Agren, M.; Kogerman, P.; Kleman, M. I.; Wessling, M. und Toftgard, R. (2004): Expression of the PTCH1 tumor suppressor gene is regulated by alternative promoters and a single functional Gli-binding site, Gene 330), Seite 101-14.

Akimaru, H.; Chen, Y.; Dai, P.; Hou, D. X.; Nonaka, M.; Smolik, S. M.; Armstrong, S.; Goodman, R. H. und Ishii, S. (1997): Drosophila CBP is a co-activator of cubitus interruptus in hedgehog signalling, Nature 386) [6626], Seite 735-8.

Aoto, K.; Nishimura, T.; Eto, K. und Motoyama, J. (2002): Mouse GLI3 regulates Fgf8 expression and apoptosis in the developing neural tube, face, and limb bud, Dev Biol 251) [2], Seite 320-32.

Aza-Blanc, P.; Lin, H. Y.; Ruiz i Altaba, A. und Kornberg, T. B. (2000): Expression of the vertebrate Gli proteins in Drosophila reveals a distribution of activator and repressor activities, Development 127) [19], Seite 4293-301.

Aza-Blanc, P.; Ramirez-Weber, F. A.; Laget, M. P.; Schwartz, C. und Kornberg, T. B. (1997): Proteolysis that is inhibited by hedgehog targets Cubitus interruptus protein to the nucleus and converts it to a repressor, Cell 89) [7], Seite 1043-53.

Borden, K. L.; Lally, J. M.; Martin, S. R.; O'Reilly, N. J.; Solomon, E. und Freemont, P. S. (1996): In vivo and in vitro characterization of the B1 and B2 zinc-binding domains from the acute promyelocytic leukemia protooncoprotein PML, Proc Natl Acad Sci U S A 93) [4], Seite 1601-6.

Bork, P.; Holm, L. und Sander, C. (1994): The immunoglobulin fold. Structural classification, sequence patterns and common core, J Mol Biol 242) [4], Seite 309-20.

Borycki, A.; Brown, A. M. und Emerson, C. P., Jr. (2000): Shh and Wnt signaling pathways converge to control Gli gene activation in avian somites, Development 127) [10], Seite 2075-87.

Brewster, R.; Mullor, J. L. und Ruiz i Altaba, A. (2000): Gli2 functions in FGF signaling during antero-posterior patterning, Development 127) [20], Seite 4395-405.

Cainarca, S.; Messali, S.; Ballabio, A. und Meroni, G. (1999): Functional characterization of the Opitz syndrome gene product (midin): evidence for homodimerization and association with microtubules throughout the cell cycle, Hum Mol Genet 8) [8], Seite 1387-96.

Chapman, M. S. und Verma, I. M. (1996): Transcriptional activation by BRCA1, Nature 382) [6593], Seite 678-9.

Chen, C. H.; von Kessler, D. P.; Park, W.; Wang, B.; Ma, Y. und Beachy, P. A. (1999): Nuclear trafficking of Cubitus interruptus in the transcriptional regulation of Hedgehog target gene expression, Cell 98) [3], Seite 305-16.

Chen, Y.; Knezevic, V.; Ervin, V.; Hutson, R.; Ward, Y. und Mackem, S. (2004): Direct interaction with Hoxd proteins reverses Gli3-repressor function to promote digit formation downstream of Shh, Development 131) [10], Seite 2339-47.

Cox, T. C. (2004): Taking it to the max: the genetic and developmental mechanisms coordinating midfacial morphogenesis and dysmorphology, Clin Genet 65) [3], Seite 163-76.

Cox, T. C.; Allen, L. R.; Cox, L. L.; Hopwood, B.; Goodwin, B.; Haan, E. und Suthers, G. K. (2000): New mutations in MID1 provide support for loss of function as the cause of X-linked Opitz syndrome, Hum Mol Genet 9) [17], Seite 2553-62.

Dai, P.; Akimaru, H.; Tanaka, Y.; Maekawa, T.; Nakafuku, M. und Ishii, S. (1999): Sonic Hedgehog-induced activation of the Gli1 promoter is mediated by GLI3, J Biol Chem 274) [12], Seite 8143-52.

Debeer, P.; Peeters, H.; Driess, S.; De Smet, L.; Freese, K.; Matthijs, G.; Bornholdt, D.; Devriendt, K.; Grzeschik, K. H.; Fryns, J. P. und Kalff-Suske, M. (2003): Variable phenotype in Greig cephalopolysyndactyly syndrome: clinical and radiological findings in 4 independent families and 3 sporadic cases with identified GLI3 mutations, Am J Med Genet A 120) [1], Seite 49-58.

Ding, Q.; Fukami, S.; Meng, X.; Nishizaki, Y.; Zhang, X.; Sasaki, H.; Dlugosz, A.; Nakafuku, M. und Hui, C. (1999): Mouse suppressor of fused is a negative regulator of sonic hedgehog signaling and alters the subcellular distribution of Gli1, Curr Biol 9) [19], Seite 1119-22.

Eichberger, T.; Regl, G.; Ikram, M. S.; Neill, G. W.; Philpott, M. P.; Aberger, F. und Frischauf, A. M. (2004): FOXE1, a new transcriptional target of GLI2 is expressed in human epidermis and basal cell carcinoma, J Invest Dermatol 122) [5], Seite 1180-7.

Elenbaas, B.; Dobbelstein, M.; Roth, J.; Shenk, T. und Levine, A. J. (1996): The MDM2 oncoprotein binds specifically to RNA through its RING finger domain, Mol Med 2) [4], Seite 439-51.

Elson, E.; Perveen, R.; Donnai, D.; Wall, S. und Black, G. C. (2002): De novo GLI3 mutation in acrocallosal syndrome: broadening the phenotypic spectrum of GLI3 defects and overlap with murine models, J Med Genet 39) [11], Seite 804-6.

Ericson, J.; Morton, S.; Kawakami, A.; Roelink, H. und Jessell, T. M. (1996): Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity, Cell 87) [4], Seite 661-73.

Fukumoto, T.; Watanabe-Fukunaga, R.; Fujisawa, K.; Nagata, S. und Fukunaga, R. (2001): The fused protein kinase regulates Hedgehog-stimulated transcriptional activation in Drosophila Schneider 2 cells, J Biol Chem 276) [42], Seite 38441-8.

Gaudenz, K.; Roessler, E.; Quaderi, N.; Franco, B.; Feldman, G.; Gasser, D. L.; Wittwer, B.; Horst, J.; Montini, E.; Opitz, J. M.; Ballabio, A. und Muenke, M. (1998): Opitz G/BBB syndrome in Xp22: mutations in the MID1 gene cluster in the carboxy-terminal domain, Am J Hum Genet 63) [3], Seite 703-10.

Granata, A. und Quaderi, N. A. (2003): The Opitz syndrome gene MID1 is essential for establishing asymmetric gene expression in Hensen's node, Dev Biol 258) [2], Seite 397-405.

Gustafsson, M. K.; Pan, H.; Pinney, D. F.; Liu, Y.; Lewandowski, A.; Epstein, D. J. und Emerson, C. P., Jr. (2002): Myf5 is a direct target of long-range Shh signaling and Gli regulation for muscle specification, Genes Dev 16) [1], Seite 114-26.

Hargrave, M.; Karunaratne, A.; Cox, L.; Wood, S.; Koopman, P. und Yamada, T. (2000): The HMG box transcription factor gene Sox14 marks a novel subset of ventral interneurons and is regulated by sonic hedgehog, Dev Biol 219) [1], Seite 142-53.

Hashizume, R.; Fukuda, M.; Maeda, I.; Nishikawa, H.; Oyake, D.; Yabuki, Y.; Ogata, H. und Ohta, T. (2001): The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation, J Biol Chem 276) [18], Seite 14537-40.

Hayes, C.; Brown, J. M.; Lyon, M. F. und Morriss-Kay, G. M. (1998): Sonic hedgehog is not required for polarising activity in the Doublefoot mutant mouse limb bud, Development 125) [3], Seite 351-7.

Honda, A.; Batta, A. K.; Salen, G.; Tint, G. S.; Chen, T. S. und Shefer, S. (1997): Screening for abnormal cholesterol biosynthesis in the Smith-Lemli-Opitz syndrome: rapid determination of plasma 7-dehydrocholesterol by ultraviolet spectrometry, Am J Med Genet 68) [3], Seite 288-93.

Honda, R. und Yasuda, H. (2000): Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase, Oncogene 19) [11], Seite 1473-6.

Ikram, M. S.; Neill, G. W.; Regl, G.; Eichberger, T.; Frischauf, A. M.; Aberger, F.; Quinn, A. und Philpott, M. (2004): GLI2 is expressed in normal human epidermis and BCC and induces GLI1 expression by binding to its promoter, J Invest Dermatol 122) [6], Seite 1503-9.

Ingram, W. J.; Wicking, C. A.; Grimmond, S. M.; Forrest, A. R. und Wainwright, B. J. (2002): Novel genes regulated by Sonic Hedgehog in pluripotent mesenchymal cells, Oncogene 21) [53], Seite 8196-205.

Jacinto, E. und Hall, M. N. (2003): Tor signalling in bugs, brain and brawn, Nat Rev Mol Cell Biol 4) [2], Seite 117-26.

Jacob, J. und Briscoe, J. (2003): Gli proteins and the control of spinal-cord patterning, EMBO Rep 4) [8], Seite 761-5.

Joazeiro, C. A. und Weissman, A. M. (2000): RING finger proteins: mediators of ubiquitin ligase activity, Cell 102) [5], Seite 549-52.

Kalderon, D. (2002): Similarities between the Hedgehog and Wnt signaling pathways, Trends Cell Biol 12) [11], Seite 523-31.

Kang, S.; Graham, J. M., Jr.; Olney, A. H. und Biesecker, L. G. (1997): GLI3 frameshift mutations cause autosomal dominant Pallister-Hall syndrome, Nat Genet 15) [3], Seite 266-8.

Kawai, S. und Sugiura, T. (2001): Characterization of human bone morphogenetic protein (BMP)-4 and -7 gene promoters: activation of BMP promoters by Gli, a sonic hedgehog mediator, Bone 29) [1], Seite 54-61.

Kogerman, P.; Grimm, T.; Kogerman, L.; Krause, D.; Unden, A. B.; Sandstedt, B.; Toftgard, R. und Zaphiropoulos, P. G. (1999): Mammalian suppressor-of-fused modulates nuclear-cytoplasmic shuttling of Gli-1, Nat Cell Biol 1) [5], Seite 312-9.

Krishnan, V.; Pereira, F. A.; Qiu, Y.; Chen, C. H.; Beachy, P. A.; Tsai, S. Y. und Tsai, M. J. (1997): Mediation of Sonic hedgehog-induced expression of COUP-TFII by a protein phosphatase, Science 278) [5345], Seite 1947-50.

Kuschel, S.; Ruther, U. und Theil, T. (2003): A disrupted balance between Bmp/Wnt and Fgf signaling underlies the ventralization of the Gli3 mutant telencephalon, Dev Biol 260) [2], Seite 484-95.

Laufer, E.; Nelson, C. E.; Johnson, R. L.; Morgan, B. A. und Tabin, C. (1994): Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud, Cell 79) [6], Seite 993-1003.

Lee, J.; Platt, K. A.; Censullo, P. und Ruiz i Altaba, A. (1997): Gli1 is a target of Sonic hedgehog that induces ventral neural tube development, Development 124) [13], Seite 2537-52.

Litingtung, Y. und Chiang, C. (2000): Specification of ventral neuron types is mediated by an antagonistic interaction between Shh and Gli3, Nat Neurosci 3) [10], Seite 979-85.

Lovering, R.; Hanson, I. M.; Borden, K. L.; Martin, S.; O'Reilly, N. J.; Evan, G. I.; Rahman, D.; Pappin, D. J.; Trowsdale, J. und Freemont, P. S. (1993): Identification and preliminary characterization of a protein motif related to the zinc finger, Proc Natl Acad Sci U S A 90) [6], Seite 2112-6.

Mahlapuu, M.; Ormestad, M.; Enerback, S. und Carlsson, P. (2001): The forkhead transcription factor Foxf1 is required for differentiation of extra-embryonic and lateral plate mesoderm, Development 128) [2], Seite 155-66.

Merchant, M.; Vajdos, F. F.; Ultsch, M.; Maun, H. R.; Wendt, U.; Cannon, J.; Desmarais, W.; Lazarus, R. A.; de Vos, A. M. und de Sauvage, F. J. (2004): Suppressor of fused regulates Gli activity through a dual binding mechanism, Mol Cell Biol 24) [19], Seite 8627-41.

Meyer, N. P. und Roelink, H. (2003): The amino-terminal region of Gli3 antagonizes the Shh response and acts in dorsoventral fate specification in the developing spinal cord, Dev Biol 257) [2], Seite 343-55.

Moore, KL (1988): The Developing human clinically oriented embryology, 4th. Auflage, Moore, KL, F.K. Schattauer Verlagsgesellschaft, 3-7945-1356-8.

Motoyama, J.; Milenkovic, L.; Iwama, M.; Shikata, Y.; Scott, M. P. und Hui, C. C. (2003): Differential requirement for Gli2 and Gli3 in ventral neural cell fate specification, Dev Biol 259) [1], Seite 150-61.

Mullor, J. L.; Dahmane, N.; Sun, T. und Ruiz i Altaba, A. (2001): Wnt signals are targets and mediators of Gli function, Curr Biol 11) [10], Seite 769-73.

Murata, K.; Wu, J. und Brautigan, D. L. (1997): B cell receptor-associated protein alpha4 displays rapamycin-sensitive binding directly to the catalytic subunit of protein phosphatase 2A, Proc Natl Acad Sci U S A 94) [20], Seite 10624-9.

Murone, M.; Luoh, S. M.; Stone, D.; Li, W.; Gurney, A.; Armanini, M.; Grey, C.; Rosenthal, A. und de Sauvage, F. J. (2000): Gli regulation by the opposing activities of fused and suppressor of fused, Nat Cell Biol 2) [5], Seite 310-2.

Murone, M.; Rosenthal, A. und de Sauvage, F. J. (1999): Hedgehog signal transduction: from flies to vertebrates, Exp Cell Res 253) [1], Seite 25-33.

Nanahoshi, M.; Tsujishita, Y.; Tokunaga, C.; Inui, S.; Sakaguchi, N.; Hara, K. und Yonezawa, K. (1999): Alpha4 protein as a common regulator of type 2A-related serine/threonine protein phosphatases, FEBS Lett 446) [1], Seite 108-12.

Nybakken, K. E.; Turck, C. W.; Robbins, D. J. und Bishop, J. M. (2002): Hedgehog-stimulated phosphorylation of the kinesin-related protein Costal2 is mediated by the serine/threonine kinase fused, J Biol Chem 277) [27], Seite 24638-47.

Oliver, T. G.; Grasfeder, L. L.; Carroll, A. L.; Kaiser, C.; Gillingham, C. L.; Lin, S. M.; Wickramasinghe, R.; Scott, M. P. und Wechsler-Reya, R. J. (2003): Transcriptional profiling of the Sonic hedgehog response: a critical role for N-myc in proliferation of neuronal precursors, Proc Natl Acad Sci U S A 100) [12], Seite 7331-6.

Opitz J, Frias J, Gutenberger J, Pellet J (1969): The G-syndrome of multiple congenital anomalies, Birth Defects Orig Artic Ser 2), Seite 95-101.

Opitz J, Summitt R, Smith D (1969): The BBB syndrome: Familial telecanthus with associated congenital anomalies, Birth Defects Orig Artic Ser 2), Seite 86-94.

Pearse, R. V., 2nd; Collier, L. S.; Scott, M. P. und Tabin, C. J. (1999): Vertebrate homologs of Drosophila suppressor of fused interact with the gli family of transcriptional regulators, Dev Biol 212) [2], Seite 323-36.

Perry, J. und Ashworth, A. (1999): Evolutionary rate of a gene affected by chromosomal position, Curr Biol 9) [17], Seite 987-9.

Pickart, C. M. (2001): Mechanisms underlying ubiquitination, Annu Rev Biochem 70), Seite 503-33.

Pola, R.; Ling, L. E.; Silver, M.; Corbley, M. J.; Kearney, M.; Blake Pepinsky, R.; Shapiro, R.; Taylor, F. R.; Baker, D. P.; Asahara, T. und Isner, J. M. (2001): The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors, Nat Med 7) [6], Seite 706-11.

Price, M. A. und Kalderon, D. (2002): Proteolysis of the Hedgehog signaling effector Cubitus interruptus requires phosphorylation by Glycogen Synthase Kinase 3 and Casein Kinase 1, Cell 108) [6], Seite 823-35.

Quaderi, N. A.; Schweiger, S.; Gaudenz, K.; Franco, B.; Rugarli, E. I.; Berger, W.; Feldman, G. J.; Volta, M.; Andolfi, G.; Gilgenkrantz, S.; Marion, R. W.; Hennekam, R. C.; Opitz, J. M.; Muenke, M.; Ropers, H. H. und Ballabio, A. (1997): Opitz G/BBB syndrome, a defect of midline development, is due to mutations in a new RING finger gene on Xp22, Nat Genet 17) [3], Seite 285-91.

Raught, B.; Gingras, A. C. und Sonenberg, N. (2001): The target of rapamycin (TOR) proteins, Proc Natl Acad Sci U S A 98) [13], Seite 7037-44.

Reddy, S.; Andl, T.; Bagasra, A.; Lu, M. M.; Epstein, D. J.; Morrisey, E. E. und Millar, S. E. (2001): Characterization of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis, Mech Dev 107) [1-2], Seite 69-82.

Regl, G.; Kasper, M.; Schnidar, H.; Eichberger, T.; Neill, G. W.; Philpott, M. P.; Esterbauer, H.; Hauser-Kronberger, C.; Frischauf, A. M. und Aberger, F. (2004): Activation of the BCL2 promoter in response to Hedgehog/GLI signal transduction is predominantly mediated by GLI2, Cancer Res 64) [21], Seite 7724-31.

Richman, J. M.; Fu, K. K.; Cox, L. L.; Sibbons, J. P. und Cox, T. C. (2002): Isolation and characterisation of the chick orthologue of the Opitz syndrome gene, Mid1, supports a conserved role in vertebrate development, Int J Dev Biol 46) [4], Seite 441-8.

Robin, N. H.; Feldman, G. J.; Aronson, A. L.; Mitchell, H. F.; Weksberg, R.; Leonard, C. O.; Burton, B. K.; Josephson, K. D.; Laxova, R.; Aleck, K. A. und et al. (1995): Opitz syndrome is genetically heterogeneous, with one locus on Xp22, and a second locus on 22q11.2, Nat Genet 11) [4], Seite 459-61.

Roehm, P. C. und Berg, J. M. (1997): Sequential metal binding by the RING finger domain of BRCA1, Biochemistry 36) [33], Seite 10240-5.

Roessler, E.; Du, Y. Z.; Mullor, J. L.; Casas, E.; Allen, W. P.; Gillessen-Kaesbach, G.; Roeder, E. R.; Ming, J. E.; Ruiz i Altaba, A. und Muenke, M. (2003): Loss-of-function mutations in the human GLI2 gene are associated with pituitary anomalies and holoprosencephaly-like features, Proc Natl Acad Sci U S A 100) [23], Seite 13424-9.

Rubin, G. M. (2000): Biological annotation of the Drosophila genome sequence, Novartis Found Symp 229), Seite 79-82; discussion 82-3.

Ruiz i Altaba, A. (1998): Combinatorial Gli gene function in floor plate and neuronal inductions by Sonic hedgehog, Development 125) [12], Seite 2203-12.

Ruiz i Altaba, A. (1999): Gli proteins and Hedgehog signaling: development and cancer, Trends Genet 15) [10], Seite 418-25.

Ruiz i Altaba, A. (1999): Gli proteins encode context-dependent positive and negative functions: implications for development and disease, Development 126) [14], Seite 3205-16.

Ruiz i Altaba, A.; Nguyen, V. und Palma, V. (2003): The emergent design of the neural tube: prepattern, SHH morphogen and GLI code, Curr Opin Genet Dev 13) [5], Seite 513-21.

Ruiz, I. Altaba A. (1999): The works of GLI and the power of hedgehog, Nat Cell Biol 1) [6], Seite E147-8.

Sasaki, H.; Nishizaki, Y.; Hui, C.; Nakafuku, M. und Kondoh, H. (1999): Regulation of Gli2 and Gli3 activities by an amino-terminal repression domain: implication of Gli2 and Gli3 as primary mediators of Shh signaling, Development 126) [17], Seite 3915-24.

Satijn, D. P.; Gunster, M. J.; van der Vlag, J.; Hamer, K. M.; Schul, W.; Alkema, M. J.; Saurin, A. J.; Freemont, P. S.; van Driel, R. und Otte, A. P. (1997): RING1 is associated with the polycomb group protein complex and acts as a transcriptional repressor, Mol Cell Biol 17) [7], Seite 4105-13.

Schweiger, S.; Foerster, J.; Lehmann, T.; Suckow, V.; Muller, Y. A.; Walter, G.; Davies, T.; Porter, H.; van Bokhoven, H.; Lunt, P. W.; Traub, P. und Ropers, H. H. (1999): The Opitz syndrome gene product, MID1, associates with microtubules, Proc Natl Acad Sci U S A 96) [6], Seite 2794-9.

Schweiger, S. und Schneider, R. (2003): The MID1/PP2A complex: a key to the pathogenesis of Opitz BBB/G syndrome, Bioessays 25) [4], Seite 356-66.

Shin, S. H.; Kogerman, P.; Lindstrom, E.; Toftgard, R. und Biesecker, L. G. (1999): GLI3 mutations in human disorders mimic Drosophila cubitus interruptus protein functions and localization, Proc Natl Acad Sci U S A 96) [6], Seite 2880-4.

Short, K. M.; Hopwood, B.; Yi, Z. und Cox, T. C. (2002): MID1 and MID2 homo- and heterodimerise to tether the rapamycin-sensitive PP2A regulatory subunit, alpha 4, to microtubules: implications for the clinical variability of X-linked Opitz GBBB syndrome and other developmental disorders, BMC Cell Biol 3) [1], Seite 1.

So, J.; Suckow, V.; Kijas, Z.; Kalscheuer, V.; Moser, B.; Winter, J.; Baars, M.; Firth, H.; Lunt, P.; Hamel, B.; Meinecke, P.; Moraine, C.; Odent, S.; Schinzel, A.; van der Smagt, J. J.; Devriendt, K.; Albrecht, B.; Gillessen-Kaesbach, G.; van der Burgt, I.; Petrij, F.; Faivre, L.; McGaughran, J.; McKenzie, F.; Opitz, J. M.; Cox, T. und Schweiger, S. (2005): Mild phenotypes in a series of patients with Opitz GBBB syndrome with MID1 mutations, Am J Med Genet A 132) [1], Seite 1-7.

Solecki, D. J.; Gromeier, M.; Mueller, S.; Bernhardt, G. und Wimmer, E. (2002): Expression of the human poliovirus receptor/CD155 gene is activated by sonic hedgehog, J Biol Chem 277) [28], Seite 25697-702.

Sontag, E. (2001): Protein phosphatase 2A: the Trojan Horse of cellular signaling, Cell Signal 13) [1], Seite 7-16.

Steward, A.; Adhya, S. und Clarke, J. (2002): Sequence conservation in Ig-like domains: the role of highly conserved proline residues in the fibronectin type III superfamily, J Mol Biol 318) [4], Seite 935-40.

Stone, D. M.; Murone, M.; Luoh, S.; Ye, W.; Armanini, M. P.; Gurney, A.; Phillips, H.; Brush, J.; Goddard, A.; de Sauvage, F. J. und Rosenthal, A. (1999): Characterization of the human suppressor of fused, a negative regulator of the zinc-finger transcription factor Gli, J Cell Sci 112 ( Pt 23)), Seite 4437-48.

Teh, M. T.; Wong, S. T.; Neill, G. W.; Ghali, L. R.; Philpott, M. P. und Quinn, A. G. (2002): FOXM1 is a downstream target of Gli1 in basal cell carcinomas, Cancer Res 62) [16], Seite 4773-80.

Theil, T.; Alvarez-Bolado, G.; Walter, A. und Ruther, U. (1999): Gli3 is required for Emx gene expression during dorsal telencephalon development, Development 126) [16], Seite 3561-71.

Trockenbacher, A.; Suckow, V.; Foerster, J.; Winter, J.; Krauss, S.; Ropers, H. H.; Schneider, R. und Schweiger, S. (2001): MID1, mutated in Opitz syndrome, encodes an ubiquitin ligase that targets phosphatase 2A for degradation, Nat Genet 29) [3], Seite 287-94.

Vasiliauskas, D.; Hancock, S. und Stern, C. D. (1999): SWiP-1: novel SOCS box containing WD-protein regulated by signalling centres and by Shh during development, Mech Dev 82) [1-2], Seite 79-94.

Villavicencio, E. H.; Walterhouse, D. O. und Iannaccone, P. M. (2000): The sonic hedgehog-patched-gli pathway in human development and disease, Am J Hum Genet 67) [5], Seite 1047-54.

Wang, B.; Fallon, J. F. und Beachy, P. A. (2000): Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb, Cell 100) [4], Seite 423-34.

Weaver, M.; Batts, L. und Hogan, B. L. (2003): Tissue interactions pattern the mesenchyme of the embryonic mouse lung, Dev Biol 258) [1], Seite 169-84.

Wild, A.; Kalff-Suske, M.; Vortkamp, A.; Bornholdt, D.; Konig, R. und Grzeschik, K. H. (1997): Point mutations in human GLI3 cause Greig syndrome, Hum Mol Genet 6) [11], Seite 1979-84.

Winter, J.; Lehmann, T.; Krauss, S.; Trockenbacher, A.; Kijas, Z.; Foerster, J.; Suckow, V.; Yaspo, M. L.; Kulozik, A.; Kalscheuer, V.; Schneider, R. und Schweiger, S. (2004): Regulation of the MID1 protein function is fine-tuned by a complex pattern of alternative splicing, Hum Genet 114) [6], Seite 541-52.

Wodarz, A. und Nusse, R. (1998): Mechanisms of Wnt signaling in development, Annu Rev Cell Dev Biol 14), Seite 59-88.

Wu, L. C.; Wang, Z. W.; Tsan, J. T.; Spillman, M. A.; Phung, A.; Xu, X. L.; Yang, M. C.; Hwang, L. Y.; Bowcock, A. M. und Baer, R. (1996): Identification of a RING protein that can interact in vivo with the BRCA1 gene product, Nat Genet 14) [4], Seite 430-40.

Wu, S. C.; Grindley, J.; Winnier, G. E.; Hargett, L. und Hogan, B. L. (1998): Mouse Mesenchyme forkhead 2 (Mf2): expression, DNA binding and induction by sonic hedgehog during somitogenesis, Mech Dev 70) [1-2], Seite 3-13.

Yamagishi, H.; Maeda, J.; Hu, T.; McAnally, J.; Conway, S. J.; Kume, T.; Meyers, E. N.; Yamagishi, C. und Srivastava, D. (2003): Tbx1 is regulated by tissue-specific forkhead proteins through a common Sonic hedgehog-responsive enhancer, Genes Dev 17) [2], Seite 269-81.

Yoon, J. W.; Kita, Y.; Frank, D. J.; Majewski, R. R.; Konicek, B. A.; Nobrega, M. A.; Jacob, H.; Walterhouse, D. und Iannaccone, P. (2002): Gene expression profiling leads to identification of GLI1-binding elements in target genes and a role for multiple downstream pathways in GLI1-induced cell transformation, J Biol Chem 277) [7], Seite 5548-55.

© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 4.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am: