. 1-34, Escom, Leiden.

[27] Breukink, E. and de Kruijff, B. (1999): The lantibiotic nisin, a special case or not?, Biochim Biophys Acta, (vol. 1462), No. 1-2, pp.223-34.

[28] Brotz, H.; Bierbaum, G.; Reynolds, P. E. and Sahl, H. G. (1997): The lantibiotic mersacidin inhibits peptidoglycan biosynthesis at the level of transglycosylation, Eur J Biochem, (vol. 246), No. 1, pp.193-9.

[29] Banerjee, S. and Hansen, J. N. (1988): Structure and expression of a gene encoding the precursor of subtilin, a small protein antibiotic, J Biol Chem, (vol. 263), No. 19, pp.9508-14.

[30] Klein, C.; Kaletta, C.; Schnell, N. and Entian, K. D. (1992): Analysis of genes involved in biosynthesis of the lantibiotic subtilin, Appl Environ Microbiol, (vol. 58), No. 1, pp.132-42.

[31] Klein, C. and Entian, K. D. (1994): Genes involved in self-protection against the lantibiotic subtilin produced by Bacillus subtilis ATCC 6633, Appl Environ Microbiol, (vol. 60), No. 8, pp.2793-801.

[32] Klein, C.; Kaletta, C. and Entian, K. D. (1993): Biosynthesis of the lantibiotic subtilin is regulated by a histidine kinase/response regulator system, Appl Environ Microbiol, (vol. 59), No. 1, pp.296-303.

[33] Stein, T.; Borchert, S.; Kiesau, P.; Heinzmann, S.; Kloss, S.; Klein, C.; Helfrich, M. and Entian, K. D. (2002): Dual control of subtilin biosynthesis and immunity in Bacillus subtilis, Mol Microbiol, (vol. 44), No. 2, pp.403-16.

[34] Stein, T.; Borchert, S.; Conrad, B.; Feesche, J.; Hofemeister, B.; Hofemeister, J. and Entian, K. D. (2002): Two different lantibiotic-like peptides originate from the ericin gene cluster of Bacillus subtilis A1/3, J Bacteriol, (vol. 184), No. 6, pp.1703-11.

[35] Stein, T. (2005): Bacillus subtilis antibiotics: structures, syntheses and specific functions, Mol Microbiol, (vol. 56), No. 4, pp.845-57.

[36] Altena, K.; Guder, A.; Cramer, C. and Bierbaum, G. (2000): Biosynthesis of the lantibiotic mersacidin: organization of a type B lantibiotic gene cluster, Appl Environ Microbiol, (vol. 66), No. 6, pp.2565-71.

[37] Guder, A.; Schmitter, T.; Wiedemann, I.; Sahl, H. G. and Bierbaum, G. (2002): Role of the single regulator MrsR1 and the two-component system MrsR2/K2 in the regulation of mersacidin production and immunity, Appl Environ Microbiol, (vol. 68), No. 1, pp.106-13.

[38] Paik, S. H.; Chakicherla, A. and Hansen, J. N. (1998): Identification and characterization of the structural and transporter genes for, and the chemical and biological properties of, sublancin 168, a novel lantibiotic produced by Bacillus subtilis 168, J Biol Chem, (vol. 273), No. 36, pp.23134-42.

[39] Dorenbos, R.; Stein, T.; Kabel, J.; Bruand, C.; Bolhuis, A.; Bron, S.; Quax, W. J. and Van Dijl, J. M. (2002): Thiol-disulfide oxidoreductases are essential for the production of the lantibiotic sublancin 168, J Biol Chem, (vol. 277), No. 19, pp.16682-8.

[40] Zheng, G.; Hehn, R. and Zuber, P. (2000): Mutational analysis of the sbo-alb locus of Bacillus subtilis: identification of genes required for subtilosin production and immunity, J Bacteriol, (vol. 182), No. 11, pp.3266-73.

[41] Zheng, G.; Yan, L. Z.; Vederas, J. C. and Zuber, P. (1999): Genes of the sbo-alb locus of Bacillus subtilis are required for production of the antilisterial bacteriocin subtilosin, J Bacteriol, (vol. 181), No. 23, pp.7346-55.

[42] Kleinkauf, H. and von Dohren, H. (1990): Nonribosomal biosynthesis of peptide antibiotics, Eur J Biochem, (vol. 192), No. 1, pp.1-15.

[43] Stein, T.; Vater, J.; Kruft, V.; Otto, A.; Wittmann-Liebold, B.; Franke, P.; Panico, M.; McDowell, R. and Morris, H. R. (1996): The multiple carrier model of nonribosomal peptide biosynthesis at modular multienzymatic templates, J Biol Chem, (vol. 271), No. 26, pp.15428-35.

[44] von Döhren, H.; Keller, U.; Vater, J. and Zocher, R. (1997): Multifunctional Peptide Synthetases, Chem Rev, (vol. 97), No. 7, pp.2675-2706.

[45] Marahiel, M. A. (1997): Protein templates for the biosynthesis of peptide antibiotics, Chem Biol, (vol. 4), No. 8, pp.561-7.

[46] Mootz, H. D.; Schwarzer, D. and Marahiel, M. A. (2002): Ways of assembling complex natural products on modular nonribosomal peptide synthetases, Chembiochem, (vol. 3), No. 6, pp.490-504.

[47] Stachelhaus, T. and Marahiel, M. A. (1995): Modular structure of genes encoding multifunctional peptide synthetases required for non-ribosomal peptide synthesis, FEMS Microbiol Lett, (vol. 125), No. 1, pp.3-14.

[48] Sieber, S. A. and Marahiel, M. A. (2005): Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics, Chem Rev, (vol. 105), No. 2, pp.715-38.

[49] Cosmina, P.; Rodriguez, F.; de Ferra, F.; Grandi, G.; Perego, M.; Venema, G. and van Sinderen, D. (1993): Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis, Mol Microbiol, (vol. 8), No. 5, pp.821-31.

[50] Dieckmann, R.; Lee, Y. O.; van Liempt, H.; von Dohren, H. and Kleinkauf, H. (1995): Expression of an active adenylate-forming domain of peptide synthetases corresponding to acyl-CoA-synthetases, FEBS Lett, (vol. 357), No. 2, pp.212-6.

[51] May, J. J.; Kessler, N.; Marahiel, M. A. and Stubbs, M. T. (2002): Crystal structure of DhbE, an archetype for aryl acid activating domains of modular nonribosomal peptide synthetases, Proc Natl Acad Sci U S A, (vol. 99), No. 19, pp.12120-5.

[52] Mootz, H. D. and Marahiel, M. A. (1997): The tyrocidine biosynthesis operon of Bacillus brevis: complete nucleotide sequence and biochemical characterization of functional internal adenylation domains, J Bacteriol, (vol. 179), No. 21, pp.6843-50.

[53] Stachelhaus, T.; Mootz, H. D. and Marahiel, M. A. (1999): The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases, Chem Biol, (vol. 6), No. 8, pp.493-505.

[54] Challis, G. L.; Ravel, J. and Townsend, C. A. (2000): Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains, Chem Biol, (vol. 7), No. 3, pp.211-24.

[55] Stein, T.; Vater, J.; Kruft, V.; Wittmann-Liebold, B.; Franke, P.; Panico, M.; Mc Dowell, R. and Morris, H. R. (1994): Detection of 4'-phosphopantetheine at the thioester binding site for L-valine of gramicidinS synthetase 2, FEBS Lett, (vol. 340), No. 1-2, pp.39-44.

[56] Gocht, M. and Marahiel, M. A. (1994): Analysis of core sequences in the D-Phe activating domain of the multifunctional peptide synthetase TycA by site-directed mutagenesis, J Bacteriol, (vol. 176), No. 9, pp.2654-62.

[57] Schlumbohm, W.; Stein, T.; Ullrich, C.; Vater, J.; Krause, M.; Marahiel, M. A.; Kruft, V. and Wittmann-Liebold, B. (1991): An active serine is involved in covalent substrate amino acid binding at each reaction center of gramicidin S synthetase, J Biol Chem, (vol. 266), No. 34, pp.23135-41.

[58] Stachelhaus, T.; Huser, A. and Marahiel, M. A. (1996): Biochemical characterization of peptidyl carrier protein (PCP), the thiolation domain of multifunctional peptide synthetases, Chem Biol, (vol. 3), No. 11, pp.913-21.

[59] Stachelhaus, T.; Mootz, H. D.; Bergendahl, V. and Marahiel, M. A. (1998): Peptide bond formation in nonribosomal peptide biosynthesis. Catalytic role of the condensation domain, J Biol Chem, (vol. 273), No. 35, pp.22773-81.

[60] Belshaw, P. J.; Walsh, C. T. and Stachelhaus, T. (1999): Aminoacyl-CoAs as probes of condensation domain selectivity in nonribosomal peptide synthesis, Science, (vol. 284), No. 5413, pp.486-9.

[61] Linne, U. and Marahiel, M. A. (2000): Control of directionality in nonribosomal peptide synthesis: role of the condensation domain in preventing misinitiation and timing of epimerization, Biochemistry, (vol. 39), No. 34, pp.10439-47.

[62] Ehmann, D. E.; Trauger, J. W.; Stachelhaus, T. and Walsh, C. T. (2000): Aminoacyl-SNACs as small-molecule substrates for the condensation domains of nonribosomal peptide synthetases, Chem Biol, (vol. 7), No. 10, pp.765-72.

[63] Duitman, E. H.; Hamoen, L. W.; Rembold, M.; Venema, G.; Seitz, H.; Saenger, W.; Bernhard, F.; Reinhardt, R.; Schmidt, M.; Ullrich, C.; Stein, T.; Leenders, F. and Vater, J. (1999): The mycosubtilin synthetase of Bacillus subtilis ATCC6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase, Proc Natl Acad Sci U S A, (vol. 96), No. 23, pp.13294-9.

[64] Roy, R. S.; Gehring, A. M.; Milne, J. C.; Belshaw, P. J. and Walsh, C. T. (1999): Thiazole and oxazole peptides: biosynthesis and molecular machinery, Nat Prod Rep, (vol. 16), No. 2, pp.249-63.

[65] Walsh, C. T.; Chen, H.; Keating, T. A.; Hubbard, B. K.; Losey, H. C.; Luo, L.; Marshall, C. G.; Miller, D. A. and Patel, H. M. (2001): Tailoring enzymes that modify nonribosomal peptides during and after chain elongation on NRPS assembly lines, Curr Opin Chem Biol, (vol. 5), No. 5, pp.525-34.

[66] Marshall, C. G.; Hillson, N. J. and Walsh, C. T. (2002): Catalytic mapping of the vibriobactin biosynthetic enzyme VibF, Biochemistry, (vol. 41), No. 1, pp.244-50.

[67] Kohli, R. M.; Trauger, J. W.; Schwarzer, D.; Marahiel, M. A. and Walsh, C. T. (2001): Generality of peptide cyclization catalyzed by isolated thioesterase domains of nonribosomal peptide synthetases, Biochemistry, (vol. 40), No. 24, pp.7099-108.

[68] Trauger, J. W.; Kohli, R. M. and Walsh, C. T. (2001): Cyclization of backbone-substituted peptides catalyzed by the thioesterase domain from the tyrocidine nonribosomal peptide synthetase, Biochemistry, (vol. 40), No. 24, pp.7092-8.

[69] Miller, D. A.; Luo, L.; Hillson, N.; Keating, T. A. and Walsh, C. T. (2002): Yersiniabactin synthetase: a four-protein assembly line producing the nonribosomal peptide/polyketide hybrid siderophore of Yersinia pestis, Chem Biol, (vol. 9), No. 3, pp.333-44.

[70] Tseng, C. C.; Bruner, S. D.; Kohli, R. M.; Marahiel, M. A.; Walsh, C. T. and Sieber, S. A. (2002): Characterization of the surfactin synthetase C-terminal thioesterase domain as a cyclic depsipeptide synthase, Biochemistry, (vol. 41), No. 45, pp.13350-9.

[71] Patel, H. M. and Walsh, C. T. (2001): In vitro reconstitution of the Pseudomonas aeruginosa nonribosomal peptide synthesis of pyochelin: characterization of backbone tailoring thiazoline reductase and N-methyltransferase activities, Biochemistry, (vol. 40), No. 30, pp.9023-31.

[72] Sieber, S. A. and Marahiel, M. A. (2003): Learning from nature's drug factories: nonribosomal synthesis of macrocyclic peptides, J Bacteriol, (vol. 185), No. 24, pp.7036-43.

[73] Grunewald, J.; Sieber, S. A. and Marahiel, M. A. (2004): Chemo- and regioselective peptide cyclization triggered by the N-terminal fatty acid chain length: the recombinant cyclase of the calcium-dependent antibiotic from Streptomyces coelicolor, Biochemistry, (vol. 43), No. 10, pp.2915-25.

[74] Scholz-Schroeder, B. K.; Soule, J. D.; Lu, S. E.; Grgurina, I. and Gross, D. C. (2001): A physical map of the syringomycin and syringopeptin gene clusters localized to an approximately 145-kb DNA region of Pseudomonas syringae pv. syringae strain B301D, Mol Plant Microbe Interact, (vol. 14), No. 12, pp.1426-35.

[75] Segre, A.; Bachmann, R. C.; Ballio, A.; Bossa, F.; Grgurina, I.; Iacobellis, N. S.; Marino, G.; Pucci, P.; Simmaco, M. and Takemoto, J. Y. (1989): The structure of syringomycins A1, E and G, FEBS Lett, (vol. 255), No. 1, pp.27-31.

[76] Vanittanakom, N.; Loeffler, W.; Koch, U. and Jung, G. (1986): Fengycin--a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3, J Antibiot (Tokyo), (vol. 39), No. 7, pp.888-901.

[77] Shaw-Reid, C. A.; Kelleher, N. L.; Losey, H. C.; Gehring, A. M.; Berg, C. and Walsh, C. T. (1999): Assembly line enzymology by multimodular nonribosomal peptide synthetases: the thioesterase domain of E. coli EntF catalyzes both elongation and cyclolactonization, Chem Biol, (vol. 6), No. 6, pp.385-400.

[78] May, J. J.; Wendrich, T. M. and Marahiel, M. A. (2001): The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2,3-dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin, J Biol Chem, (vol. 276), No. 10, pp.7209-17.

[79] Weber, G.; Schorgendorfer, K.; Schneider-Scherzer, E. and Leitner, E. (1994): The peptide synthetase catalyzing cyclosporine production in Tolypocladium niveum is encoded by a giant 45.8-kilobase open reading frame, Curr Genet, (vol. 26), No. 2, pp.120-5.

[80] Haese, A.; Schubert, M.; Herrmann, M. and Zocher, R. (1993): Molecular characterization of the enniatin synthetase gene encoding a multifunctional enzyme catalysing N-methyldepsipeptide formation in Fusarium scirpi, Mol Microbiol, (vol. 7), No. 6, pp.905-14.

[81] Becker, J. E.; Moore, R. E. and Moore, B. S. (2004): Cloning, sequencing, and biochemical characterization of the nostocyclopeptide biosynthetic gene cluster: molecular basis for imine macrocyclization, Gene, (vol. 325), pp.35-42.

[82] Pfeifer, E.; Pavela-Vrancic, M.; von Dohren, H. and Kleinkauf, H. (1995): Characterization of tyrocidine synthetase 1 (TY1): requirement of posttranslational modification for peptide biosynthesis, Biochemistry, (vol. 34), No. 22, pp.7450-9.

[83] Stachelhaus, T. and Walsh, C. T. (2000): Mutational analysis of the epimerization domain in the initiation module PheATE of gramicidin S synthetase, Biochemistry, (vol. 39), No. 19, pp.5775-87.

[84] Clugston, S. L.; Sieber, S. A.; Marahiel, M. A. and Walsh, C. T. (2003): Chirality of peptide bond-forming condensation domains in nonribosomal peptide synthetases: the C5 domain of tyrocidine synthetase is a (D)C(L) catalyst, Biochemistry, (vol. 42), No. 41, pp.12095-104.

[85] Luo, L. and Walsh, C. T. (2001): Kinetic analysis of three activated phenylalanyl intermediates generated by the initiation module PheATE of gramicidin S synthetase, Biochemistry, (vol. 40), No. 18, pp.5329-37.

[86] Luo, L.; Burkart, M. D.; Stachelhaus, T. and Walsh, C. T. (2001): Substrate recognition and selection by the initiation module PheATE of gramicidin S synthetase, J Am Chem Soc, (vol. 123), No. 45, pp.11208-18.

[87] Luo, L.; Kohli, R. M.; Onishi, M.; Linne, U.; Marahiel, M. A. and Walsh, C. T. (2002): Timing of epimerization and condensation reactions in nonribosomal peptide assembly lines: kinetic analysis of phenylalanine activating elongation modules of tyrocidine synthetase B, Biochemistry, (vol. 41), No. 29, pp.9184-96.

[88] Konz, D. and Marahiel, M. A. (1999): How do peptide synthetases generate structural diversity?, Chem Biol, (vol. 6), No. 2, pp.R39-48.

[89] Gehring, A. M.; DeMoll, E.; Fetherston, J. D.; Mori, I.; Mayhew, G. F.; Blattner, F. R.; Walsh, C. T. and Perry, R. D. (1998): Iron acquisition in plague: modular logic in enzymatic biogenesis of yersiniabactin by Yersinia pestis, Chem Biol, (vol. 5), No. 10, pp.573-86.

[90] Billich, A.; Zocher, R.; Kleinkauf, H.; Braun, D. G.; Lavanchy, D. and Hochkeppel, H. K. (1987): Monoclonal antibodies to the multienzyme enniatin synthetase. Production and use in structural studies, Biol Chem Hoppe Seyler, (vol. 368), No. 5, pp.521-9.

[91] Mofid, M. R.; Finking, R.; Essen, L. O. and Marahiel, M. A. (2004): Structure-based mutational analysis of the 4'-phosphopantetheinyl transferases Sfp from Bacillus subtilis: carrier protein recognition and reaction mechanism, Biochemistry, (vol. 43), No. 14, pp.4128-36.

[92] Lambalot, R. H.; Gehring, A. M.; Flugel, R. S.; Zuber, P.; LaCelle, M.; Marahiel, M. A.; Reid, R.; Khosla, C. and Walsh, C. T. (1996): A new enzyme superfamily - the phosphopantetheinyl transferases, Chem Biol, (vol. 3), No. 11, pp.923-36.

[93] Walsh, C. T.; Gehring, A. M.; Weinreb, P. H.; Quadri, L. E. and Flugel, R. S. (1997): Post-translational modification of polyketide and nonribosomal peptide synthases, Curr Opin Chem Biol, (vol. 1), No. 3, pp.309-15.

[94] Quadri, L. E.; Weinreb, P. H.; Lei, M.; Nakano, M. M.; Zuber, P. and Walsh, C. T. (1998): Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carrier protein domains in peptide synthetases, Biochemistry, (vol. 37), No. 6, pp.1585-95.

[95] Schwarzer, D.; Mootz, H. D.; Linne, U. and Marahiel, M. A. (2002): Regeneration of misprimed nonribosomal peptide synthetases by type II thioesterases, Proc Natl Acad Sci U S A, (vol. 99), No. 22, pp.14083-8.

[96] Schneider, A. and Marahiel, M. A. (1998): Genetic evidence for a role of thioesterase domains, integrated in or associated with peptide synthetases, in non-ribosomal peptide biosynthesis in Bacillus subtilis, Arch Microbiol, (vol. 169), No. 5, pp.404-10.

[97] Schwecke, T.; Aparicio, J. F.; Molnar, I.; Konig, A.; Khaw, L. E.; Haydock, S. F.; Oliynyk, M.; Caffrey, P.; Cortes, J.; Lester, J. B. and et al. (1995): The biosynthetic gene cluster for the polyketide immunosuppressant rapamycin, Proc Natl Acad Sci U S A, (vol. 92), No. 17, pp.7839-43.

[98] Doekel, S. and Marahiel, M. A. (2001): Biosynthesis of natural products on modular peptide synthetases, Metab Eng, (vol. 3), No. 1, pp.64-77.

[99] Weinig, S.; Hecht, H. J.; Mahmud, T. and Muller, R. (2003): Melithiazol biosynthesis: further insights into myxobacterial PKS/NRPS systems and evidence for a new subclass of methyl transferases, Chem Biol, (vol. 10), No. 10, pp.939-52.

[100] Garwin, J. L.; Klages, A. L. and Cronan, J. E., Jr. (1980): Structural, enzymatic, and genetic studies of beta-ketoacyl-acyl carrier protein synthases I and II of Escherichia coli, J Biol Chem, (vol. 255), No. 24, pp.11949-56.

[101] Tsuge, K.; Akiyama, T. and Shoda, M. (2001): Cloning, sequencing, and characterization of the iturin A operon, J Bacteriol, (vol. 183), No. 21, pp.6265-73.

[102] Nougayrede, J. P.; Homburg, S.; Taieb, F.; Boury, M.; Brzuszkiewicz, E.; Gottschalk, G.; Buchrieser, C.; Hacker, J.; Dobrindt, U. and Oswald, E. (2006): Escherichia coli induces DNA double-strand breaks in eukaryotic cells, Science, (vol. 313), No. 5788, pp.848-51.

[103] Black, P. N. and DiRusso, C. C. (1994): Molecular and biochemical analyses of fatty acid transport, metabolism, and gene regulation in Escherichia coli, Biochim Biophys Acta, (vol. 1210), No. 2, pp.123-45.

[104] Marrakchi, H.; Zhang, Y. M. and Rock, C. O. (2002): Mechanistic diversity and regulation of Type II fatty acid synthesis, Biochem Soc Trans, (vol. 30), No. Pt 6, pp.1050-5.

[105] Marini, P.; Li, S. J.; Gardiol, D.; Cronan, J. E., Jr. and de Mendoza, D. (1995): The genes encoding the biotin carboxyl carrier protein and biotin carboxylase subunits of Bacillus subtilis acetyl coenzyme A carboxylase, the first enzyme of fatty acid synthesis, J Bacteriol, (vol. 177), No. 23, pp.7003-6.

[106] Guchhait, R. B.; Polakis, S. E.; Dimroth, P.; Stoll, E.; Moss, J. and Lane, M. D. (1974): Acetyl coenzyme A carboxylase system of Escherichia coli. Purification and properties of the biotin carboxylase, carboxyltransferase, and carboxyl carrier protein components, J Biol Chem, (vol. 249), No. 20, pp.6633-45.

[107] Harder, M. E.; Ladenson, R. C.; Schimmel, S. D. and Silbert, D. F. (1974): Mutants of Escherichia coli with temperature-sensitive malonyl coenzyme A-acyl carrier protein transacylase, J Biol Chem, (vol. 249), No. 23, pp.7468-75.

[108] D'Agnolo, G.; Rosenfeld, I. S.; Awaya, J.; Omura, S. and Vagelos, P. R. (1973): Inhibition of fatty acid synthesis by the antibiotic cerulenin. Specific inactivation of beta-ketoacyl-acyl carrier protein synthetase, Biochim Biophys Acta, (vol. 326), No. 2, pp.155-6.

[109] Katz, L. (1997): Manipulation of Modular Polyketide Synthases, Chem Rev, (vol. 97), No. 7, pp.2557-2576.

[110] Cane, D. E. (1997): Introduction: Polyketide and Nonribosomal Polypeptide Biosynthesis. From Collie to Coli, Chem Rev, (vol. 97), No. 7, pp.2463-2464.

[111] Hopwood, D. A. (1997): Genetic Contributions to Understanding Polyketide Synthases, Chem Rev, (vol. 97), No. 7, pp.2465-2498.

[112] Peypoux, F.; Bonmatin, J. M. and Wallach, J. (1999): Recent trends in the biochemistry of surfactin, Appl Microbiol Biotechnol, (vol. 51), No. 5, pp.553-63.

[113] Lin, T. P.; Chen, C. L.; Chang, L. K.; Tschen, J. S. and Liu, S. T. (1999): Functional and transcriptional analyses of a fengycin synthetase gene, fenC, from Bacillus subtilis, J Bacteriol, (vol. 181), No. 16, pp.5060-7.

[114] Umezawa, H.; Aoyagi, T.; Nishikiori, T.; Okuyama, A.; Yamagishi, Y.; Hamada, M. and Takeuchi, T. (1986): Plipastatins: new inhibitors of phospholipase A2, produced by Bacillus cereus BMG302-fF67. I. Taxonomy, production, isolation and preliminary characterization, J Antibiot (Tokyo), (vol. 39), No. 6, pp.737-44.

[115] Maget-Dana, R. and Peypoux, F. (1994): Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties, Toxicology, (vol. 87), No. 1-3, pp.151-74.

[116] Hosono, K. and Suzuki, H. (1983): Acylpeptides, the inhibitors of cyclic adenosine 3',5'-monophosphate phosphodiesterase. II. Amino acid sequence and location of lactone linkage, J Antibiot (Tokyo), (vol. 36), No. 6, pp.674-8.

[117] Hosono, K. and Suzuki, H. (1983): Acylpeptides, the inhibitors of cyclic adenosine 3',5'-monophosphate phosphodiesterase. I. Purification, physicochemical properties and structures of fatty acid residues, J Antibiot (Tokyo), (vol. 36), No. 6, pp.667-73.

[118] Menkhaus, M.; Ullrich, C.; Kluge, B.; Vater, J.; Vollenbroich, D. and Kamp, R. M. (1993): Structural and functional organization of the surfactin synthetase multienzyme system, J Biol Chem, (vol. 268), No. 11, pp.7678-84.

[119] Fuma, S.; Fujishima, Y.; Corbell, N.; D'Souza, C.; Nakano, M. M.; Zuber, P. and Yamane, K. (1993): Nucleotide sequence of 5' portion of srfA that contains the region required for competence establishment in Bacillus subtilus, Nucleic Acids Res, (vol. 21), No. 1, pp.93-7.

[120] Galli, G.; Rodriguez, F.; Cosmina, P.; Pratesi, C.; Nogarotto, R.; de Ferra, F. and Grandi, G. (1994): Characterization of the surfactin synthetase multi-enzyme complex, Biochim Biophys Acta, (vol. 1205), No. 1, pp.19-28.

[121] Nakano, M. M.; Marahiel, M. A. and Zuber, P. (1988): Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis, J Bacteriol, (vol. 170), No. 12, pp.5662-8.

[122] Steller, S.; Sokoll, A.; Wilde, C.; Bernhard, F.; Franke, P. and Vater, J. (2004): Initiation of surfactin biosynthesis and the role of the SrfD-thioesterase protein, Biochemistry, (vol. 43), No. 35, pp.11331-43.

[123] Desai, J. D. and Banat, I. M. (1997): Microbial production of surfactants and their commercial potential, Microbiol Mol Biol Rev, (vol. 61), No. 1, pp.47-64.

[124] Arima, K.; Kakinuma, A. and Tamura, G. (1968): Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation, Biochem Biophys Res Commun, (vol. 31), No. 3, pp.488-94.

[125] Bernheimer, A. W. and Avigad, L. S. (1970): Nature and properties of a cytolytic agent produced by Bacillus subtilis, J Gen Microbiol, (vol. 61), No. 3, pp.361-9.

[126] Kameda, Y.; Oira, S.; Matsui, K.; Kanatomo, S. and Hase, T. (1974): Antitumor activity of bacillus natto. V. Isolation and characterization of surfactin in the culture medium of Bacillus natto KMD 2311, Chem Pharm Bull (Tokyo), (vol. 22), No. 4, pp.938-44.

[127] Vollenbroich, D.; Ozel, M.; Vater, J.; Kamp, R. M. and Pauli, G. (1997): Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis, Biologicals, (vol. 25), No. 3, pp.289-97.

[128] Tsukagoshi, N.; Tamura, G. and Arima, K. (1970): A novel protoplast-bursting factor (surfactin) obtained from Bacillus subtilis IAM 1213. I. The effects of surfactin on bacillus megaterium KM, Biochim Biophys Acta, (vol. 196), No. 2, pp.204-10.

[129] Vollenbroich, D.; Pauli, G.; Ozel, M. and Vater, J. (1997): Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis, Appl Environ Microbiol, (vol. 63), No. 1, pp.44-9.

[130] Beven, L. and Wroblewski, H. (1997): Effect of natural amphipathic peptides on viability, membrane potential, cell shape and motility of mollicutes, Res Microbiol, (vol. 148), No. 2, pp.163-75.

[131] Hamoen, L. W.; Eshuis, H.; Jongbloed, J.; Venema, G. and van Sinderen, D. (1995): A small gene, designated comS, located within the coding region of the fourth amino acid-activation domain of srfA, is required for competence development in Bacillus subtilis, Mol Microbiol, (vol. 15), No. 1, pp.55-63.

[132] Kearns, D. B. and Losick, R. (2003): Swarming motility in undomesticated Bacillus subtilis, Mol Microbiol, (vol. 49), No. 3, pp.581-90.

[133] Julkowska, D.; Obuchowski, M.; Holland, I. B. and Seror, S. J. (2005): Comparative analysis of the development of swarming communities of Bacillus subtilis 168 and a natural wild type: critical effects of surfactin and the composition of the medium, J Bacteriol, (vol. 187), No. 1, pp.65-76.

[134] Connelly, M. B.; Young, G. M. and Sloma, A. (2004): Extracellular proteolytic activity plays a central role in swarming motility in Bacillus subtilis, J Bacteriol, (vol. 186), No. 13, pp.4159-67.

[135] Kinsinger, R. F.; Shirk, M. C. and Fall, R. (2003): Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion, J Bacteriol, (vol. 185), No. 18, pp.5627-31.

[136] Branda, S. S.; Gonzalez-Pastor, J. E.; Ben-Yehuda, S.; Losick, R. and Kolter, R. (2001): Fruiting body formation by Bacillus subtilis, Proc Natl Acad Sci U S A, (vol. 98), No. 20, pp.11621-6.

[137] Hofemeister, J.; Conrad, B.; Adler, B.; Hofemeister, B.; Feesche, J.; Kucheryava, N.; Steinborn, G.; Franke, P.; Grammel, N.; Zwintscher, A.; Leenders, F.; Hitzeroth, G. and Vater, J. (2004): Genetic analysis of the biosynthesis of non-ribosomal peptide- and polyketide-like antibiotics, iron uptake and biofilm formation by Bacillus subtilis A1/3, Mol Genet Genomics, (vol. 272), No. 4, pp.363-78.

[138] Nishikiori, T.; Naganawa, H.; Muraoka, Y.; Aoyagi, T. and Umezawa, H. (1986): Plipastatins: new inhibitors of phospholipase A2, produced by Bacillus cereus BMG302-fF67. II. Structure of fatty acid residue and amino acid sequence, J Antibiot (Tokyo), (vol. 39), No. 6, pp.745-54.

[139] Ongena, M.; Jacques, P.; Toure, Y.; Destain, J.; Jabrane, A. and Thonart, P. (2005): Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis, Appl Microbiol Biotechnol, (vol. 69), No. 1, pp.29-38.

[140] Steller, S.; Vollenbroich, D.; Leenders, F.; Stein, T.; Conrad, B.; Hofemeister, J.; Jacques, P.; Thonart, P. and Vater, J. (1999): Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3, Chem Biol, (vol. 6), No. 1, pp.31-41.

[141] Deleu, M.; Paquot, M. and Nylander, T. (2005): Fengycin interaction with lipid monolayers at the air-aqueous interface-implications for the effect of fengycin on biological membranes, J Colloid Interface Sci, (vol. 283), No. 2, pp.358-65.

[142] Nishikiori, T.; Naganawa, H.; Muraoka, Y.; Aoyagi, T. and Umezawa, H. (1986): Plipastatins: new inhibitors of phospholipase A2, produced by Bacillus cereus BMG302-fF67. III. Structural elucidation of plipastatins, J Antibiot (Tokyo), (vol. 39), No. 6, pp.755-61.

[143] Kimura, K.; Nakayama, S.; Nakamura, J.; Takada, T.; Yoshihama, M.; Esumi, Y.; Itoh, Y. and Uramoto, M. (1997): SNA-60-367, new peptide enzyme inhibitors against aromatase, J Antibiot (Tokyo), (vol. 50), No. 6, pp.529-31.

[144] Jenny, K.; Kappeli, O. and Fiechter, A. (1991): Biosurfactants from Bacillus licheniformis: structural analysis and characterization, Appl Microbiol Biotechnol, (vol. 36), No. 1, pp.5-13.

[145] Yakimov, M. M.; Timmis, K. N.; Wray, V. and Fredrickson, H. L. (1995): Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50, Appl Environ Microbiol, (vol. 61), No. 5, pp.1706-13.

[146] Konz, D.; Doekel, S. and Marahiel, M. A. (1999): Molecular and biochemical characterization of the protein template controlling biosynthesis of the lipopeptide lichenysin, J Bacteriol, (vol. 181), No. 1, pp.133-40.

[147] Azevedo, E. C.; Rios, E. M.; Fukushima, K. and Campos-Takaki, G. M. (1993): Bacitracin production by a new strain of Bacillus subtilis. Extraction, purification, and characterization, Appl Biochem Biotechnol, (vol. 42), No. 1, pp.1-7.

[148] Anker, H. S.; Johnson, B. A.; Goldberg, J. and Meleney, F. L. (1948): Bacitracin: Methods of Production, Concentration, and Partial Purification, with a Summary of the Chemical Properties of Crude Bacitracin, J Bacteriol, (vol. 55), No. 2, pp.249-55.

[149] Konz, D.; Klens, A.; Schorgendorfer, K. and Marahiel, M. A. (1997): The bacitracin biosynthesis operon of Bacillus licheniformis ATCC 10716: molecular characterization of three multi-modular peptide synthetases, Chem Biol, (vol. 4), No. 12, pp.927-37.

[150] Neumuller, A. M.; Konz, D. and Marahiel, M. A. (2001): The two-component regulatory system BacRS is associated with bacitracin 'self-resistance' of Bacillus licheniformis ATCC 10716, Eur J Biochem, (vol. 268), No. 11, pp.3180-9.

[151] Storm, D. R. and Strominger, J. L. (1973): Complex formation between bacitracin peptides and isoprenyl pyrophosphates. The specificity of lipid-peptide interactions, J Biol Chem, (vol. 248), No. 11, pp.3940-5.

[152] Kratzschmar, J.; Krause, M. and Marahiel, M. A. (1989): Gramicidin S biosynthesis operon containing the structural genes grsA and grsB has an open reading frame encoding a protein homologous to fatty acid thioesterases, J Bacteriol, (vol. 171), No. 10, pp.5422-9.

[153] Kondejewski, L. H.; Farmer, S. W.; Wishart, D. S.; Kay, C. M.; Hancock, R. E. and Hodges, R. S. (1996): Modulation of structure and antibacterial and hemolytic activity by ring size in cyclic gramicidin S analogs, J Biol Chem, (vol. 271), No. 41, pp.25261-8.

[154] Kondejewski, L. H.; Farmer, S. W.; Wishart, D. S.; Hancock, R. E. and Hodges, R. S. (1996): Gramicidin S is active against both gram-positive and gram-negative bacteria, Int J Pept Protein Res, (vol. 47), No. 6, pp.460-6.

[155] Kaprel'yants, A.S., V.V. Nikiforou, A.I. Miroshnikov, L.G. Snezhkova, V.A. Eremin, D.N. Ostrovskij (1977): Bacterial membranes and action of gramicidin S, Biokhimiya, (vol. 42), pp.329-337.

[156] Izumiya, N., T. Kato, H. Aoyaki, M. Waki, M.Kondo (1979), Synthetic aspects of biologically active cyclic peptides; gramicidin S and tyrocidines, pp. 49-108, Kondansha International Ltd, Tokyo.

[157] Duitman, E. (2003): Nonribosomal peptide synthesis in Bacillus subtilis, Groningen University Groningen.

[158] Bruner, S. D.; Weber, T.; Kohli, R. M.; Schwarzer, D.; Marahiel, M. A.; Walsh, C. T. and Stubbs, M. T. (2002): Structural basis for the cyclization of the lipopeptide antibiotic surfactin by the thioesterase domain SrfTE, Structure, (vol. 10), No. 3, pp.301-10.

[159] Conti, E.; Stachelhaus, T.; Marahiel, M. A. and Brick, P. (1997): Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S, Embo J, (vol. 16), No. 14, pp.4174-83.

[160] Gulick, A. M.; Starai, V. J.; Horswill, A. R.; Homick, K. M. and Escalante-Semerena, J. C. (2003): The 1.75 A crystal structure of acetyl-CoA synthetase bound to adenosine-5'-propylphosphate and coenzyme A, Biochemistry, (vol. 42), No. 10, pp.2866-73.

[161] Nakano, M. M.; Xia, L. A. and Zuber, P. (1991): Transcription initiation region of the srfA operon, which is controlled by the comP-comA signal transduction system in Bacillus subtilis, J Bacteriol, (vol. 173), No. 17, pp.5487-93.

[162] Roggiani, M. and Dubnau, D. (1993): ComA, a phosphorylated response regulator protein of Bacillus subtilis, binds to the promoter region of srfA, J Bacteriol, (vol. 175), No. 10, pp.3182-7.

[163] Magnuson, R.; Solomon, J. and Grossman, A. D. (1994): Biochemical and genetic characterization of a competence pheromone from B. subtilis, Cell, (vol. 77), No. 2, pp.207-16.

[164] Solomon, J. M.; Lazazzera, B. A. and Grossman, A. D. (1996): Purification and characterization of an extracellular peptide factor that affects two different developmental pathways in Bacillus subtilis, Genes Dev, (vol. 10), No. 16, pp.2014-24.

[165] Grossman, A. D. (1995): Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis, Annu Rev Genet, (vol. 29), pp.477-508.

[166] Perego, M. (1997): A peptide export-import control circuit modulating bacterial development regulates protein phosphatases of the phosphorelay, Proc Natl Acad Sci U S A, (vol. 94), No. 16, pp.8612-7.

[167] Bongiorni, C.; Ishikawa, S.; Stephenson, S.; Ogasawara, N. and Perego, M. (2005): Synergistic regulation of competence development in Bacillus subtilis by two Rap-Phr systems, J Bacteriol, (vol. 187), No. 13, pp.4353-61.

[168] Hayashi, K.; Ohsawa, T.; Kobayashi, K.; Ogasawara, N. and Ogura, M. (2005): The H2O2 stress-responsive regulator PerR positively regulates srfA expression in Bacillus subtilis, J Bacteriol, (vol. 187), No. 19, pp.6659-67.

[169] Serror, P. and Sonenshein, A. L. (1996): CodY is required for nutritional repression of Bacillus subtilis genetic competence, J Bacteriol, (vol. 178), No. 20, pp.5910-5.

[170] Tsuge, K.; Ohata, Y. and Shoda, M. (2001): Gene yerP, involved in surfactin self-resistance in Bacillus subtilis, Antimicrob Agents Chemother, (vol. 45), No. 12, pp.3566-73.

[171] Msadek, T.; Kunst, F.; Klier, A. and Rapoport, G. (1991): DegS-DegU and ComP-ComA modulator-effector pairs control expression of the Bacillus subtilis pleiotropic regulatory gene degQ, J Bacteriol, (vol. 173), No. 7, pp.2366-77.

[172] Tsuge, K.; Ano, T.; Hirai, M.; Nakamura, Y. and Shoda, M. (1999): The genes degQ, pps, and lpa-8 (sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin production, Antimicrob Agents Chemother, (vol. 43), No. 9, pp.2183-92.

[173] Tsuge, K.; Inoue, S.; Ano, T.; Itaya, M. and Shoda, M. (2005): Horizontal transfer of iturin A operon, itu, to Bacillus subtilis 168 and conversion into an iturin A producer, Antimicrob Agents Chemother, (vol. 49), No. 11, pp.4641-8.

[174] Mootz, H. D.; Finking, R. and Marahiel, M. A. (2001): 4'-phosphopantetheine transfer in primary and secondary metabolism of Bacillus subtilis, J Biol Chem, (vol. 276), No. 40, pp.37289-98.

[175] Nakano, M. M.; Corbell, N.; Besson, J. and Zuber, P. (1992): Isolation and characterization of sfp: a gene that functions in the production of the lipopeptide biosurfactant, surfactin, in Bacillus subtilis, Mol Gen Genet, (vol. 232), No. 2, pp.313-21.

[176] Yakimov, M. M. and Golyshin, P. N. (1997): ComA-dependent transcriptional activation of lichenysin A synthetase promoter in Bacillus subtilis cells, Biotechnol Prog, (vol. 13), No. 6, pp.757-61.

[177] Podlesek, Z.; Comino, A.; Herzog-Velikonja, B.; Zgur-Bertok, D.; Komel, R. and Grabnar, M. (1995): Bacillus licheniformis bacitracin-resistance ABC transporter: relationship to mammalian multidrug resistance, Mol Microbiol, (vol. 16), No. 5, pp.969-76.

[178] Podlesek, Z.; Comino, A.; Herzog-Velikonja, B. and Grabnar, M. (2000): The role of the bacitracin ABC transporter in bacitracin resistance and collateral detergent sensitivity, FEMS Microbiol Lett, (vol. 188), No. 1, pp.103-6.

[179] Bernard, R.; Joseph, P.; Guiseppi, A.; Chippaux, M. and Denizot, F. (2003): YtsCD and YwoA, two independent systems that confer bacitracin resistance to Bacillus subtilis, FEMS Microbiol Lett, (vol. 228), No. 1, pp.93-7.

[180] Marahiel, M. A.; Zuber, P.; Czekay, G. and Losick, R. (1987): Identification of the promoter for a peptide antibiotic biosynthesis gene from Bacillus brevis and its regulation in Bacillus subtilis, J Bacteriol, (vol. 169), No. 5, pp.2215-22.

[181] Robertson, J. B.; Gocht, M.; Marahiel, M. A. and Zuber, P. (1989): AbrB, a regulator of gene expression in Bacillus, interacts with the transcription initiation regions of a sporulation gene and an antibiotic biosynthesis gene, Proc Natl Acad Sci U S A, (vol. 86), No. 21, pp.8457-61.

[182] Stachelhaus, T.; Schneider, A. and Marahiel, M. A. (1995): Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains, Science, (vol. 269), No. 5220, pp.69-72.

[183] Stachelhaus, T.; Schneider, A. and Marahiel, M. A. (1996): Engineered biosynthesis of peptide antibiotics, Biochem Pharmacol, (vol. 52), No. 2, pp.177-86.

[184] Mootz, H. D.; Kessler, N.; Linne, U.; Eppelmann, K.; Schwarzer, D. and Marahiel, M. A. (2002): Decreasing the ring size of a cyclic nonribosomal peptide antibiotic by in-frame module deletion in the biosynthetic genes, J Am Chem Soc, (vol. 124), No. 37, pp.10980-1.

[185] Eppelmann, K.; Stachelhaus, T. and Marahiel, M. A. (2002): Exploitation of the selectivity-conferring code of nonribosomal peptide synthetases for the rational design of novel peptide antibiotics, Biochemistry, (vol. 41), No. 30, pp.9718-26.

[186] de Ferra, F.; Rodriguez, F.; Tortora, O.; Tosi, C. and Grandi, G. (1997): Engineering of peptide synthetases. Key role of the thioesterase-like domain for efficient production of recombinant peptides, J Biol Chem, (vol. 272), No. 40, pp.25304-9.

[187] Duerfahrt, T.; Eppelmann, K.; Muller, R. and Marahiel, M. A. (2004): Rational design of a bimodular model system for the investigation of heterocyclization in nonribosomal peptide biosynthesis, Chem Biol, (vol. 11), No. 2, pp.261-71.

[188] Tamehiro, N.; Okamoto-Hosoya, Y.; Okamoto, S.; Ubukata, M.; Hamada, M.; Naganawa, H. and Ochi, K. (2002): Bacilysocin, a novel phospholipid antibiotic produced by Bacillus subtilis 168, Antimicrob Agents Chemother, (vol. 46), No. 2, pp.315-20.

[189] Pinchuk, I. V.; Bressollier, P.; Verneuil, B.; Fenet, B.; Sorokulova, I. B.; Megraud, F. and Urdaci, M. C. (2001): In vitro anti-Helicobacter pylori activity of the probiotic strain Bacillus subtilis 3 is due to secretion of antibiotics, Antimicrob Agents Chemother, (vol. 45), No. 11, pp.3156-61.

[190] Inaoka, T.; Takahashi, K.; Yada, H.; Yoshida, M. and Ochi, K. (2004): RNA polymerase mutation activates the production of a dormant antibiotic 3,3'-neotrehalosadiamine via an autoinduction mechanism in Bacillus subtilis, J Biol Chem, (vol. 279), No. 5, pp.3885-92.

[191] Stragier, P.; Bonamy, C. and Karmazyn-Campelli, C. (1988): Processing of a sporulation sigma factor in Bacillus subtilis: how morphological structure could control gene expression, Cell, (vol. 52), No. 5, pp.697-704.

[192] Antoniewski, C.; Savelli, B. and Stragier, P. (1990): The spoIIJ gene, which regulates early developmental steps in Bacillus subtilis, belongs to a class of environmentally responsive genes, J Bacteriol, (vol. 172), No. 1, pp.86-93.

[193] Steinmetz, M. and Richter, R. (1994): Plasmids designed to alter the antibiotic resistance expressed by insertion mutations in Bacillus subtilis, through in vivo recombination, Gene, (vol. 142), No. 1, pp.79-83.

[194] Ceglowski, P. and Alonso, J. C. (1994): Gene organization of the Streptococcus pyogenes plasmid pDB101: sequence analysis of the orf eta-copS region, Gene, (vol. 145), No. 1, pp.33-9.

[195] Gonzy-Treboul, G.; Karmazyn-Campelli, C. and Stragier, P. (1992): Developmental regulation of transcription of the Bacillus subtilis ftsAZ operon, J Mol Biol, (vol. 224), No. 4, pp.967-79.

[196] Koumoutsi, A.; Chen, X. H.; Henne, A.; Liesegang, H.; Hitzeroth, G.; Franke, P.; Vater, J. and Borriss, R. (2004): Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42, J Bacteriol, (vol. 186), No. 4, pp.1084-96.

[197] Chen, X. H.; Vater, J.; Piel, J.; Franke, P.; Scholz, R.; Schneider, K.; Koumoutsi, A.; Hitzeroth, G.; Grammel, N.; Strittmatter, A. W.; Gottschalk, G.; Sussmuth, R. D. and Borriss, R. (2006): Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB 42, J Bacteriol, (vol. 188), No. 11, pp.4024-36.

[198] Sambrook J.; Fritsch, E.F. and Maniatis, T. (1989): Molecular Cloning: a laboratory manual, Cold Spring Harbor Laboratory, NY.

[199] Cutting, S.M. and Vander Horn, P.B. (1990): Molecular Biological methods for Bacillus , Harwood C., Cutting S.M., Ed, Wiley, Chichester.

[200] Landy M., Warren, G.H., Roseman S.B., Colio L.G. (1948): Bacillomycin, an antibiotic from Bacillus subtilis active against pathogenic fungi, Proc. Soc. Exp. Biol. Med, (vol. 67), pp.539-541.

[201] Ebata, M.; Miyazaki, K. and Takahashi, Y. (1969): Studies on subsporin. I. Isolation and characterization of subsporins A, B and C, J Antibiot (Tokyo), (vol. 22), No. 10, pp.467-72.

[202] Cutting, S.M. and Van der Horn, P.B. (1990): Genetic Analysis, Harwood C.R., Cutting S.M, Ed, Molecular biological methods for Bacillus , pp. 27-74, Wiley Interscience, Chichister, United Kingdom.

[203] Dieffenbach, C.W. and Dveksler, G.S. (1995): PCR primer, a laboratory manual , Cold Spring Harbor Laboratory Press.

[204] Spizizen, J. (1958): Transformation of Biochemically Deficient Strains of Bacillus Subtilis by Deoxyribonucleate, Proc Natl Acad Sci U S A, (vol. 44), No. 10, pp.1072-8.

[205] Kunst, F. and Rapoport, G. (1995): Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis, J Bacteriol, (vol. 177), No. 9, pp.2403-7.

[206] Diatchenko, L.; Lau, Y. F.; Campbell, A. P.; Chenchik, A.; Moqadam, F.; Huang, B.; Lukyanov, S.; Lukyanov, K.; Gurskaya, N.; Sverdlov, E. D. and Siebert, P. D. (1996): Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries, Proc Natl Acad Sci U S A, (vol. 93), No. 12, pp.6025-30.

[207] Clontech Laboratories, Inc. (2006): PCR-SelectTM Bacterial Genome Subtraction Kit User Manual .

[208] Birren, B. and Lai, E. (1993): Pulsed Field Gel Electrophoresis. a practical Guide, Academic Press, San Diego.

[209] Typas, A. and Hengge, R. (2006): Role of the spacer between the -35 and -10 regions in sS promoter selectivity in Escherichia coli, Mol Microbiol, (vol. 59), No. 3, pp.1037-51.

[210] Leenders F., Stein T.H., Kablitz B., Franke P., Vater J. (1999): Rapid typing of Bacillus subtilis strains by their secondary metabolites using matrix-assisted laser desorption/ionisation mass spectrometry of intact cells, Rapid Commun. Mass spectrom., (vol. 13), pp.943-949.

[211] Vater, J.; Kablitz, B.; Wilde, C.; Franke, P.; Mehta, N. and Cameotra, S. S. (2002): Matrix-assisted laser desorption ionization--time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge, Appl Environ Microbiol, (vol. 68), No. 12, pp.6210-9.

[212] Miller, J.H. (1972): Experiments in molecular genetics, Cold Spring Harbor Laboratory Press, N.Y..

[213] Ewing, B.; Hillier, L.; Wendl, M. C. and Green, P. (1998): Base-calling of automated sequencer traces using phred. I. Accuracy assessment, Genome Res, (vol. 8), No. 3, pp.175-85.

[214] Staden, R.; Beal, K. F. and Bonfield, J. K. (2000): The Staden package, 1998, Methods Mol Biol, (vol. 132), pp.115-30.

[215] Finn, R. D.; Mistry, J.; Schuster-Bockler, B.; Griffiths-Jones, S.; Hollich, V.; Lassmann, T.; Moxon, S.; Marshall, M.; Khanna, A.; Durbin, R.; Eddy, S. R.; Sonnhammer, E. L. and Bateman, A. (2006): Pfam: clans, web tools and services, Nucleic Acids Res, (vol. 34), No. Database issue, pp.D247-51.

[216] Priest, F.G., Goodfellow, M., Shute L.A., Berkeley R.C.W. (1987): Bacillus amyloliquefaciens sp. nov., nom. rev., Int J Syst Bacteriol, (vol. 37), pp.69-71.

[217] Inaoka, T.; Takahashi, K.; Ohnishi-Kameyama, M.; Yoshida, M. and Ochi, K. (2003): Guanine nucleotides guanosine 5'-diphosphate 3'-diphosphate and GTP co-operatively regulate the production of an antibiotic bacilysin in Bacillus subtilis, J Biol Chem, (vol. 278), No. 4, pp.2169-76.

[218] Kenig, M. and Abraham, E. P. (1976): Antimicrobial activities and antagonists of bacilysin and anticapsin, J Gen Microbiol, (vol. 94), No. 1, pp.37-45.

[219] Hilton, M. D.; Alaeddinoglu, N. G. and Demain, A. L. (1988): Synthesis of bacilysin by Bacillus subtilis branches from prephenate of the aromatic amino acid pathway, J Bacteriol, (vol. 170), No. 1, pp.482-4.

[220] Ollinger, J.; Song, K. B.; Antelmann, H.; Hecker, M. and Helmann, J. D. (2006): Role of the Fur regulon in iron transport in Bacillus subtilis, J Bacteriol, (vol. 188), No. 10, pp.3664-73.

[221] Hoffmann, T.; Schutz, A.; Brosius, M.; Volker, A.; Volker, U. and Bremer, E. (2002): High-salinity-induced iron limitation in Bacillus subtilis, J Bacteriol, (vol. 184), No. 3, pp.718-27.

[222] Chen, C. L.; Chang, L. K.; Chang, Y. S.; Liu, S. T. and Tschen, J. S. (1995): Transposon mutagenesis and cloning of the genes encoding the enzymes of fengycin biosynthesis in Bacillus subtilis, Mol Gen Genet, (vol. 248), No. 2, pp.121-5.

[223] Butcher, B. G. and Helmann, J. D. (2006): Identification of Bacillus subtilis sigma-dependent genes that provide intrinsic resistance to antimicrobial compounds produced by Bacilli, Mol Microbiol, (vol. 60), No. 3, pp.765-82.

[224] Amory, A.; Kunst, F.; Aubert, E.; Klier, A. and Rapoport, G. (1987): Characterization of the sacQ genes from Bacillus licheniformis and Bacillus subtilis, J Bacteriol, (vol. 169), No. 1, pp.324-33.

[225] Yang, M.; Ferrari, E.; Chen, E. and Henner, D. J. (1986): Identification of the pleiotropic sacQ gene of Bacillus subtilis, J Bacteriol, (vol. 166), No. 1, pp.113-9.

[226] deHaseth, P. L.; Zupancic, M. L. and Record, M. T., Jr. (1998): RNA polymerase-promoter interactions: the comings and goings of RNA polymerase, J Bacteriol, (vol. 180), No. 12, pp.3019-25.

[227] Voskuil, M. I. and Chambliss, G. H. (1998): The -16 region of Bacillus subtilis and other gram-positive bacterial promoters, Nucleic Acids Res, (vol. 26), No. 15, pp.3584-90.

[228] Barne, K. A.; Bown, J. A.; Busby, S. J. and Minchin, S. D. (1997): Region 2.5 of the Escherichia coli RNA polymerase sigma70 subunit is responsible for the recognition of the 'extended-10' motif at promoters, Embo J, (vol. 16), No. 13, pp.4034-40.

[229] Kunst, F.; Pascal, M.; Lepesant-Kejzlarova, J.; Lepesant, J. A.; Billault, A. and Dedonder, R. (1974): Pleiotropic mutations affecting sporulation conditions and the syntheses of extracellular enzymes in Bacillus subtilis 168, Biochimie, (vol. 56), No. 11-12, pp.1481-9.

[230] Msadek, T.; Kunst, F.; Henner, D.; Klier, A.; Rapoport, G. and Dedonder, R. (1990): Signal transduction pathway controlling synthesis of a class of degradative enzymes in Bacillus subtilis: expression of the regulatory genes and analysis of mutations in degS and degU, J Bacteriol, (vol. 172), No. 2, pp.824-34.

[231] Hamoen, L. W.; Van Werkhoven, A. F.; Venema, G. and Dubnau, D. (2000): The pleiotropic response regulator DegU functions as a priming protein in competence development in Bacillus subtilis, Proc Natl Acad Sci U S A, (vol. 97), No. 16, pp.9246-51.

[232] Guillen, N.; Weinrauch, Y. and Dubnau, D. A. (1989): Cloning and characterization of the regulatory Bacillus subtilis competence genes comA and comB, J Bacteriol, (vol. 171), No. 10, pp.5354-61.

[233] Gaidenko, T. A. and Price, C. W. (1998): General stress transcription factor sigma(B) and sporulation transcription factor sigma(H) each contribute to survival of Bacillus subtilis under extreme growth conditions, J Bacteriol, (vol. 180), No. 14, pp.3730-3.

[234] McQuade, R. S.; Comella, N. and Grossman, A. D. (2001): Control of a family of phosphatase regulatory genes (phr) by the alternate sigma factor sH of Bacillus subtilis, J Bacteriol, (vol. 183), No. 16, pp.4905-9.

[235] Serizawa, M.; Kodama, K.; Yamamoto, H.; Kobayashi, K.; Ogasawara, N. and Sekiguchi, J. (2005): Functional analysis of the YvrGHb two-component system of Bacillus subtilis: identification of the regulated genes by DNA microarray and northern blot analyses, Biosci Biotechnol Biochem, (vol. 69), No. 11, pp.2155-69.

[236] Huang, X.; Fredrick, K. L. and Helmann, J. D. (1998): Promoter recognition by Bacillus subtilis sigmaW: autoregulation and partial overlap with the sigmaX regulon, J Bacteriol, (vol. 180), No. 15, pp.3765-70.

[237] Hecker, M. and Volker, U. (1998): Non-specific, general and multiple stress resistance of growth-restricted Bacillus subtilis cells by the expression of the sigmaB regulon, Mol Microbiol, (vol. 29), No. 5, pp.1129-36.

[238] Hecker, M. and Volker, U. (2001): General stress response of Bacillus subtilis and other bacteria, Adv Microb Physiol, (vol. 44), pp.35-91.

[239] Petersohn, A.; Bernhardt, J.; Gerth, U.; Hoper, D.; Koburger, T.; Volker, U. and Hecker, M. (1999): Identification of sigma(B)-dependent genes in Bacillus subtilis using a promoter consensus-directed search and oligonucleotide hybridization, J Bacteriol, (vol. 181), No. 18, pp.5718-24.

[240] Marquez, L. M.; Helmann, J. D.; Ferrari, E.; Parker, H. M.; Ordal, G. W. and Chamberlin, M. J. (1990): Studies of sigma D-dependent functions in Bacillus subtilis, J Bacteriol, (vol. 172), No. 6, pp.3435-43.

[241] Huang, X.; Decatur, A.; Sorokin, A. and Helmann, J. D. (1997): The Bacillus subtilis sigma(X) protein is an extracytoplasmic function sigma factor contributing to survival at high temperature, J Bacteriol, (vol. 179), No. 9, pp.2915-21.

[242] Sorokin, A.; Bolotin, A.; Purnelle, B.; Hilbert, H.; Lauber, J.; Dusterhoft, A. and Ehrlich, S. D. (1997): Sequence of the Bacillus subtilis genome region in the vicinity of the lev operon reveals two new extracytoplasmic function RNA polymerase sigma factors SigV and SigZ, Microbiology, (vol. 143 ( Pt 9)), No. Pt 9, pp.2939-43.

[243] Sonenshein, A. L. (2005): CodY, a global regulator of stationary phase and virulence in Gram-positive bacteria, Curr Opin Microbiol, (vol. 8), No. 2, pp.203-7.

[244] Shimane, K. and Ogura, M. (2004): Mutational analysis of the helix-turn-helix region of Bacillus subtilis response regulator DegU, and identification of cis-acting sequences for DegU in the aprE and comK promoters, J Biochem (Tokyo), (vol. 136), No. 3, pp.387-97.

[245] Dartois, V.; Debarbouille, M.; Kunst, F. and Rapoport, G. (1998): Characterization of a novel member of the DegS-DegU regulon affected by salt stress in Bacillus subtilis, J Bacteriol, (vol. 180), No. 7, pp.1855-61.

[246] Core, L. and Perego, M. (2003): TPR-mediated interaction of RapC with ComA inhibits response regulator-DNA binding for competence development in Bacillus subtilis, Mol Microbiol, (vol. 49), No. 6, pp.1509-22.

[247] Auchtung, J. M.; Lee, C. A. and Grossman, A. D. (2006): Modulation of the ComA-dependent quorum response in Bacillus subtilis by multiple Rap proteins and Phr peptides, J Bacteriol, (vol. 188), No. 14, pp.5273-85.

[248] Ogura, M.; Shimane, K.; Asai, K.; Ogasawara, N. and Tanaka, T. (2003): Binding of response regulator DegU to the aprE promoter is inhibited by RapG, which is counteracted by extracellular PhrG in Bacillus subtilis, Mol Microbiol, (vol. 49), No. 6, pp.1685-97.

[249] Hayashi, K.; Kensuke, T.; Kobayashi, K.; Ogasawara, N. and Ogura, M. (2006): Bacillus subtilis RghR (YvaN) represses rapG and rapH, which encode inhibitors of expression of the srfA operon, Mol Microbiol, (vol. 59), No. 6, pp.1714-29.

[250] Pottathil, M. and Lazazzera, B. A. (2003): The extracellular Phr peptide-Rap phosphatase signaling circuit of Bacillus subtilis, Front Biosci, (vol. 8), pp.d32-45.

[251] Perego, M.; Higgins, C. F.; Pearce, S. R.; Gallagher, M. P. and Hoch, J. A. (1991): The oligopeptide transport system of Bacillus subtilis plays a role in the initiation of sporulation, Mol Microbiol, (vol. 5), No. 1, pp.173-85.

[252] Price, C. W.; Fawcett, P.; Ceremonie, H.; Su, N.; Murphy, C. K. and Youngman, P. (2001): Genome-wide analysis of the general stress response in Bacillus subtilis, Mol Microbiol, (vol. 41), No. 4, pp.757-74.

[253] Ogura, M.; Yamaguchi, H.; Yoshida, Ki; Fujita, Y. and Tanaka, T. (2001): DNA microarray analysis of Bacillus subtilis DegU, ComA and PhoP regulons: an approach to comprehensive analysis of B.subtilis two-component regulatory systems, Nucleic Acids Res, (vol. 29), No. 18, pp.3804-13.

[254] Steil, L.; Hoffmann, T.; Budde, I.; Volker, U. and Bremer, E. (2003): Genome-wide transcriptional profiling analysis of adaptation of Bacillus subtilis to high salinity, J Bacteriol, (vol. 185), No. 21, pp.6358-70.

[255] Bsat, N. and Helmann, J. D. (1999): Interaction of Bacillus subtilis Fur (ferric uptake repressor) with the dhb operator in vitro and in vivo, J Bacteriol, (vol. 181), No. 14, pp.4299-307.

[256] Miethke, M.; Klotz, O.; Linne, U.; May, J. J.; Beckering, C. L. and Marahiel, M. A. (2006): Ferri-bacillibactin uptake and hydrolysis in Bacillus subtilis, Mol Microbiol, (vol. 3), p.3.

[257] Mader, U.; Antelmann, H.; Buder, T.; Dahl, M. K.; Hecker, M. and Homuth, G. (2002): Bacillus subtilis functional genomics: genome-wide analysis of the DegS-DegU regulon by transcriptomics and proteomics, Mol Genet Genomics, (vol. 268), No. 4, pp.455-67.

[258] Takami, H.; Nakasone, K.; Takaki, Y.; Maeno, G.; Sasaki, R.; Masui, N.; Fuji, F.; Hirama, C.; Nakamura, Y.; Ogasawara, N.; Kuhara, S. and Horikoshi, K. (2000): Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis, Nucleic Acids Res, (vol. 28), No. 21, pp.4317-31.

[259] Rasko, D. A.; Ravel, J.; Okstad, O. A.; Helgason, E.; Cer, R. Z.; Jiang, L.; Shores, K. A.; Fouts, D. E.; Tourasse, N. J.; Angiuoli, S. V.; Kolonay, J.; Nelson, W. C.; Kolsto, A. B.; Fraser, C. M. and Read, T. D. (2004): The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1, Nucleic Acids Res, (vol. 32), No. 3, pp.977-88.

[260] Rey, M. W.; Ramaiya, P.; Nelson, B. A.; Brody-Karpin, S. D.; Zaretsky, E. J.; Tang, M.; Lopez de Leon, A.; Xiang, H.; Gusti, V.; Clausen, I. G.; Olsen, P. B.; Rasmussen, M. D.; Andersen, J. T.; Jorgensen, P. L.; Larsen, T. S.; Sorokin, A.; Bolotin, A.; Lapidus, A.; Galleron, N.; Ehrlich, S. D. and Berka, R. M. (2004): Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species, Genome Biol, (vol. 5), No. 10, p.R77.

[261] Xu, D. and Cote, J. C. (2003): Phylogenetic relationships between Bacillus species and related genera inferred from comparison of 3' end 16S rDNA and 5' end 16S-23S ITS nucleotide sequences, Int J Syst Evol Microbiol, (vol. 53), No. Pt 3, pp.695-704.

[262] Hoch, JA. and Silhavy, TJ. (1995): Two-Component Signal Transduction, American Society of Microbiology, Washington D.C..

[263] Parkinson, J. S. (1993): Signal transduction schemes of bacteria, Cell, (vol. 73), No. 5, pp.857-71.

[264] Stock, JB., Surette MG, Levit M., Park P. (1995): Two-component signal transduction systems: structure-function relationships and mechanisms of catalysis , Hoch, JA. Silhavy TJ., Ed, Two-Component Signal Transduction, pp. 25-51, American Society for Microbiology, Washington DC.

[265] Stock, A. M.; Robinson, V. L. and Goudreau, P. N. (2000): Two-component signal transduction, Annu Rev Biochem, (vol. 69), pp.183-215.

[266] West, A. H. and Stock, A. M. (2001): Histidine kinases and response regulator proteins in two-component signaling systems, Trends Biochem Sci, (vol. 26), No. 6, pp.369-76.

[267] Galperin, M. Y. (2006): Structural classification of bacterial response regulators: diversity of output domains and domain combinations, J Bacteriol, (vol. 188), No. 12, pp.4169-82.

[268] Stock, J. B.; Stock, A. M. and Mottonen, J. M. (1990): Signal transduction in bacteria, Nature, (vol. 344), No. 6265, pp.395-400.

[269] Fabret, C.; Feher, V. A. and Hoch, J. A. (1999): Two-component signal transduction in Bacillus subtilis: how one organism sees its world, J Bacteriol, (vol. 181), No. 7, pp.1975-83.

[270] Mascher, T.; Margulis, N. G.; Wang, T.; Ye, R. W. and Helmann, J. D. (2003): Cell wall stress responses in Bacillus subtilis: the regulatory network of the bacitracin stimulon, Mol Microbiol, (vol. 50), No. 5, pp.1591-604.

[271] Pietiainen, M.; Gardemeister, M.; Mecklin, M.; Leskela, S.; Sarvas, M. and Kontinen, V. P. (2005): Cationic antimicrobial peptides elicit a complex stress response in Bacillus subtilis that involves ECF-type sigma factors and two-component signal transduction systems, Microbiology, (vol. 151), No. Pt 5, pp.1577-92.

[272] Ohki, R.; Giyanto; Tateno, K.; Masuyama, W.; Moriya, S.; Kobayashi, K. and Ogasawara, N. (2003): The BceRS two-component regulatory system induces expression of the bacitracin transporter, BceAB, in Bacillus subtilis, Mol Microbiol, (vol. 49), No. 4, pp.1135-44.

[273] Mascher, T. (2006): Intramembrane-sensing histidine kinases: a new family of cell envelope stress sensors in Firmicutes bacteria, FEMS Microbiol Lett.

[274] Schultz, J.; Milpetz, F.; Bork, P. and Ponting, C. P. (1998): SMART, a simple modular architecture research tool: identification of signaling domains, Proc Natl Acad Sci U S A, (vol. 95), No. 11, pp.5857-64.

[275] Wecke, T.; Veith, B.; Ehrenreich, A. and Mascher, T. (2006): Cell Envelope Stress Response in Bacillus licheniformis: Integrating Comparative Genomics, Transcriptional Profiling and Regulon Mining to Decipher a Complex Regulatory Network, J Bacteriol, (vol. 25), p.25.

[276] Steinfels, E.; Orelle, C.; Fantino, J. R.; Dalmas, O.; Rigaud, J. L.; Denizot, F.; Di Pietro, A. and Jault, J. M. (2004): Characterization of YvcC (BmrA), a multidrug ABC transporter constitutively expressed in Bacillus subtilis, Biochemistry, (vol. 43), No. 23, pp.7491-502.

[277] Joseph, P.; Fichant, G.; Quentin, Y. and Denizot, F. (2002): Regulatory relationship of two-component and ABC transport systems and clustering of their genes in the Bacillus/Clostridium group, suggest a functional link between them, J Mol Microbiol Biotechnol, (vol. 4), No. 5, pp.503-13.

[278] Stein, T.; Heinzmann, S.; Kiesau, P.; Himmel, B. and Entian, K. D. (2003): The spa-box for transcriptional activation of subtilin biosynthesis and immunity in Bacillus subtilis, Mol Microbiol, (vol. 47), No. 6, pp.1627-36.

[279] Perego, M.; Glaser, P. and Hoch, J. A. (1996): Aspartyl-phosphate phosphatases deactivate the response regulator components of the sporulation signal transduction system in Bacillus subtilis, Mol Microbiol, (vol. 19), No. 6, pp.1151-7.

[280] Perego, M. and Brannigan, J. A. (2001): Pentapeptide regulation of aspartyl-phosphate phosphatases, Peptides, (vol. 22), No. 10, pp.1541-7.

[281] Blatch, G. L. and Lassle, M. (1999): The tetratricopeptide repeat: a structural motif mediating protein-protein interactions, Bioessays, (vol. 21), No. 11, pp.932-9.

[282] Turner, M. S. and Helmann, J. D. (2000): Mutations in multidrug efflux homologs, sugar isomerases, and antimicrobial biosynthesis genes differentially elevate activity of the sigma(X) and sigma(W) factors in Bacillus subtilis, J Bacteriol, (vol. 182), No. 18, pp.5202-10.

[283] Helmann, J. D. (2002): The extracytoplasmic function (ECF) sigma factors, Adv Microb Physiol, (vol. 46), pp.47-110.

[284] Albano, M.; Smits, W. K.; Ho, L. T.; Kraigher, B.; Mandic-Mulec, I.; Kuipers, O. P. and Dubnau, D. (2005): The Rok protein of Bacillus subtilis represses genes for cell surface and extracellular functions, J Bacteriol, (vol. 187), No. 6, pp.2010-9.

[285] Tortosa, P.; Logsdon, L.; Kraigher, B.; Itoh, Y.; Mandic-Mulec, I. and Dubnau, D. (2001): Specificity and genetic polymorphism of the Bacillus competence quorum-sensing system, J Bacteriol, (vol. 183), No. 2, pp.451-60.

[286] Ansaldi, M.; Marolt, D.; Stebe, T.; Mandic-Mulec, I. and Dubnau, D. (2002): Specific activation of the Bacillus quorum-sensing systems by isoprenylated pheromone variants, Mol Microbiol, (vol. 44), No. 6, pp.1561-73.

[287] Ansaldi, M. and Dubnau, D. (2004): Diversifying selection at the Bacillus quorum-sensing locus and determinants of modification specificity during synthesis of the ComX pheromone, J Bacteriol, (vol. 186), No. 1, pp.15-21.

[288] Straight, P. D.; Willey, J. M. and Kolter, R. (2006): Interactions between Streptomyces coelicolor and Bacillus subtilis: Role of surfactants in raising aerial structures, J Bacteriol, (vol. 188), No. 13, pp.4918-25.

[289] Han, J. S.; Cheng, J. H.; Yoon, T. M.; Song, J.; Rajkarnikar, A.; Kim, W. G.; Yoo, I. D.; Yang, Y. Y. and Suh, J. W. (2005): Biological control agent of common scab disease by antagonistic strain Bacillus sp. sunhua, J Appl Microbiol, (vol. 99), No. 1, pp.213-21.

[290] Ron, E. Z. and Rosenberg, E. (2001): Natural roles of biosurfactants, Environ Microbiol, (vol. 3), No. 4, pp.229-36.

[291] Neu, T. R. (1996): Significance of bacterial surface-active compounds in interaction of bacteria with interfaces, Microbiol Rev, (vol. 60), No. 1, pp.151-66.

[292] Elliot, M. A. and Talbot, N. J. (2004): Building filaments in the air: aerial morphogenesis in bacteria and fungi, Curr Opin Microbiol, (vol. 7), No. 6, pp.594-601.

[293] Challis, G. L. and Hopwood, D. A. (2003): Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species, Proc Natl Acad Sci U S A, (vol. 100 Suppl 2), pp.14555-61.

[294] Patel, P. S.; Huang, S.; Fisher, S.; Pirnik, D.; Aklonis, C.; Dean, L.; Meyers, E.; Fernandes, P. and Mayerl, F. (1995): Bacillaene, a novel inhibitor of procaryotic protein synthesis produced by Bacillus subtilis: production, taxonomy, isolation, physico-chemical characterization and biological activity, J Antibiot (Tokyo), (vol. 48), No. 9, pp.997-1003.

[295] Wilson, K. E.; Flor, J. E.; Schwartz, R. E.; Joshua, H.; Smith, J. L.; Pelak, B. A.; Liesch, J. M. and Hensens, O. D. (1987): Difficidin and oxydifficidin: novel broad spectrum antibacterial antibiotics produced by Bacillus subtilis. II. Isolation and physico-chemical characterization, J Antibiot (Tokyo), (vol. 40), No. 12, pp.1682-91.

[296] Piel, J. (2002): A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles, Proc Natl Acad Sci U S A, (vol. 99), No. 22, pp.14002-7.

[297] Steinborn, G.; Hajirezaei, M. R. and Hofemeister, J. (2005): bac genes for recombinant bacilysin and anticapsin production in Bacillus host strains, Arch Microbiol, (vol. 183), No. 2, pp.71-9.

[298] Scholz, Romy (2005) Diploma Arbeit Berlin

[299] Andrews, S. C.; Robinson, A. K. and Rodriguez-Quinones, F. (2003): Bacterial iron homeostasis, FEMS Microbiol Rev, (vol. 27), No. 2-3, pp.215-37.

[300] Escolar, L.; Perez-Martin, J. and de Lorenzo, V. (1999): Opening the iron box: transcriptional metalloregulation by the Fur protein, J Bacteriol, (vol. 181), No. 20, pp.6223-9.

[301] Hantke, K. (2001): Bacterial zinc transporters and regulators, Biometals, (vol. 14), No. 3-4, pp.239-49.

[302] Kloepper, J.W., Leong J., Teintze M., Schroth M.N. (1980): Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria., Nature, (vol. 286), pp.885-886.

[303] Gonzalez-Pastor, J. E.; Hobbs, E. C. and Losick, R. (2003): Cannibalism by sporulating bacteria, Science, (vol. 301), No. 5632, pp.510-3.

[304] Besson, F.; Peypoux, F.; Michel, G. and Delcambe, L. (1978): Mode of action of iturin A, an antibiotic isolated from Bacillus subtilis, on Micrococcus luteus, Biochem Biophys Res Commun, (vol. 81), No. 2, pp.297-304.

[305] Peypoux, F.; Besson, F.; Michel, G. and Delcambe, L. (1981): Structure of bacillomycin D, a new antibiotic of the iturin group, Eur J Biochem, (vol. 118), No. 2, pp.323-7.

[306] Pao, G. M.; Tam, R.; Lipschitz, L. S. and Saier, M. H., Jr. (1994): Response regulators: structure, function and evolution, Res Microbiol, (vol. 145), No. 5-6, pp.356-62.

[307] Dahl, M. K.; Msadek, T.; Kunst, F. and Rapoport, G. (1992): The phosphorylation state of the DegU response regulator acts as a molecular switch allowing either degradative enzyme synthesis or expression of genetic competence in Bacillus subtilis, J Biol Chem, (vol. 267), No. 20, pp.14509-14.

[308] Dahl, J. L.; Wei, B. Y. and Kadner, R. J. (1997): Protein phosphorylation affects binding of the Escherichia coli transcription activator UhpA to the uhpT promoter, J Biol Chem, (vol. 272), No. 3, pp.1910-9.

[309] Turgay, K.; Hamoen, L. W.; Venema, G. and Dubnau, D. (1997): Biochemical characterization of a molecular switch involving the heat shock protein ClpC, which controls the activity of ComK, the competence transcription factor of Bacillus subtilis, Genes Dev, (vol. 11), No. 1, pp.119-28.

[310] Dubnau, D.; Hahn, J.; Roggiani, M.; Piazza, F. and Weinrauch, Y. (1994): Two-component regulators and genetic competence in Bacillus subtilis, Res Microbiol, (vol. 145), No. 5-6, pp.403-11.

[311] Mueller, J. P.; Bukusoglu, G. and Sonenshein, A. L. (1992): Transcriptional regulation of Bacillus subtilis glucose starvation-inducible genes: control of gsiA by the ComP-ComA signal transduction system, J Bacteriol, (vol. 174), No. 13, pp.4361-73.

[312] Lazazzera, B. A.; Kurtser, I. G.; McQuade, R. S. and Grossman, A. D. (1999): An autoregulatory circuit affecting peptide signaling in Bacillus subtilis, J Bacteriol, (vol. 181), No. 17, pp.5193-200.


© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 4.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML generated:
23.01.2007