Literaturverzeichnis

[1]Valent, P.; Schernthaner, G. H.; Sperr, W. R.; Fritsch, G.; Agis, H.; Willheim, M.; Buhring, H. J.; Orfao, A. und Escribano, L. (2001): Variable expression of activation-linked surface antigens on human mast cells in health and disease, Immunol Rev 179, Seite 74-81.[1]Valent, P.; Schernthaner, G. H.; Sperr, W. R.; Fritsch, G.; Agis, H.; Willheim, M.; Buhring, H. J.; Orfao, A. und Escribano, L. (2001): Variable expression of activation-linked surface antigens on human mast cells in health and disease, Immunol Rev 179, Seite 74-81.

[2](2002): Mini Symposium 3: Mast cell and basophils, Allergy 57 [Suppl 73], Seite 11-12.

[3]Henz, B. M.; Maurer, M.; Lippert, U.; Worm, M. und Babina, M. (2001): Mast cells as initiators of immunity and host defense, Exp Dermatol 10 [1], Seite 1-10.

[4]Ehrlich, Paul (1878): Beiträge zur Therapie und Praxis der histologischen Färbung, Dissertation der Universität Leipzig.

[5]Kirshenbaum, A. S.; Kessler, S. W.; Goff, J. P. und Metcalfe, D. D. (1991): Demonstration of the origin of human mast cells from CD34+ bone marrow progenitor cells, Journal of Immunology 146 [5], Seite 1410-1415.

[6]Janeway, C.A. Travers, P (1997): Immunologie, 2. Auflage. Auflage, Spektrum

Akademischer Verlag.

[7]Bradding, P. und Holgate, S. T. (1999): Immunopathology and human mast cell cytokines, Crit Rev Oncol Hematol 31 [2], Seite 119-33.

[8]Gurish, M. F. und Austen, K. F. (2001): The diverse roles of mast cells, J Exp Med 194 [1], Seite F1-5.

[9]Lorentz, A.; Schuppan, D.; Gebert, A.; Manns, M. P. und Bischoff, S. C. (2002): Regulatory effects of stem cell factor and interleukin-4 on human mast cells to extracellular matrix proteins, Blood 99 [3], Seite 966-972.

[10]Pawankar, R. ; Okuda, M.; Yssel, H. ; Okumura, K. und Ra, Ch. (1997): Nasal Mast Cells in Perennial Allergic Rhinitics Exhibit Increased Expression of the FceRI, CD40L, IL-4 and IL-13, and can Induce IgE Synthesis in B Cells, J. Clin. Invest. 99 [7], Seite 1492-1499.

[11]Shelburne, C. P. und Ryan, J. J. (2001): The role of Th2 cytokines in mast cell homeostasis, Immunol Rev 179, Seite 82-93.

[12]Algermissen, B.; Hermes, B.; Feldmann-Boeddeker, I.; Bauer, F. und Henz, B. M. (1999): Mast cell chymase and tryptase during tissue turnover: analysis on in vitro mitogenesis of fibroblasts and keratinocytes and alterations in cutaneous scars, Exp Dermatol 8 [3], Seite 193-8.

[13]Matsunaga, Y. und Terada, T. (2000): Mast cell subpopulations in chronic inflammatory hepatobiliary diseases, Liver 20 [2], Seite 152-6.

[14]Beil, W. J. und Pammer, J. (2001): In situ detection of the mast cell proteases chymase and tryptase in human lung tissue using light and electron microscopy, Histochem Cell Biol 116 [6], Seite 483-93.

[15]Buckley, M. G.; McEuen, A. R. und Walls, A. F. (1999): The detection of mast cell subpopulations in formalin-fixed human tissues using a new monoclonal antibody specific for chymase, J Pathol 189 [1], Seite 138-43.

[16]Bradding, P.; Okayama, Y.; Howarth, P. H.; Church, M. K. und Holgate, S. T. (1995): Heterogeneity of human mast cells based on cytokine content, J Immunol 155 [1], Seite 297-307.

[17]Ghannadan, M.; Baghestanian, M.; Wimazal, F.; Eisenmenger, M.; Latal, D.; Kargul, G.; Walchshofer, S.; Sillaber, C.; Lechner, K. und Valent, P. (1998): Phenotypic characterization of human skin mast cells by combined staining with toluidine blue and CD antibodies, J Invest Dermatol 111 [4], Seite 689-95.

[18]Saarinen, J. V.; Harvima, R. J.; Naukkarinen, A.; Horsmanheimo, M. und Harvima, I. T. (2001): Interleukin-4-positive mast cells are highly associated with the extent of immediate allergic wheal reaction in the skin, Allergy 56 [1], Seite 58-64.

[19]Bauer, O. und Razin, E. (2000): Mast Cell-Nerve Interactions, News Physiol Sci 15, Seite 213-218.

[20]Pawankar, R. (2001): Mast cells as orchestrators of the allergic reaction: the IgE-IgE receptor mast cell network, Curr Opin Allergy Clin Immunol 1 [1], Seite 3-6.

[21]Saarinen, J. V.; Harvima, R. J.; Naukkarinen, A.; Horsmanheimo, M. und Harvima, I. T. (2001): The release of histamine is associated with the inactivation of mast cell chymase during immediate allergic wheal reaction in the skin, Clin Exp Allergy 31 [4], Seite 593-601.

[22]Worm, M. und Henz, B. M. (1997): Molecular mechanisms of IgE regulation, Hautarzt 48 [10], Seite 773-82.

[23]Church, M. K.; Okayama, Y. und Bradding, P. (1994): The role of the mast cell in acute and chronic allergic inflammation, Ann N Y Acad Sci 725, Seite 13-21.

[24]Bradding, P. und Conley, E. C. (2002): Human mast cell ion channels, Clin Exp Allergy 32 [7], Seite 979-83.

[25]Kraneveld, A. D.; Van Der Kleij, H. P.; Kool, M.; Van Houwelingen, A. H.; Weitenberg, A. C.; Redegeld, F. A. und Nijkamp, F. P. (2002): Key role for mast cells in nonatopic asthma, J Immunol 169 [4], Seite 2044-53.

[26]Bradding, P. ; Feather, I. H. ; Wilson, S. ; Bardin, P. G. ; Heusser, C. H.; Holgate, S. T. und Howarth, P. H. (1993): Immunolocalization of Cytokines in the Nasal Mucosa of Normal and Perennial Rhinitic Subjects, Journal of Immunology 151 [7], Seite 3853-3865.

[27]Di Lorezo, G.; Drago, A. ; Pellitteri, M. E.; Candore, G.; Colombo, A. und Caruso, C. (2001): Measurement of Inflammatory Mediators of Mast Cells and Eosinophils in Native Nasal Lavage Fluid in Nasal Polyposis, Int Arch Allergy Immunol [125], Seite 164-175.

[28]Nielsen, L. P.; Mygind, N. und Dahl, R. (2001): Intranasal corticosteroids for allergic rhinitis: superior relief?, Drugs 61 [11], Seite 1563-79.

[29]Demitsu, T.; Inoue, T.; Kakurai, M.; Kiyosawa, T.; Yoneda, K. und Manabe, M. (2002): Activation of mast cells within a tumor of angiosarcoma: ultrastructural study of five cases, J Dermatol 29 [5], Seite 280-9.

[30]Sugerman, P. B.; Savage, N. W.; Walsh, L. J.; Zhao, Z. Z.; Zhou, X. J.; Khan, A.; Seymour, G. J. und Bigby, M. (2002): The pathogenesis of oral lichen planus, Crit Rev Oral Biol Med 13 [4], Seite 350-65.

[31]Zhao, Z. Z. ; Savage, N. W. und Walsh, L. J. (1998): Associations between mast cells and laminin in oral lichen planus, J Oral Pathol Med 27 [4], Seite 163-7.

[32]Zhao, Z. Z.; Savage, N. W.; Sugerman, P. B. und Walsh, L. J. (2002): Mast cell/T cell interactions in oral lichen planus, J Oral Pathol Med 31 [4], Seite 189-95.

[33]Riede, UN (1998): Taschenatlas der allgemeinen Pathologie, Thieme.

[34]Church, M. K.; Lowman, M. A.; Rees, P. H. und Benyon, R. C. (1989): Mast cells, neuropeptides and inflammation, Agents Actions 27 [1-2], Seite 8-16.

[35]Artuc, M.; Hermes, B.; Steckelings, U. M.; Grutzkau, A. und Henz, B. M. (1999): Mast cells and their mediators in cutaneous wound healing--active participants or innocent bystanders?, Exp Dermatol 8 [1], Seite 1-16.

[36]Stassen, M.; Hultner, L.; Muller, C. und Schmitt, E. (2002): Mast cells and inflammation, Arch Immunol Ther Exp (Warsz) 50 [3], Seite 179-85.

[37]Hermes, B.; Welker, P.; Feldmann-Boddeker, I.; Kruger-Krasagakis, S.; Hartmann, K.; Zuberbier, T. und Henz, B. M. (2001): Expression of mast cell growth modulating and chemotactic factors and their receptors in human cutaneous scars, J Invest Dermatol 116 [3], Seite 387-93.

[38]Blair, R. J. ; Homg, M. ; Marchese, M.J.; Ren, Sh. und Gruber, B. L. (1997): Human Mast Cells Stimulate Vascular Tube Formation, J. Clin. Invest. 99 [11], Seite 2691-2700.

[39]Gruber, B. L.; Marchese, M. J. und Kew, R. (1995): Angiogenic factors stimulate mast-cell migration, Blood 86 [7], Seite 2488-93.

[40]Levi-Schaffer, F. und Pe'er, J. (2001): Mast cells and angiogenesis, Clin Exp Allergy 31 [4], Seite 521-4.

[41]Huttunen, M.; Aalto, M. L.; Harvima, R. J.; Horsmanheimo, M. und Harvima, I. T. (2000): Alterations in mast cells showing tryptase and chymase activity in epithelializating and chronic wounds, Exp Dermatol 9 [4], Seite 258-65.

[42]Czarnetzki, B. M.; Grabbe, J.; Kolde, G.; Kruger-Krasagakes, S.; Welker, P. und Zuberbier, T. (1995): Mast cells in the cytokine network: the what, where from and what for, Exp Dermatol 4 [4 Pt 2], Seite 221-6.

[43]Hermes, B. ; Feldmann-Böddeker, I. ; Welker, P. ; Algermissen, B.; Steckelings, M. U.; Grabbe, J. und Henz, B. M. (2000): Altered Expression of Mast Cell Chymase and Tryptase and of c-Kit in Human Cutaneous Scar Tissue, J Invest Dermatol 114, Seite 51-55.

[44]Trautmann, A.; Krohne, G.; Brocker, E. B. und Klein, C. E. (1998): Human mast cells augment fibroblast proliferation by heterotypic cell-cell adhesion and action of IL-4, J Immunol 160 [10], Seite 5053-7.

[45]Gibbs, B. F.; Wierecky, J.; Welker, P.; Henz, B. M.; Wolff, H. H. und Grabbe, J. (2001): Human skin mast cells rapidly release preformed and newly generated TNF-alpha and IL-8 following stimulation with anti-IgE and other secretagogues, Exp Dermatol 10 [5], Seite 312-20.

[46]Holgate, S. T.; Benyon, R. C.; Lowman, M. A. und Church, M. K. (1989): Activation of human mast cells after immunoglobulin E-dependent and neuropeptide stimulation, Prog Clin Biol Res 297, Seite 103-12; discussion 112-3.

[47]Lowman, M. A.; Benyon, R. C. und Church, M. K. (1988): Characterization of neuropeptide-induced histamine release from human dispersed skin mast cells, Br J Pharmacol 95 [1], Seite 121-30.

[48]Lowman, M. A.; Rees, P. H.; Benyon, R. C. und Church, M. K. (1988): Human mast cell heterogeneity: histamine release from mast cells dispersed from skin, lung, adenoids, tonsils, and colon in response to IgE-dependent and nonimmunologic stimuli, J Allergy Clin Immunol 81 [3], Seite 590-7.

[49]Berger, P.; N'Guyen, C.; Buckley, M.; Scotto-Gomez, E.; Marthan, R. und Tunon-De-Lara, J. M. (2002): Passive sensitization of human airways induces mast cell degranulation and release of tryptase, Allergy 57 [7], Seite 592-9.

[50]Mayr, S. I.; Zuberi, R. I.; Zhang, M.; de Sousa-Hitzler, J.; Ngo, K.; Kuwabara, Y.; Yu, L.; Fung-Leung, W. P. und Liu, F. T. (2002): IgE-dependent mast cell activation potentiates airway responses in murine asthma models, J Immunol 169 [4], Seite 2061-8.

[51]Ferry, X.; Brehin, S.; Kamel, R. und Landry, Y. (2002): G protein-dependent activation of mast cell by peptides and basic secretagogues, Peptides 23 [8], Seite 1507.

[52]Tkaczyk, C.; Metcalfe, D. D. und M., Gilfillan A. (2002): FcyRI and Other Fc Receptors on Human Mast Cells, ACI International 14 [3], Seite 109-115.

[53]Baumruker, T. und Prieschl, E.E. (2001): Mast Cells and their Activation - from the Molecular Mechanisms to Clinical Relevance, Mod. Asp. Immunobiol. 1 [6], Seite 259-262.

[54]Ohtake, H.; Ichikawa, N.; Okada, M. und Yamashita, T. (2002): Transmembrane Phosphoprotein Csk-Binding Protein/ Phosphoprotein Associated With Glycosphingolipid-Enriched Microdomains as a Negative Feedback Regulator of Mast Cell Signaling Through the FceRI, Journal of Immunology 168, Seite 2087-2090.

[55]Ornitz, D. M. und Itoh, N. (2001): Fibroblast growth factors, Genome Biol 2 [3], Seite REVIEWS3005.

[56]Klagsbrun, M. (1989): The fibroblast growth factor family: structural and biological properties, Prog Growth Factor Res 1 [4], Seite 207-35.

[57]Nugent, M. A. und Iozzo, R. V. (2000): Fibroblast growth factor-2, Int J Biochem Cell Biol 32 [2], Seite 115-20.

[58]Hamada, H.; Vallyathan, V.; Cool, C. D.; Barker, E.; Inoue, Y. und Newman, L. S. (2000): Mast cell basic fibroblast growth factor in silicosis, Am J Respir Crit Care Med 161 [6], Seite 2026-34.

[59]Qu, Z.; Huang, X.; Ahmadi, P.; Stenberg, P.; Liebler, J. M.; Le, A. C.; Planck, S. R. und Rosenbaum, J. T. (1998): Synthesis of basic fibroblast growth factor by murine mast cells. Regulation by transforming growth factor beta, tumor necrosis factor alpha, and stem cell factor, Int Arch Allergy Immunol 115 [1], Seite 47-54.

[60]Reed, J. A.; Albino, A. P. und McNutt, N. S. (1995): Human cutaneous mast cells express basic fibroblast growth factor, Lab Invest 72 [2], Seite 215-22.

[61]Artuc, M.; Steckelings, U. M. und Henz, B. M. (2002): Mast cell-fibroblast interactions: human mast cells as source and inducers of fibroblast and epithelial growth factors, J Invest Dermatol 118 [3], Seite 391-5.

[62]Okada - Ban, M.; Thiery, J. P. und Jouanneau, J. (2000): Fibroblast growth factor - 2, The International Journal of Biochemistry & and Cell Biology 32, Seite 263-267.

[63]Loo, B. M.; Kreuger, J.; Jalkanen, M.; Lindahl, U. und Salmivirta, M. (2001): Binding of heparin/heparan sulfate to fibroblast growth factor receptor 4, J Biol Chem 276 [20], Seite 16868-76.

[64]Brown, K. J.; Hendry, I. A. und Parish, C. R. (1995): Acidic and basic fibroblast growth factor bind with differing affinity to the same heparan sulfate proteoglycan on BALB/c 3T3 cells: implications for potentiation of growth factor action by heparin, J Cell Biochem 58 [1], Seite 6-14.

[65]Chang, Z.; Meyer, K.; Rapraeger, A. C. und Friedl, A. (2000): Differential ability of heparan sulfate proteoglycans to assemble the fibroblast growth factor receptor complex in situ, Faseb J 14 [1], Seite 137-44.

[66]Moscatelli, D. (1992): Basic fibroblast growth factor (bFGF) dissociates rapidly from heparan sulfates but slowly from receptors. Implications for mechanisms of bFGF release from pericellular matrix, J Biol Chem 267 [36], Seite 25803-9.

[67]Wong, P.; Hampton, B.; Szylobryt, E.; Gallagher, A. M.; Jaye, M. und Burgess, W. H. (1995): Analysis of putative heparin-binding domains of fibroblast growth factor-1. Using site-directed mutagenesis and peptide analogues, J Biol Chem 270 [43], Seite 25805-11.

[68]Wong, P. und Burgess, W. H. (1998): FGF2-Heparin co-crystal complex-assisted design of mutants FGF1 and FGF7 with predictable heparin affinities, J Biol Chem 273 [29], Seite 18617-22.

[69]Pellegrini, L.; Burke, D. F.; von Delft, F.; Mulloy, B. und Blundell, T. L. (2000): Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin, Nature 407 [6807], Seite 1029-34.

[70]Dowd, C. J.; Cooney, C. L. und Nugent, M. A. (1999): Heparan sulfate mediates bFGF transport through basement membrane by diffusion with rapid reversible binding, J Biol Chem 274 [8], Seite 5236-44.

[71]Nagendra, H. G.; Harrington, A. E.; Harmer, N. J.; Pellegrini, L.; Blundell, T. L. und Burke, D. F. (2001): Sequence analyses and comparative modeling of fly and worm fibroblast growth factor receptors indicate that the determinants for FGF and heparin binding are retained in evolution, FEBS Lett 501 [1], Seite 51-8.

[72]Pellegrini, L. (2001): Role of heparan sulfate in fibroblast growth factor signalling: a structural view, Curr Opin Struct Biol 11 [5], Seite 629-34.

[73]D'Amore, P. A. (1990): Modes of FGF release in vivo and in vitro, Cancer Metastasis Rev 9 [3], Seite 227-38.

[74]Qu, Z.; Liebler, J. M.; Powers, M. R.; Galey, T.; Ahmadi, P.; Huang, X. N.; Ansel, J. C.; Butterfield, J. H.; Planck, S. R. und Rosenbaum, J. T. (1995): Mast cells are a major source of basic fibroblast growth factor in chronic inflammation and cutaneous hemangioma, Am J Pathol 147 [3], Seite 564-73.

[75]Qu, Z.; Kayton, R. J.; Ahmadi, P.; Liebler, J. M.; Powers, M. R.; Planck, S. R. und Rosenbaum, J. T. (1998): Ultrastructural immunolocalization of basic fibroblast growth factor in mast cell secretory granules. Morphological evidence for bfgf release through degranulation, J Histochem Cytochem 46 [10], Seite 1119-28.

[76]Neufeld, G. und Gospodarowicz, D. (1986): Basic and acidic fibroblast growth factors interact with the same cell surface receptors, J Biol Chem 261 [12], Seite 5631-7.

[77]Ballinger, M. D.; Shyamala, V.; Forrest, L. D.; Deuter-Reinhard, M.; Doyle, L. V.; Wang, J. X.; Panganiban-Lustan, L.; Stratton, J. R.; Apell, G.; Winter, J. A.; Doyle, M. V.; Rosenberg, S. und Kavanaugh, W. M. (1999): Semirational design of a potent, artificial agonist of fibroblast growth factor receptors, Nat Biotechnol 17 [12], Seite 1199-204.

[78]Knox, S.; Merry, C.; Stringer, S.; Melrose, J. und Whitelock, J. (2002): Not all perlecans are created equal: interactions with fibroblast growth factor (FGF) 2 and FGF receptors, J Biol Chem 277 [17], Seite 14657-65.

[79]Strutz, F.; Zeisberg, M.; Renziehausen, A.; Raschke, B.; Becker, V.; van Kooten, C. und Muller, G. (2001): TGF-beta 1 induces proliferation in human renal fibroblasts via induction of basic fibroblast growth factor (FGF-2), Kidney Int 59 [2], Seite 579-92.

[80]Facchiano, F.; Lentini, A.; Fogliano, V.; Mancarella, S.; Rossi, C.; Facchiano, A. und Capogrossi, M. C. (2002): Sugar-induced modification of fibroblast growth factor 2 reduces its angiogenic activity in vivo, Am J Pathol 161 [2], Seite 531-41.

[81]Powers, M. R.; Qu, Z.; LaGesse, P. C.; Liebler, J. M.; Wall, M. A. und Rosenbaum, J. T. (1998): Expression of basic fibroblast growth factor in nasal polyps, Ann Otol Rhinol Laryngol 107 [10 Pt 1], Seite 891-7.

[82]Qu, Z.; Huang, X. N.; Ahmadi, P.; Andresevic, J.; Planck, S. R.; Hart, C. E. und Rosenbaum, J. T. (1995): Expression of basic fibroblast growth factor in synovial tissue from patients with rheumatoid arthritis and degenerative joint disease, Lab Invest 73 [3], Seite 339-46.

[83]Akimoto, S.; Ishikawa, O.; Iijima, C. und Miyachi, Y. (1999): Expression of basic fibroblast growth factor and its receptor by fibroblast, macrophages and mast cells in hypertrophic scar, Eur J Dermatol 9 [5], Seite 357-62.

[84]Yamamoto, T.; Katayama, I. und Nishioka, K. (1995): Involvement of basic fibroblast growth factor in fibroblast-stimulatory serum activity of a patient with systemic lupus erythematosus and multiple dermatofibromas, Dermatology 191 [4], Seite 281-5.

[85]Murata, M.; Hara, K. und Saku, T. (1997): Dynamic distribution of basic fibroblast growth factor during epulis formation: an immunohistochemical study in an enhanced healing process of the gingiva, J Oral Pathol Med 26 [5], Seite 224-32.

[86]Norrby, K. (1994): Basic fibroblast growth factor and de novo mammalian angiogenesis, Microvasc Res 48 [1], Seite 96-113.

[87]Burchill, S. A. und Westwood, G. (2002): Mechanism of basic fibroblast growth factor-induced cell death, Apoptosis 7 [1], Seite 5-12.

[88]Strutz, F.; Zeisberg, M.; Ziyadeh, F. N.; Yang, C. Q.; Kalluri, R.; Muller, G. A. und Neilson, E. G. (2002): Role of basic fibroblast growth factor-2 in epithelial-mesenchymal transformation, Kidney Int 61 [5], Seite 1714-28.

[89]Westwood, G.; Dibling, B. C.; Cuthbert-Heavens, D. und Burchill, S. A. (2002): Basic fibroblast growth factor (bFGF)-induced cell death is mediated through a caspase-dependent and p53-independent cell death receptor pathway, Oncogene 21 [5], Seite 809-24.

[90]Barillari, G. ; Sgadari, C. ; Palladino, C. ; Gendelman, R. ; Caputo, A. ; Morris, C.B. ; Nair, B.C. ; Markham, P. ; Nel, A. ; Sturzl, M. und Ensoli, B. (1999): Inflammatory cytokines synergize with the HIV-1 Tat protein to promote angiogenesis and Kaposi's sarcoma via induction of basic fibroblast growth factor and the alpha v beta 3 integrin., J Immunol. 163 [4], Seite 1929-35.

[91]Leeman, S. E. und Ferguson, S. L. (2000): Substance P: an historical perspective, Neuropeptides 34 [5], Seite 249-54.

[92]Fiebich, B. L. und Lieb, K. (2001): Substanz P und neurogene Entzündung, Immunologie Aktuell 1 [6], Seite 148-149.

[93]Church, M. K.; Lowman, M. A.; Robinson, C.; Holgate, S. T. und Benyon, R. C. (1989): Interaction of neuropeptides with human mast cells, Int Arch Allergy Appl Immunol 88 [1-2], Seite 70-8.

[94]Andoh, T.; Nagasawa, T.; Satoh, M. und Kuraishi, Y. (1998): Substance P induction of itch-associated response mediated by cutaneous NK1 tachykinin receptors in mice, J Pharmacol Exp Ther 286 [3], Seite 1140-5.

[95]Church, M. K.; Benyon, R. C.; Lowman, M. A.; Hutson, P. A. und Holgate, S. T. (1989): Allergy or inflammation? From neuropeptide stimulation of human skin mast cells to studies on the mechanism of the late asthmatic response, Agents Actions 26 [1-2], Seite 22-30.

[96]Bradding, P. (1996): Human mast cell cytokines, Clin Exp Allergy 26 [1], Seite 13-9.

[97]Strutz, F.; Zeisberg, M.; Hemmerlein, B.; Sattler, B.; Hummel, K.; Becker, V. und Muller, G. A. (2000): Basic fibroblast growth factor expression is increased in human renal fibrogenesis and may mediate autocrine fibroblast proliferation, Kidney Int 57 [4], Seite 1521-38.

[98]Vinkk, AA.; Shreedhar, V.; Roza, L.; Krutmann, J. und Kripke, ML. (1998): Cellular target of UVB-induced DNA damage resulting in lokal supression of contact hypersensitivity, J Photochem Photobiol B 44 [2], Seite 107-11.

[99]Ibbotson, SH; Lampert, CR; Moran, MN; Lynch, MC und Kochevar, IE (1998): Benzoyl peroxide increases UVA-induced plasma membrane damage and lipid oxidation in murine leukemia L1210 cells., J Invest Dermatol 110 [1], Seite 79-83.

[100]Mariano, TM; Vetrano, AM; Gentile, SL; Heck, DE; Whittemore, MS; Guillon, CD; Jabin, I; Rapp, RD; Heindel, ND und Laskin, JD (2002): Cell-impermeant pyridinium derivatives of psoralens as inhibitors of keratinocyte growth., Biochem Pharmacol 63 [1], Seite 31-9.

[101]Dvorak, A. M.; Morgan, E. S. und Weller, P. F. (2001): Ultrastructural immunolocalization of basic fibroblast growth factor to lipid bodies and secretory granules in human mast cells, Histochem J 33 [7], Seite 397-402.

[102]Hayashi, H; Tsuda, T; Tsurumi, N; Takai, Y; Maeda, M; Takahashi, K und Kimura, I (1987): Anticoagulant substance released from human lung mast cells by stimulation with anti-IgE or Ca-ionophore A23187, Acta Med Okayama 41 [2], Seite 85-7.

[103]Kuchtey, J und Fewtrell, C (1999): Protein kinase C activator PMA reduces the Ca(2+) response to antigen stimulation of adherent RBL-2H3 mucosal mast cells by inhibiting depletion of intracellular Ca(2+) stores., J Cell Physiol 181 [1], Seite 113-23.

[104]Okayama, Y; Uno, D; Hanawa, K und Kurosawa, M (1989): Effect of phorbol myristate acetate (PMA) on diphosphoinositide (DPI) synthesis in rat mast cells granules., Arerugi 38 [2], Seite 80-5.

[105]Yamaguchi, M; Sayama, K und Yano, K (1999): IgE enhances Fce receptor I expression and IgE-dependent release of histamine and lipid mediators from human umbilical cord blood-derived mast cells: synergistic effect of IL-4 and IgE on human mast cell Fce receptor I expression and mediator release . J Immunol 162, Seite 5455-5465.

[106]Bischoff, SC; Selige, G; Lorentz, A; Sebald, W; Raab, R und Manns, MP (1999): IL-4 enhances proliferation and mediator release in mature human mast cells., Proc Natl Acad Sci USA 96, Seite 8080-8085.

[107]LaVallee, TM; Tarantini, F; Gamble, S; Burgess, WH und Maciag, T (1996): Synaptotagmin-1 and FGF-1 homodimer are present as a high molecular weight complex in neutral tissue, FASEB J 10 [A1377].

[108]LaVallee, TM; Tarantini, F; Gamble, S; Mouta Carreira, C; Jackson, A und Maciag, T (1998): Synaptotagmin-1 is required for fibroblast growth factor-1 release., J Biol Chem 273 [35], Seite 22217-23.

[109]B. Alberts, D. Bray, A. Johnson (1999): Lehrbuch der Molekularen Zellbiologie, Wiley-VCH Verlag, ISBN: 3-527-30493-2.

[110]Skoog, ML; Ollinger, K und Skogh, M (1997): Microfluorometry using fluorescein diacetate reflects the integrity of the plasma membrane in UVA-irradiated cultured skin fibroblasts., Photodermatol Photoimmunol Photomed 13 [1-2], Seite 37-42.

[111]Gniadecki, R; Christoffersen, N und Wulf, HC (2002): Cholesterol-rich plasma membrane domains (lipid rafts) in keratinocytes: importance in the baseline and UVA-induced generation of reactive oxygen species., J Invest Dermatol 118 [4], Seite 582-8.


© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
XDiML DTD Version 4.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am:
27.07.2006