Bibliography

1.Cheung, T.K. and L.L. Poon, Biology of influenza a virus. Ann N Y Acad Sci, 2007. 1102: p. 1-25.

2.Krossoy, B., et al., The putative polymerase sequence of infectious salmon anemia virus suggests a new genus within the Orthomyxoviridae. J Virol, 1999. 73 (3): p. 2136-42.

3.Fouchier, R.A., et al., Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol, 2005. 79 (5): p. 2814-22.

4.Laver, W.G., et al., Influenza virus neuraminidase with hemagglutinin activity. Virology, 1984. 137 (2): p. 314-23.

5.Burleigh, L.M., et al., Influenza a viruses with mutations in the m1 helix six domain display a wide variety of morphological phenotypes. J Virol, 2005. 79 (2): p. 1262-70.

6.Elleman, C.J. and W.S. Barclay, The M1 matrix protein controls the filamentous phenotype of influenza A virus. Virology, 2004. 321 (1): p. 144-53.

7.Jin, H., et al., Influenza virus hemagglutinin and neuraminidase cytoplasmic tails control particle shape. EMBO J, 1997. 16 (6): p. 1236-47.

8.Roberts, P.C., R.A. Lamb, and R.W. Compans, The M1 and M2 proteins of influenza A virus are important determinants in filamentous particle formation. Virology, 1998. 240 (1): p. 127-37.

9.Roberts, P.C. and R.W. Compans, Host cell dependence of viral morphology. Proc Natl Acad Sci U S A, 1998. 95 (10): p. 5746-51.

10.Ruigrok, R.W., L.J. Calder, and S.A. Wharton, Electron microscopy of the influenza virus submembranal structure. Virology, 1989. 173 (1): p. 311-6.

11.Baudin, F., et al., Structure of influenza virus RNP. I. Influenza virus nucleoprotein melts secondary structure in panhandle RNA and exposes the bases to the solvent. EMBO J, 1994. 13 (13): p. 3158-65.

12.Jennings, P.A., et al., Does the higher order structure of the influenza virus ribonucleoprotein guide sequence rearrangements in influenza viral RNA? Cell, 1983. 34 (2): p. 619-27.

13.Murti, K.G., R.G. Webster, and I.M. Jones, Localization of RNA polymerases on influenza viral ribonucleoproteins by immunogold labeling. Virology, 1988. 164 (2): p. 562-6.

14.O'Neill, R.E., J. Talon, and P. Palese, The influenza virus NEP (NS2 protein) mediates the nuclear export of viral ribonucleoproteins. EMBO J, 1998. 17 (1): p. 288-96.

15.Jones, I.M., P.A. Reay, and K.L. Philpott, Nuclear location of all three influenza polymerase proteins and a nuclear signal in polymerase PB2. EMBO J, 1986. 5 (9): p. 2371-6.

16.Braam, J., I. Ulmanen, and R.M. Krug, Molecular model of a eucaryotic transcription complex: functions and movements of influenza P proteins during capped RNA-primed transcription. Cell, 1983. 34 (2): p. 609-18.

17.Plotch, S.J., et al., A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell, 1981. 23 (3): p. 847-58.

18.Plotch, S.J., M. Bouloy, and R.M. Krug, Transfer of 5'-terminal cap of globin mRNA to influenza viral complementary RNA during transcription in vitro. Proc Natl Acad Sci U S A, 1979. 76 (4): p. 1618-22.

19.Poole, E., et al., Functional domains of the influenza A virus PB2 protein: identification of NP- and PB1-binding sites. Virology, 2004. 321 (1): p. 120-33.

20.Poch, O., et al., Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J, 1989. 8 (12): p. 3867-74.

21.Gonzalez, S., T. Zurcher, and J. Ortin, Identification of two separate domains in the influenza virus PB1 protein involved in the interaction with the PB2 and PA subunits: a model for the viral RNA polymerase structure. Nucleic Acids Res, 1996. 24 (22): p. 4456-63.

22.Chen, W., et al., A novel influenza A virus mitochondrial protein that induces cell death. Nat Med, 2001. 7 (12): p. 1306-12.

23.Sanz-Ezquerro, J.J., et al., The PA influenza virus polymerase subunit is a phosphorylated protein. J Gen Virol, 1998. 79 ( Pt 3): p. 471-8.

24.de la Luna, S., C. Martinez, and J. Ortin, Molecular cloning and sequencing of influenza virus A/Victoria/3/75 polymerase genes: sequence evolution and prediction of possible functional domains. Virus Res, 1989. 13 (2): p. 143-55.

25.Fodor, E. and M. Smith, The PA subunit is required for efficient nuclear accumulation of the PB1 subunit of the influenza A virus RNA polymerase complex. J Virol, 2004. 78 (17): p. 9144-53.

26.Nieto, A., et al., Nuclear transport of influenza virus polymerase PA protein. Virus Res, 1992. 24 (1): p. 65-75.

27.Skehel, J.J., et al., Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. Proc Natl Acad Sci U S A, 1982. 79 (4): p. 968-72.

28.Vines, A., et al., The role of influenza A virus hemagglutinin residues 226 and 228 in receptor specificity and host range restriction. J Virol, 1998. 72 (9): p. 7626-31.

29.Steinhauer, D.A., Role of hemagglutinin cleavage for the pathogenicity of influenza virus. Virology, 1999. 258 (1): p. 1-20.

30.Webby, R.J., et al., Responsiveness to a pandemic alert: use of reverse genetics for rapid development of influenza vaccines. Lancet, 2004. 363 (9415): p. 1099-103.

31.Albo, C., A. Valencia, and A. Portela, Identification of an RNA binding region within the N-terminal third of the influenza A virus nucleoprotein. J Virol, 1995. 69 (6): p. 3799-806.

32.Shapiro, G.I. and R.M. Krug, Influenza virus RNA replication in vitro: synthesis of viral template RNAs and virion RNAs in the absence of an added primer. J Virol, 1988. 62 (7): p. 2285-90.

33.Martin, K. and A. Helenius, Nuclear transport of influenza virus ribonucleoproteins: the viral matrix protein (M1) promotes export and inhibits import. Cell, 1991. 67 (1): p. 117-30.

34.Whittaker, G., M. Bui, and A. Helenius, Nuclear trafficking of influenza virus ribonuleoproteins in heterokaryons. J Virol, 1996. 70 (5): p. 2743-56.

35.Neumann, G., M.R. Castrucci, and Y. Kawaoka, Nuclear import and export of influenza virus nucleoprotein. J Virol, 1997. 71 (12): p. 9690-700.

36.Varghese, J.N. and P.M. Colman, Three-dimensional structure of the neuraminidase of influenza virus A/Tokyo/3/67 at 2.2 A resolution. J Mol Biol, 1991. 221 (2): p. 473-86.

37.Liu, C., et al., Influenza type A virus neuraminidase does not play a role in viral entry, replication, assembly, or budding. J Virol, 1995. 69 (2): p. 1099-106.

38.Palese, P., et al., Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology, 1974. 61 (2): p. 397-410.

39.Li, S., et al., Glycosylation of neuraminidase determines the neurovirulence of influenza A/WSN/33 virus. J Virol, 1993. 67 (11): p. 6667-73.

40.Matrosovich, M.N., et al., Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. J Virol, 2004. 78 (22): p. 12665-7.

41.Ruigrok, R.W., et al., Membrane interaction of influenza virus M1 protein. Virology, 2000. 267 (2): p. 289-98.

42.Watanabe, K., et al., Mechanism for inhibition of influenza virus RNA polymerase activity by matrix protein. J Virol, 1996. 70 (1): p. 241-7.

43.Ye, Z., D. Robinson, and R.R. Wagner, Nucleus-targeting domain of the matrix protein (M1) of influenza virus. J Virol, 1995. 69 (3): p. 1964-70.

44.Huang, X., et al., Effect of influenza virus matrix protein and viral RNA on ribonucleoprotein formation and nuclear export. Virology, 2001. 287 (2): p. 405-16.

45.Arzt, S., et al., Structure of a knockout mutant of influenza virus M1 protein that has altered activities in membrane binding, oligomerisation and binding to NEP (NS2). Virus Res, 2004. 99 (2): p. 115-9.

46.Holsinger, L.J. and R.A. Lamb, Influenza virus M2 integral membrane protein is a homotetramer stabilized by formation of disulfide bonds. Virology, 1991. 183 (1): p. 32-43.

47.Pinto, L.H., L.J. Holsinger, and R.A. Lamb, Influenza virus M2 protein has ion channel activity. Cell, 1992. 69 (3): p. 517-28.

48.Neirynck, S., et al., A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat Med, 1999. 5 (10): p. 1157-63.

49.Wharton, S.A., et al., Role of virion M2 protein in influenza virus uncoating: specific reduction in the rate of membrane fusion between virus and liposomes by amantadine. J Gen Virol, 1994. 75 ( Pt 4): p. 945-8.

50.Liu, W., H. Li, and Y.H. Chen, N-terminus of M2 protein could induce antibodies with inhibitory activity against influenza virus replication. FEMS Immunol Med Microbiol, 2003. 35 (2): p. 141-6.

51.Watanabe, T., et al., Influenza A virus can undergo multiple cycles of replication without M2 ion channel activity. J Virol, 2001. 75 (12): p. 5656-62.

52.Takeda, M., et al., Influenza a virus M2 ion channel activity is essential for efficient replication in tissue culture. J Virol, 2002. 76 (3): p. 1391-9.

53.Alonso-Caplen, F.V. and R.M. Krug, Regulation of the extent of splicing of influenza virus NS1 mRNA: role of the rates of splicing and of the nucleocytoplasmic transport of NS1 mRNA. Mol Cell Biol, 1991. 11 (2): p. 1092-8.

54.Qiu, Y. and R.M. Krug, The influenza virus NS1 protein is a poly(A)-binding protein that inhibits nuclear export of mRNAs containing poly(A). J Virol, 1994. 68 (4): p. 2425-32.

55.Marion, R.M., et al., Influenza virus NS1 protein interacts with viral transcription-replication complexes in vivo. J Gen Virol, 1997. 78 ( Pt 10): p. 2447-51.

56.Nemeroff, M.E., et al., Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3'end formation of cellular pre-mRNAs. Mol Cell, 1998. 1 (7): p. 991-1000.

57.Chen, Z., Y. Li, and R.M. Krug, Influenza A virus NS1 protein targets poly(A)-binding protein II of the cellular 3'-end processing machinery. EMBO J, 1999. 18 (8): p. 2273-83.

58.de la Luna, S., et al., Influenza virus NS1 protein enhances the rate of translation initiation of viral mRNAs. J Virol, 1995. 69 (4): p. 2427-33.

59.Cheung, C.Y., et al., Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease? Lancet, 2002. 360 (9348): p. 1831-7.

60.Richardson, J.C. and R.K. Akkina, NS2 protein of influenza virus is found in purified virus and phosphorylated in infected cells. Arch Virol, 1991. 116 (1-4): p. 69-80.

61.Neumann, G., M.T. Hughes, and Y. Kawaoka, Influenza A virus NS2 protein mediates vRNP nuclear export through NES-independent interaction with hCRM1. EMBO J, 2000. 19 (24): p. 6751-8.

62.Herz, C., et al., Influenza virus, an RNA virus, synthesizes its messenger RNA in the nucleus of infected cells. Cell, 1981. 26 (3 Pt 1): p. 391-400.

63.Desselberger, U., et al., The 3' and 5'-terminal sequences of influenza A, B and C virus RNA segments are highly conserved and show partial inverted complementarity. Gene, 1980. 8 (3): p. 315-28.

64.Hay, A.J., J.J. Skehel, and J. McCauley, Characterization of influenza virus RNA complete transcripts. Virology, 1982. 116 (2): p. 517-22.

65.Robertson, J.S., M. Schubert, and R.A. Lazzarini, Polyadenylation sites for influenza virus mRNA. J Virol, 1981. 38 (1): p. 157-63.

66.Shapiro, G.I., T. Gurney, Jr., and R.M. Krug, Influenza virus gene expression: control mechanisms at early and late times of infection and nuclear-cytoplasmic transport of virus-specific RNAs. J Virol, 1987. 61 (3): p. 764-73.

67.Bouloy, M., S.J. Plotch, and R.M. Krug, Both the 7-methyl and the 2'-O-methyl groups in the cap of mRNA strongly influence its ability to act as primer for influenza virus RNA transcription. Proc Natl Acad Sci U S A, 1980. 77 (7): p. 3952-6.

68.Shih, S.R. and R.M. Krug, Surprising function of the three influenza viral polymerase proteins: selective protection of viral mRNAs against the cap-snatching reaction catalyzed by the same polymerase proteins. Virology, 1996. 226 (2): p. 430-5.

69.Fodor, E., D.C. Pritlove, and G.G. Brownlee, The influenza virus panhandle is involved in the initiation of transcription. J Virol, 1994. 68 (6): p. 4092-6.

70.Plotch, S.J. and R.M. Krug, Influenza virion transcriptase: synthesis in vitro of large, polyadenylic acid-containing complementary RNA. J Virol, 1977. 21 (1): p. 24-34.

71.Singer, M.F. and P. Leder, Messenger RNA: an evaluation. Annu Rev Biochem, 1966. 35: p. 195-230.

72.Shimizu, K., et al., Regulation of influenza virus RNA polymerase activity by cellular and viral factors. Nucleic Acids Res, 1994. 22 (23): p. 5047-53.

73.Vreede, F.T., T.E. Jung, and G.G. Brownlee, Model suggesting that replication of influenza virus is regulated by stabilization of replicative intermediates. J Virol, 2004. 78 (17): p. 9568-72.

74.Olson, A.C., E. Rosenblum, and R.D. Kuchta, Regulation of influenza RNA polymerase activity and the switch between replication and transcription by the concentrations of the vRNA 5' end, the cap source, and the polymerase. Biochemistry, 2010. 49 (47): p. 10208-15.

75.Bouvier, N.M. and P. Palese, The biology of influenza viruses. Vaccine, 2008. 26 Suppl 4: p. D49-53.

76.Tumpey, T.M., et al., Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science, 2005. 310 (5745): p. 77-80.

77.Gambotto, A., et al., Human infection with highly pathogenic H5N1 influenza virus. Lancet, 2008. 371 (9622): p. 1464-75.

78.Snijder, B., et al., Population context determines cell-to-cell variability in endocytosis and virus infection. Nature, 2009. 461 (7263): p. 520-3.

79.Shapira, S.D., et al., A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection. Cell, 2009. 139 (7): p. 1255-67.

80.Davey, N.E., G. Trave, and T.J. Gibson, How viruses hijack cell regulation. Trends Biochem Sci, 2011. 36 (3): p. 159-69.

81.Watanabe, T., S. Watanabe, and Y. Kawaoka, Cellular networks involved in the influenza virus life cycle. Cell Host Microbe, 2010. 7 (6): p. 427-39.

82.Konig, R., et al., Human host factors required for influenza virus replication. Nature, 2010. 463 (7282): p. 813-7.

83.Karlas, A., et al., Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature, 2010. 463 (7282): p. 818-22.

84.Krishnan, M.N., et al., RNA interference screen for human genes associated with West Nile virus infection. Nature, 2008. 455 (7210): p. 242-5.

85.Brass, A.L., et al., The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell, 2009. 139 (7): p. 1243-54.

86.Le Quesne J, C.C., Micro-RNAs and breast cancer. Mol Oncol, 2010. 4 (3): p. 230-41.

87.Bhatti, I., et al., Small RNA: a large contributor to carcinogenesis? J Gastrointest Surg, 2009. 13 (7): p. 1379-88.

88.Singh, S.K., et al., MicroRNAs--micro in size but macro in function. FEBS J, 2008. 275 (20): p. 4929-44.

89.Kota, S.K. and S. Balasubramanian, Cancer therapy via modulation of micro RNA levels: a promising future. Drug Discov Today, 2010. 15 (17-18): p. 733-40.

91.Kabesch, M., S. Michel, and J. Tost, Epigenetic mechanisms and the relationship to childhood asthma. Eur Respir J, 2010. 36 (4): p. 950-61.

92.Schlauder, S.M., A. Ahmad, and T.D. Horn, Dicer and micro-RNAs in cutaneous disease. J Cutan Pathol, 2009. 36 (5): p. 607-10.

93.Visone, R., F. Petrocca, and C.M. Croce, Micro-RNAs in gastrointestinal and liver disease. Gastroenterology, 2008. 135 (6): p. 1866-9.

94.Hudder, A. and R.F. Novak, miRNAs: effectors of environmental influences on gene expression and disease. Toxicol Sci, 2008. 103 (2): p. 228-40.

95.Bichenkova, E.V., et al., DNA-mounted self-assembly: new approaches for genomic analysis and SNP detection. Biochim Biophys Acta, 2011. 1809 (1): p. 1-23.

96.Sethi, S., Molecular diagnosis of respiratory tract infection in acute exacerbations of chronic obstructive pulmonary disease. Clin Infect Dis, 2011. 52 Suppl 4: p. S290-5.

97.Stramer, S.L., et al., Nucleic acid testing to detect HBV infection in blood donors. N Engl J Med, 2011. 364 (3): p. 236-47.

98.Oh, J.K., et al., Type-specific human papillomavirus distribution in invasive cervical cancer in Korea, 1958-2004. Asian Pac J Cancer Prev, 2010. 11 (4): p. 993-1000.

99.Li, X., et al., Detection and subtyping of influenza A virus based on a short oligonucleotide microarray. Diagn Microbiol Infect Dis, 2009. 65 (3): p. 261-70.

100.Huang, Y., et al., Multiplex assay for simultaneously typing and subtyping influenza viruses by use of an electronic microarray. J Clin Microbiol, 2009. 47 (2): p. 390-6.

101.Ge, Y., et al., Detection of novel swine origin influenza A virus (H1N1) by real-time nucleic acid sequence-based amplification. J Virol Methods, 2009.

102.Dong, H., et al., Detection of human novel influenza A (H1N1) viruses using multi-fluorescent real-time RT-PCR. Virus Res. 147 (1): p. 85-90.

103.Jayagopal, A., et al., Hairpin DNA-functionalized gold colloids for the imaging of mRNA in live cells. J Am Chem Soc, 2010. 132 (28): p. 9789-96.

104.Bao, G., W.J. Rhee, and A. Tsourkas, Fluorescent probes for live-cell RNA detection. Annu Rev Biomed Eng, 2009. 11: p. 25-47.

105.Rhee, W.J. and G. Bao, Simultaneous detection of mRNA and protein stem cell markers in live cells. BMC Biotechnol, 2009. 9: p. 30.

106.Raj, A., et al., Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods, 2008. 5 (10): p. 877-9.

107.Manolakos, E., et al., Characterization of 23 small supernumerary marker chromosomes detected at pre-natal diagnosis: The value of fluorescence in situ hybridization. Mol Med Report, 2010. 3 (6): p. 1015-22.

108.Santangelo, P.J., Molecular beacons and related probes for intracellular RNA imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2 (1): p. 11-9.

109.Kihara, T., et al., Development of a novel method to detect intrinsic mRNA in a living cell by using a molecular beacon-immobilized nanoneedle. Biosens Bioelectron, 2010. 26 (4): p. 1449-54.

110.Tsien, R.Y., Constructing and exploiting the fluorescent protein paintbox (Nobel Lecture). Angew Chem Int Ed Engl, 2009. 48 (31): p. 5612-26.

111.Snapp, E.L., Fluorescent proteins: a cell biologist's user guide. Trends Cell Biol, 2009. 19 (11): p. 649-55.

112.Bin Wu, K.D.P., Timothe´e Lionnet, Robert H Singer and and V.V. Verkhusha, Modern fluorescent proteins and imaging technologies to study   gene expression,nuclear localization,and dynamics. Current Opinion in Cell Biology, 2011. 23: p. 1-8.

113.Raj, A. and A. van Oudenaarden, Single-molecule approaches to stochastic gene expressionAnnu Rev Biophys, 2009. 38: p. 255-70.

114.Bertrand, E., et al., Localization of ASH1 mRNA particles in living yeast. Mol Cell, 1998. 2 (4): p. 437-45.

115.Beach, D.L., E.D. Salmon, and K. Bloom, Localization and anchoring of mRNA in budding yeast. Curr Biol, 1999. 9 (11): p. 569-78.

116.Weil, T.T., R.M. Parton, and I. Davis, Making the message clear: visualizing mRNA localization. Trends Cell Biol, 2010. 20 (7): p. 380-90.

117.Golding, I., et al., Real-time kinetics of gene activity in individual bacteria. Cell, 2005. 123 (6): p. 1025-36.

118.Kepler, T.B. and T.C. Elston, Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys J, 2001. 81 (6): p. 3116-36.

119.Raj, A., et al., Stochastic mRNA synthesis in mammalian cells. PLoS Biol, 2006. 4 (10): p. e309.

120.Lennon, F.E., et al., Use of molecular beacons to image effects of titanium surface microstructure on beta1 integrin expression in live osteoblast-like cells. Biomaterials, 2010. 31 (30): p. 7640-7.

121.Wang, W., et al., Imaging and characterizing influenza A virus mRNA transport in living cells. Nucleic Acids Res, 2008. 36 (15): p. 4913-28.

122.Alan, L., et al., Fluorescent in situ hybridization of mitochondrial DNA and RNA. Acta Biochim Pol, 2010. 57 (4): p. 403-8.

123.Bratu, D.P., et al., Visualizing the distribution and transport of mRNAs in living cells. Proc Natl Acad Sci U S A, 2003. 100 (23): p. 13308-13.

124.Chen, A.K., M.A. Behlke, and A. Tsourkas, Avoiding false-positive signals with nuclease-vulnerable molecular beacons in single living cells. Nucleic Acids Res, 2007. 35 (16): p. e105.

125.Tyagi, S. and F.R. Kramer, Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol, 1996. 14 (3): p. 303-8.

126.Bonnet, G., et al., Thermodynamic basis of the enhanced specificity of structured DNA probes. Proc Natl Acad Sci U S A, 1999. 96 (11): p. 6171-6.

127.Li, Y., X. Zhou, and D. Ye, Molecular beacons: an optimal multifunctional biological probe. Biochem Biophys Res Commun, 2008. 373 (4): p. 457-61.

128.Sandhya, S., W. Chen, and A. Mulchandani, Molecular beacons: a real-time polymerase chain reaction assay for detecting Escherichia coli from fresh produce and water. Anal Chim Acta, 2008. 614 (2): p. 208-12.

129.Vet, J.A. and S.A. Marras, Design and optimization of molecular beacon real-time polymerase chain reaction assays. Methods Mol Biol, 2005. 288: p. 273-90.

130.Ye, Q., et al., Real-time fluorescent quantitative immuno-PCR method for determination of fluoranthene in water samples with a molecular beacon. J Environ Sci (China), 2010. 22 (5): p. 796-800.

131.Oh, Y.H., et al., Rapid detection of the epidermal growth factor receptor mutation in non-small-cell lung cancer for analysis of acquired resistance using molecular beacons. J Mol Diagn, 2010. 12 (5): p. 644-52.

132.Meng, X.C., et al., Rapid and direct quantitative detection of viable bifidobacteria in probiotic yogurt by combination of ethidium monoazide and real-time PCR using a molecular beacon approach. J Dairy Res, 2010. 77 (4): p. 498-504.

133.Shi, M.M., Enabling large-scale pharmacogenetic studies by high-throughput mutation detection and genotyping technologies. Clin Chem, 2001. 47 (2): p. 164-72.

134.Wabuyele, M.B., et al., Approaching real-time molecular diagnostics: single-pair fluorescence resonance energy transfer (spFRET) detection for the analysis of low abundant point mutations in K-ras oncogenes. J Am Chem Soc, 2003. 125 (23): p. 6937-45.

135.Li, Y.Q., et al., Simultaneous detection of dual single-base mutations by capillary electrophoresis using quantum dot-molecular beacon probe. Biosens Bioelectron, 2011. 26 (5): p. 2317-22.

136.Liu, X.P., J.L. Hou, and J.H. Liu, A novel single nucleotide polymorphism detection of a double-stranded DNA target by a ribonucleotide-carrying molecular beacon and thermostable RNase HII. Anal Biochem, 2010. 398 (1): p. 83-92.

137.Tan W, F.X., Li J, Liu X, Molecular beacons: a novel DNA probe for nucleic acid and protein studies. Chemistry, 2000. 6 (7): p. 1107-11.

138.Riches, L.C., A.M. Lynch, and N.J. Gooderham, A molecular beacon approach to detecting RAD52 expression in response to DNA damage in human cells. Toxicol In Vitro, 2010. 24 (2): p. 652-60.

139.Molenaar, C., et al., Linear 2' O-Methyl RNA probes for the visualization of RNA in living cells. Nucleic Acids Res, 2001. 29 (17): p. E89-9.

140.Dirks, R.W., C. Molenaar, and H.J. Tanke, Methods for visualizing RNA processing and transport pathways in living cells. Histochem Cell Biol, 2001. 115 (1): p. 3-11.

141.Wu, Y., et al., Nucleic acid beacons for long-term real-time intracellular monitoring. Anal Chem, 2008. 80 (8): p. 3025-8.

142.Kubota, T., et al., Hybridization-sensitive fluorescent probe for long-term monitoring of intracellular RNA. Bioconjug Chem, 2009. 20 (6): p. 1256-61.

143.Cui, Z.Q., et al., Visualizing the dynamic behavior of poliovirus plus-strand RNA in living host cells. Nucleic Acids Res, 2005. 33 (10): p. 3245-52.

144.Meyvis, T.K., et al., Fluorescence recovery after photobleaching: a versatile tool for mobility and interaction measurements in pharmaceutical research. Pharm Res, 1999. 16 (8): p. 1153-62.

145.Bottiroli, G., A.C. Croce, and R. Ramponi, Fluorescence resonance energy transfer imaging as a tool for in situ evaluation of cell morphofunctional characteristics. J Photochem Photobiol B, 1992. 12 (4): p. 413-6.

146.Förster, T., Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik. Annalen der Physik, 1948. 437 (1-2): p. 55–75.

147.Vet, J.A., et al., Multiplex detection of four pathogenic retroviruses using molecular beacons. Proc Natl Acad Sci U S A, 1999. 96 (11): p. 6394-9.

148.Marras, S.A., F.R. Kramer, and S. Tyagi, Multiplex detection of single-nucleotide variations using molecular beacons. Genet Anal, 1999. 14 (5-6): p. 151-6.

149.Nielsen, P.E., et al., Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science, 1991. 254 (5037): p. 1497-500.

150.Egholm, M., et al., PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature, 1993. 365 (6446): p. 566-8.

151.Agrawal, S., Antisense oligonucleotides: towards clinical trials. Trends Biotechnol, 1996. 14 (10): p. 376-87.

152.Good, L. and P.E. Nielsen, Progress in developing PNA as a gene-targeted drug. Antisense Nucleic Acid Drug Dev, 1997. 7 (4): p. 431-7.

153.Demidov, V.V., et al., Stability of peptide nucleic acids in human serum and cellular extracts. Biochem Pharmacol, 1994. 48 (6): p. 1310-3.

154.Knudsen, H. and P.E. Nielsen, Antisense properties of duplex- and triplex-forming PNAs. Nucleic Acids Res, 1996. 24 (3): p. 494-500.

155.Good, L. and P.E. Nielsen, Antisense inhibition of gene expression in bacteria by PNA targeted to mRNA. Nat Biotechnol, 1998. 16 (4): p. 355-8.

156.Good, L. and P.E. Nielsen, Inhibition of translation and bacterial growth by peptide nucleic acid targeted to ribosomal RNA. Proc Natl Acad Sci U S A, 1998. 95 (5): p. 2073-6.

157.Marwick, C., First "antisense" drug will treat CMV retinitis. JAMA, 1998. 280 (10): p. 871.

158.Bonham, M.A., et al., An assessment of the antisense properties of RNase H-competent and steric-blocking oligomers. Nucleic Acids Res, 1995. 23 (7): p. 1197-203.

159.Nielsen, P.E., M. Egholm, and O. Buchardt, Peptide nucleic acid (PNA). A DNA mimic with a peptide backbone. Bioconjug Chem, 1994. 5 (1): p. 3-7.

160.Doyle, D.F., et al., Inhibition of gene expression inside cells by peptide nucleic acids: effect of mRNA target sequence, mismatched bases, and PNA length. Biochemistry, 2001. 40 (1): p. 53-64.

161.Tian, X., et al., Receptor-mediated internalization of chelator-PNA-peptide hybridization probes for radioimaging or magnetic resonance imaging of oncogene mRNAs in tumours. Biochem Soc Trans, 2007. 35 (Pt 1): p. 72-6.

162.Tian, X., et al., Tumor-targeting peptide-PNA-peptide chimeras for imaging overexpressed oncogene mRNAs. Nucleosides Nucleotides Nucleic Acids, 2005. 24 (5-7): p. 1085-91.

163.Rao, P.S., et al., 99mTc-peptide-peptide nucleic acid probes for imaging oncogene mRNAs in tumours. Nucl Med Commun, 2003. 24 (8): p. 857-63.

164.Tian, X., et al., Noninvasive molecular imaging of MYC mRNA expression in human breast cancer xenografts with a [99mTc]peptide-peptide nucleic acid-peptide chimera. Bioconjug Chem, 2005. 16 (1): p. 70-9.

165.Chakrabarti, A., et al., Radiohybridization PET imaging of KRAS G12D mRNA expression in human pancreas cancer xenografts with [(64)Cu]DO3A-peptide nucleic acid-peptide nanoparticles. Cancer Biol Ther, 2007. 6 (6): p. 948-56.

166.Su, W., et al., Synthesis and cellular uptake of a MR contrast agent coupled to an antisense peptide nucleic acid--cell- penetrating peptide conjugate. Contrast Media Mol Imaging, 2007. 2 (1): p. 42-9.

167.Joshi, R., et al., MR contrast agent composed of cholesterol and peptide nucleic acids: design, synthesis and cellular uptake. Bioorg Med Chem Lett, 2010. 20 (7): p. 2238-41.

168.Heckl, S., et al., Intracellular visualization of prostate cancer using magnetic resonance imaging. Cancer Res, 2003. 63 (16): p. 4766-72.

169.Paroo, Z. and D.R. Corey, Imaging gene expression using oligonucleotides and peptide nucleic acids. J Cell Biochem, 2003. 90 (3): p. 437-42.

170.Seitz, O., F. Bergmann, and D. Heindl, A Convergent Strategy for the Modification of Peptide Nucleic Acids: Novel Mismatch-Specific PNA-Hybridization Probes. Angew Chem Int Ed Engl, 1999. 38 (15): p. 2203-2206.

171.Lee, L.G., C.H. Chen, and L.A. Chiu, Thiazole orange: a new dye for reticulocyte analysis. Cytometry, 1986. 7 (6): p. 508-17.

172.Nygren, J., N. Svanvik, and M. Kubista, The interactions between the fluorescent dye thiazole orange and DNA. Biopolymers, 1998. 46 (1): p. 39-51.

173.Rye, H.S., et al., Stable fluorescent complexes of double-stranded DNA with bis-intercalating asymmetric cyanine dyes: properties and applications. Nucleic Acids Res, 1992. 20 (11): p. 2803-12.

174.Privat, E., et al., Oligonucleotide-conjugated thiazole orange probes as "light-up" probes for messenger ribonucleic acid molecules in living cells. Photochem Photobiol, 2001. 74 (4): p. 532-41.

175.Berndl, S., et al., Imaging of RNA delivery to cells by thiazole orange as a fluorescent RNA base substitution. Org Biomol Chem, 2010. 8 (5): p. 997-9.

176.Kohler, O., D.V. Jarikote, and O. Seitz, Forced intercalation probes (FIT Probes): thiazole orange as a fluorescent base in peptide nucleic acids for homogeneous single-nucleotide-polymorphism detection. Chembiochem, 2005. 6 (1): p. 69-77.

177.Kohler, O. and O. Seitz, Thiazole orange as fluorescent universal base in peptide nucleic acids. Chem Commun (Camb), 2003 (23): p. 2938-9.

178.Jarikote, D.V., Eur. J. Org. Chem. , 2005: p. 3187-3195.

179.Bethge, L., D.V. Jarikote, and O. Seitz, New cyanine dyes as base surrogates in PNA: forced intercalation probes (FIT-probes) for homogeneous SNP detection. Bioorg Med Chem, 2008. 16 (1): p. 114-25.

180.Jarikote, D.V., et al., Exploring base-pair-specific optical properties of the DNA stain thiazole orange. Chemistry, 2007. 13 (1): p. 300-10.

181.Karunakaran, V., et al., Large dynamic Stokes shift of DNA intercalation dye Thiazole Orange has contribution from a high-frequency mode. J Am Chem Soc, 2006. 128 (9): p. 2954-62.

182.Socher, E., et al. , FIT probes: peptide nucleic acid probes with a fluorescent base surrogate enable real-time DNA quantification and single nucleotide polymorphism discovery. Anal Biochem, 2008. 375 (2): p. 318-30.

183.Kummer S, K.A., Socher E, Bethge L, Herrmann A, Seitz O, Fluorescence imaging of influenza H1N1 mRNA in living infected cells using single-chromophore FIT-PNA. Angew Chem Int Ed Engl, 2011. 50 (8): p. 1931-4.

184.O'Farrell, P.H., High resolution two-dimensional electrophoresis of proteins. J Biol Chem, 1975. 250 (10): p. 4007-21.

185.Patton, W.F. and J.M. Beechem, Rainbow's end: the quest for multiplexed fluorescence quantitative analysis in proteomics. Curr Opin Chem Biol, 2002. 6 (1): p. 63-9.

186.Ong, S.E., et al., Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics, 2002. 1 (5): p. 376-86.

187.Abbott, A., A post-genomic challenge: learning to read patterns of protein synthesis. Nature, 1999. 402 (6763): p. 715-20.

188.Schnolzer, M., P. Jedrzejewski, and W.D. Lehmann, Protease-catalyzed incorporation of 18O into peptide fragments and its application for protein sequencing by electrospray and matrix-assisted laser desorption/ionization mass spectrometry. Electrophoresis, 1996. 17 (5): p. 945-53.

189.Lahm, H.W. and H. Langen, Mass spectrometry: a tool for the identification of proteins separated by gels. Electrophoresis, 2000. 21 (11): p. 2105-14.

190.Oda, Y., et al., Accurate quantitation of protein expression and site-specific phosphorylation. Proc Natl Acad Sci U S A, 1999. 96 (12): p. 6591-6.

191.Gygi, S.P., et al., Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol, 1999. 17 (10): p. 994-9.

192.Mann, S.-E.O.M., A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). NATURE PROTOCOLS, 2006. 1 (6).

193.Amanchy, R., D.E. Kalume, and A. Pandey, Stable isotope labeling with amino acids in cell culture (SILAC) for studying dynamics of protein abundance and posttranslational modifications. Sci STKE, 2005. 2005 (267): p. pl2.

194.Pan C, K.C., Bohl S, Klingmueller U, Mann M., Comparative proteomic phenotyping of cell lines and primary cells to assess preservation of cell type-specific functions. Mol Cell Proteomics, 2009. 8 (3): p. 443-50.

195.Cuomo, A., et al., SILAC-based proteomic analysis to dissect the "histone modification signature" of human breast cancer cells. Amino Acids, 2010.

196.Harsha, H.C., H. Molina, and A. Pandey, Quantitative proteomics using stable isotope labeling with amino acids in cell culture. Nat Protoc, 2008. 3 (3): p. 505-16.

197.Soufi, B., et al., Stable isotope labeling by amino acids in cell culture (SILAC) applied to quantitative proteomics of Bacillus subtilis. J Proteome Res, 2010. 9 (7): p. 3638-46.

198.Sury, M.D., J.X. Chen, and M. Selbach, The SILAC fly allows for accurate protein quantification in vivo. Mol Cell Proteomics, 2010. 9 (10): p. 2173-83.

199.Walther, D.M. and M. Mann, Accurate quantification of more than 4000 mouse tissue proteins reveals minimal proteome changes during aging. Mol Cell Proteomics, 2011. 10 (2): p. M110 004523.

200.Emmott, E., et al., Quantitative proteomics using stable isotope labeling with amino acids in cell culture reveals changes in the cytoplasmic, nuclear, and nucleolar proteomes in Vero cells infected with the coronavirus infectious bronchitis virus. Mol Cell Proteomics, 2010. 9 (9): p. 1920-36.

201.Emmott, E., et al., Elucidation of the avian nucleolar proteome by quantitative proteomics using SILAC and changes in cells infected with the coronavirus infectious bronchitis virus. Proteomics, 2010. 10 (19): p. 3558-62.

202.Munday, D.C., J.A. Hiscox, and J.N. Barr, Quantitative proteomic analysis of A549 cells infected with human respiratory syncytial virus subgroup B using SILAC coupled to LC-MS/MS. Proteomics, 2010. 10 (23): p. 4320-34.

203.Korte, T., et al., Transient changes of the conformation of hemagglutinin of influenza virus at low pH detected by time-resolved circular dichroism spectroscopy. J Biol Chem, 1997. 272 (15): p. 9764-70.

204.Zuker, M., J.A. Jaeger, and D.H. Turner, A comparison of optimal and suboptimal RNA secondary structures predicted by free energy minimization with structures determined by phylogenetic comparison. Nucleic Acids Res, 1991. 19 (10): p. 2707-14.

205.Washburn, M.P., Driving biochemical discovery with quantitative proteomics. Trends Biochem Sci, 2011. 36 (3): p. 170-7.

206.Falcon S, G.R., Using GOstats to test gene lists for GO term association. Bioinformatics, 2007. 23 (2).

207.Futschik ME, C.B., Noise-robust soft clustering of gene expression time-course data. J Bioinform Comput Biol, 2005. 3 (4): p. 965-88.

208.Gentleman RC, C.V., Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J, Bioconductor: open software development for computational biology and bioinformatics. Genome Biol, 2004. 5 (10): p. R80.

209.Stray, S.J. and G.M. Air, Apoptosis by influenza viruses correlates with efficiency of viral mRNA synthesis. Virus Res, 2001. 77 (1): p. 3-17.

210.Rott, R., et al., Studies on the adaptation of influenza viruses to MDCK cells. EMBO J, 1984. 3 (13): p. 3329-32.

211.Martin, K.C. and A. Ephrussi, mRNA localization: gene expression in the spatial dimension. Cell, 2009. 136 (4): p. 719-30.

212.Silvester, N.C., et al., Effect of terminal amino acids on the stability and specificity of PNA-DNA hybridisation. Org Biomol Chem, 2007. 5 (6): p. 917-23.

213.Atkins, G.J., B.J. Sheahan, and N.J. Dimmock, Semliki Forest virus infection of mice: a model for genetic and molecular analysis of viral pathogenicity. J Gen Virol, 1985. 66 ( Pt 3): p. 395-408.

214.Roman, L.M. and H. Garoff, Alteration of the cytoplasmic domain of the membrane-spanning glycoprotein p62 of Semliki Forest virus does not affect its polar distribution in established lines of Madin-Darby canine kidney cells. J Cell Biol, 1986. 103 (6 Pt 2): p. 2607-18.

215.Blondel, D., G.G. Harmison, and M. Schubert, Role of matrix protein in cytopathogenesis of vesicular stomatitis virus. J Virol, 1990. 64 (4): p. 1716-25.

216.Etchison, J.R., J.S. Robertson, and D.F. Summers, Host cell-dependent differences in the oligosaccharide moieties of the VSV G protein. J Gen Virol, 1981. 57 (Pt 1): p. 43-52.

217.Rasmussen, T.B., et al., Quantitative multiplex assay for simultaneous detection and identification of Indiana and New Jersey serotypes of vesicular stomatitis virus. J Clin Microbiol, 2005. 43 (1): p. 356-62.

218.Rodriguez, L.L., Emergence and re-emergence of vesicular stomatitis in the United States. Virus Res, 2002. 85 (2): p. 211-9.

219.Takacs, A.M. and A.K. Banerjee, Inhibition of vesicular stomatitis virus in cells constitutively expressing an antisense RNA targeted against the virus RNA polymerase gene. J Gen Virol, 1997. 78 ( Pt 1): p. 125-9.

220.Hwang, L.N., N. Englund, and A.K. Pattnaik, Polyadenylation of vesicular stomatitis virus mRNA dictates efficient transcription termination at the intercistronic gene junctions. J Virol, 1998. 72 (3): p. 1805-13.

221.Lemaitre, M., B. Bayard, and B. Lebleu, Specific antiviral activity of a poly(L-lysine)-conjugated oligodeoxyribonucleotide sequence complementary to vesicular stomatitis virus N protein mRNA initiation site. Proc Natl Acad Sci U S A, 1987. 84 (3): p. 648-52.

222.Li, T. and A.K. Pattnaik, Replication signals in the genome of vesicular stomatitis virus and its defective interfering particles: identification of a sequence element that enhances DI RNA replication. Virology, 1997. 232 (2): p. 248-59.

223.Garcia-Robles, I., et al., Interaction of influenza virus proteins with nucleosomes. Virology, 2005. 332 (1): p. 329-36.

224.Takizawa, N., et al., Association of functional influenza viral proteins and RNAs with nuclear chromatin and sub-chromatin structure. Microbes Infect, 2006. 8 (3): p. 823-33.

225.Hahn, Y., et al., Duplication of genes encoding non-clathrin coat protein gamma-COP in vertebrate, insect and plant evolution. FEBS Lett, 2000. 482 (1-2): p. 31-6.

226.Coughlin, P.B., T. Tetaz, and H.H. Salem, Identification and purification of a novel serine proteinase inhibitor. J Biol Chem, 1993. 268 (13): p. 9541-7.

227.Chen, K.C., et al., Mapping of the gene encoding the multifunctional protein carrying out the first three steps of pyrimidine biosynthesis to human chromosome 2. Hum Genet, 1989. 82 (1): p. 40-4.

228.Wang, X., et al., Phosphorylation of splicing factor SF1 on Ser20 by cGMP-dependent protein kinase regulates spliceosome assembly. EMBO J, 1999. 18 (16): p. 4549-59.

229.Vasudevan, S., N.G. Starostina, and E.T. Kipreos, The Caenorhabditis elegans cell-cycle regulator ZYG-11 defines a conserved family of CUL-2 complex components. EMBO Rep, 2007. 8 (3): p. 279-86.

230.Fang, H., Y. Shen, and J.S. Taylor, Native mRNA antisense-accessible sites library for the selection of antisense oligonucleotides, PNAs, and siRNAs. RNA, 2010. 16 (7): p. 1429-35.

231.Saiki, R.K., et al., Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 1985. 230 (4732): p. 1350-4.

232.Higuchi, R., et al., Simultaneous amplification and detection of specific DNA sequences. Biotechnology (N Y), 1992. 10 (4): p. 413-7.

233.Bustin, S.A., Real-time, fluorescence-based quantitative PCR: a snapshot of current procedures and preferences. Expert Rev Mol Diagn, 2005. 5 (4): p. 493-8.

234.Buh Gasparic, M., et al., Comparison of different real-time PCR chemistries and their suitability for detection and quantification of genetically modified organisms. BMC Biotechnol, 2008. 8: p. 26.

235.Costa, J.M., et al., Chimeric LNA/DNA probes as a detection system for real-time PCR. Clin Biochem, 2004. 37 (10): p. 930-2.

236.Lamb, R.A.K., R. M. , Orthomyxoviridae: The viruses and their replication. Fields In Virology, 1996. 3: p. 1353-1445

237.Svanvik, N., et al., Free-probe fluorescence of light-up probes. J Am Chem Soc, 2001. 123 (5): p. 803-9.

238.Morris, S.J., et al., Role of neuraminidase in influenza virus-induced apoptosis. J Gen Virol, 1999. 80 ( Pt 1): p. 137-46.

239.Liu, B.R., et al., Cell-penetrating peptide-functionalized quantum dots for intracellular delivery. J Nanosci Nanotechnol, 2010. 10 (12): p. 7897-905.

240.Shim, M.S. and Y.J. Kwon, Efficient and targeted delivery of siRNA in vivo. FEBS J, 2010. 277 (23): p. 4814-27.

241.Futaki, S., et al., Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem, 2001. 276 (8): p. 5836-40.

242.Hu, J.W., et al., Protein transport in human cells mediated by covalently and noncovalently conjugated arginine-rich intracellular delivery peptides. Peptides, 2009. 30 (9): p. 1669-78.

243.Coombs, K.M., et al., Quantitative proteomic analyses of influenza virus-infected cultured human lung cells. J Virol, 2010. 84 (20): p. 10888-906.

244.Emmott, E., et al., Quantitative proteomics using SILAC coupled to LC-MS/MS reveals changes in the nucleolar proteome in influenza A virus-infected cells. J Proteome Res, 2010. 9 (10): p. 5335-45.

245.Tilsner, J. and C. Flors, FIT for Purpose: PNA-Based Probes Enable mRNA Imaging in Living Cells. Chembiochem, 2011. 12 (7): p. 1007-9.

246.Schwanhausser, B., et al., Global analysis of cellular protein translation by pulsed SILAC. Proteomics, 2009. 9 (1): p. 205-9.


© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 4.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am:
03.05.2012