Literaturverzeichnis

1  Iwamoto, HS et al.: Effects of birth-related events on blood flow distribution. Pediatr Res 1987; 22: 634-640

2  Gibson ,DL et al.: Retinopathy of prematurity-induced blindness : birth weight-specific survival and the new epidemic. Pediatrics 1990; 86: 405-412

3  Saugstad, OD : Chronic lung disease: oxygen dogma revited. Acta Paediatr 2001; 90: 113-115

4  Weinberger, B et al.: Oxygen toxicity in premature infants. Toxicol Appl Pharmacol 2002; 181:60-67

5  Harman, D : Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956; 11 : 298-300

6  Forster, MJ et al.: Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain. Proc Natl Acad Sci USA 1996 ; 93: 4765-4769

7  Gabbita, SP et al.: Increased nuclear DNA oxidation in the brain in Alzheimers’s disease. J Neurochem 1998; 71: 2034-2040

8  Mecocci, P et al.: Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann Neurol 1994; 36: 747-751

9  Polidori, MP et al.: Oxidative damage to mitochondrial DNA in Huntington’s disease parietal cortex. Neurosci Lett 1999; 272: 53-56

10  Del Maestro, R et al.: Free radicals as mediators of tissue injury. Acta Physiol.Scand.Suppl. 1980; 492: 43-57

11  Jenkinson, SG: Oxygen toxicity. New Horiz 1993; 1: 504-511

12  Frank, L and Sosenko, IRS: Failure of premature rabbits to increase antioxidant enzymes during hyperoxic exposure: Increased susceptibility to pulmonary oxygen toxicity compared with term rabbits. Pediatr Res 1991;29: 292-296

13  Nishida, A et al .: Developmental expression of copper, zinc-superoxide dismutase in human brain by chemiluminescence. Brain Dev 1994; 16: 40-43

14  Halliwell, B and Gutteridge, JMC : Free Radicals in Biology and Medicine. Oxford University Press 1999

15  Dorey, CK et al.: Correlation of vascular permeability factor/vascular endothelial growth factor with extraretinal vascularization in the rat. Arch Ophthalmol 1996 ; 114: 1210-1217

16  Aiello, LP: Vascular endothelial growth factor and the eye. Arch Ophthalmol 1996; 114: 1252-1254

17  Blaymore-Bier, L et al.: Outcome of extremely low-birth-weight infants : 1980-1990. Acta Paediatr.1994; 83: 1244-1248

18  Hack, M et al.: Very low birth weight outcomes of the NICHD neonatal network. Pediatrics 1991; 87: 587-597

19  Emsley, HC et al.: Increased survival and deteriorating developmental outcome in 23 to 25 week old gestation infants, 1990-1994 compared to 1984-1990. Arch Dis Child Fetal Neonatal Ed. 1998; 78: F99-F104

20  Vohr, BR et al. : Neurodevelopmental and functional outcomes of extremely low birth weight infants in the National Institute of Child Health and Human Development Neonatal Research Network, 1993-1994. Pediatrics 2000; 105: 1216-1226

21  Berkowitz, GS and Papiernik, E: Epidemiology of preterm birth. Epidemiol Rev 1993; 15: 414-443

22  Vexler, ZS and Ferriero, DM: Molecular and biochemical mechanismen of perinatal brain injury. Semin Neonatal 2001:6: 99-108

23  Kirpalani, H and Asztalos, E: Neonatal brain injury. Curr Opin Pediatr 2001; 13: 227-233

24  Maalouf, EF: Comparison of findings on cranial ultrasound and magnetic resonance imaging in preterm infants. Pediatrics 2001; 107: 719-727

25  Volpe, JJ: Neurobiology of periventricular leukomalacia in the premature infant. Pediatr Res 2001; 50: 553-562

26  Collins, MP et al.: Hypocapnia and other ventilation-related risk factors for cerebral palsy in low birth weight infants. Pediatr Res 2001; 50: 712-719

27  Katoh, S et al: The rescuing effect of nerve growth factor is the result of up-regulation of bcl-2 in hyperoxia-induced apoptosis of a subclone of pheochromocytoma cells, PC12h. Neurosci Lett 1997; 29: 71-74

28  Taglialatela, G et al.: Induction of apoptosis in the CNS during development by the combination of hyperoxia and inhibition of glutathione synthesis. Free Radic Biol Med 1998; 25: 936-942

29  Barone, FC and Feuerstein, GZ: Inflammatory mediators and stroke: new opportunities for novel therapeutics. J Cereb Blood Flow Metab 1999; 19: 819-834

30  Del Zoppo, G et al.: Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain Pathol.2000; 10: 95-112

31  Stuart, M et al.: Cytokines and acute neurogegeneration. Neuroscience 2001; 2: 734-744

32  Baud, O et al.: Antenatal glucocorticoid treatment and cystic periventricular leukomalacia in very premature infants. New Engl J Med 1999; 341: 1190-1196

33  Pinto-Martin, JA et al.: Cranial ultrasound prediction of disabling and nondisabling cerebral palsy at age two in a low birth weight population. Pediatrics 1995; 95: 249-254

34  Whitaker, AH: Psychiatric outcomes in low-birth-weight children at age 6 years: relation to neonatal cranial ultrasound. Arch Gen Psychiatry 1997; 54: 847-856

35  Yoon, BH et al.: Amniotic fluid inflammatory cytokines (interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha), neonatal brain white matter lesions, and cerebral palsy. Am J Obstet Gynecol 1997; 117: 19-26

36  Nelson, KB et al.: Neonatal cytokines and coagulation factors in children with cerebral palsy. Ann Neurol. 1998; 44: 665-675

37  Deguch, IK et al.: Characteristic neuropathology of leukomalacia in extremely low birth weight infants. Pediatr Neurol 1997; 16: 296-300

38  Dammann, O et al.: Perinatal infection, fetal inflammatory response, white matter damage, and cognitive limitations in children born preterm. Ment Retard Dev Disabil Res Rev 2002; 8: 46-50

39  Gomez, R et al.: Pathogenesis of preterm labor and preterm premature rupture of membranes associated with intraamniotic infection. Infect Dis Clin North Am 1997; 11: 135-176

40  Berger, A et al.: Microbial invasion of the amniotic cavity at birth is associated with adverse short-term outcome of pretem infants. J Perinat Med 2003; 31: 115-121

41  Sonntag, J et al.: Effect of C1-inhibitor in a rat model of necrotizing enterocolitis. Biol Neonate 1999; 76: 235-241

42  Kadhim, H et al.: Inflammatory cytokines in the pathogenesis of periventricular leukomalacia. Neurology 2001; 56: 1278-1284

43  Minagawa, K et al.: Possible correlation between high levels of Il-18 in the cord blood of pre-term infants and neonatal development of periventricular leukomalacia and cerebral palsy. Cytokine 2002; 17: 164-170

44  Desmarquest, P et al.: Effect of hyperoxia on human macrophage cytokine response. Respir Med 1998; 92: 951-960

45  Barazzone, C and White, C: Mechanisms of cell injury and death in hyperoxia: role of cytokines and Bcl-2 family proteins. Am J Respir Cell Mol Bio 2000; 22: 517-519

46  Frank, L et al.: Possible mechanism for late gestational development of the antioxidant enzymes in the fetal rat lung. Biol Neonate 1996; 70: 116-127

47  Freeman, BA et al.: Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria. J Biol Chem 1981; 256: 10986-10992

48  Li, N and Karin, M.: Is NF-kappa B the sensor of oxidative stress? FASEB J 1999; 13: 1137-1143

49  Baeuerle, PA et al.: Reactive oxygen intermediates as second messengers of a general pathogen response. Pathol Biol (Paris) 1996; 44: 29-35

50  Deaton, PR et al.: Hyperoxia stimulates interleukin-8 release from alveolar macrophages and U937 cells: attenuation by dexamethasone. Am J Physiol Lung Cell Mol Physiol 1994; 267: L187-L192

51  Rozycki, HJ et al.: Cytokines and oxygen radicals after hyperoxia in preterm and term alveolar macrophages. Am J Physiol Lung Cell Mol Physiol 2002; 282: L1222-L1228

52  Daemen, MA et al.: Ischemia/reperfusion-induced IFN-gamma up-regulation: involvement of IL-12 and IL-18. J Immunol 1999; 162: 5506-5510

53  Pierce, BT et al.: The effects of hypoxia and hyperoxia on fetal-placental vascular tone and inflammatory cytokine production. Am J Obstet Gynecol 2001; 185: 1068-1072

54  Dinarello, CA: Interleukin-18. Methods 1999; 19: 121-132

55  Lebel-Binay, S et al.: Interleukin-18: Biological properties and clinical implications. Eur Cytokine Netw 2000; 11: 15-26

56  Okamura, H et al.: Cloning of a new cytokine that induced IFN-γ production by T cells. Nature 1995; 378: 281-312

57  Okamura, H et al.: A novel cytokine that augment both innate and acquired immunity. Advance Immunol 1998; 70: 281-312

58  Nakanishi, K et al.: Interleukin-18 regulates both Th1 and Th2 responses. Ann Rev Immunol 2001; 19: 423-474

59  Tsutsui, H et al.: IL-18 accounts of both TNF-α and Fas ligand mediated hepatotoxic pathways in endotoxin-induced liver injury in mice. J Immunol 1997; 159: 3961-3967

60  Liu, XH et al.: Mice deficient in interleukin-1 converting enzyme are resistant to neonatal hypoxic-ischemic brain damage .. J Cereb Blood Flow Metab 1999; 19: 1099-1108

61  Wang, J and Lenardo, MJ: Roles of caspases in apoptosis, development and cytokine maturation revealed by homozygous gene definciencies. J Cell Sci 2000; 113: 753-757

62  Puren, AJ et al.: Interleukin-18 (IFNgamma-inducing factor) induces IL-8 and IL-1beta via TNFalpha production from non-CD14+ human blood mononuclear cells. J Clin Invest 1998; 101: 711-721

63  Hedtjärn, M et al.: Interleukin-18 involvement in hypoxic-ischemic brain injury. J Neurosci. 2002; 22: 5910-5919

64  Ikeno, S et al.: Immature brain injury via peroxynitrite production induced by inducible nitric oxide synthase after hypoxia-ischemia in rats. J Obstet Gynaecol Res 2000 ;26: 227-234

65  Schneider, A et al.: NF-kappaB is activated and promotes cell death in focal cerebral ischemia. Nat Med 1999; 5: 554-559

66  Freshney, NW et al.: Interleukin-1 activates a novel protein cascade that results in the phosphorylation of hsp27. Cell 1994; 78: 1039-1049

67  Kracht, M et al.: Interleukin 1 alpha activates two forms of p54 alpha mitogen-activated protein kinase in rabbit liver. J Exp Med 1994; 180: 20017-2025

68  Bona, E et al.: Chemokine and inflammatory dell response to hypoxia-ischemia in immature rats. Pediatr Res 1999; 45: 500-509

69  Galasso, JM et al.: Monocyte chemoattractant protein-1 is a mediator of acute excitotoxic injury in neonatal rat brain. Neuroscience 2000; 101 : 737-744

70  Dao, T et al.: Interferon-gamma-inducing factor, a novel cytokine, enhances FAS ligand-mediated cytotoxicity of murine T helper 1 cells. Cell Immunol 1996; 173: 230-235

71  Hyodo, Y et al.: IL-18 up-regulates perforin-mediated NK activity without increasing perforin messenger RNA expression by binding to constitutively expressed IL-18 receptor. J Immunol 1999; 162: 1662-1668

72  Knoblach, SM and Faden, AI.: Interleukin-10 improves outcome and alters proinflammatory cytokine expression after experimental traumatic brain injury. Exp Neurol 1998; 153: 143-151

73  Bethea, JR et al.: Traumatic spinal cord injury induces nuclear factor-kB activation. J Neurosci. 1998; 18: 3251-3260

74  Bogdan ,C et al.: Contrasting mechanisms for suppression of macrophages cytokine release by transforming growth factor- β and interleukin-10. J Biol Chem 1992; 267: 23301-23308

75  Wang, P et al.: IL-10 inhibits transcription of cytokine genes in human peripheral blood mononuclear cells. J Immunol 1994; 153: 811-816

76  Choi, DW: Glutamate neurotoxicity and diseases of the nervous system. Neuron 1988; 1: 623-634

77  Bachis, A et al.: Interleukin-10 prevents glutamate-mediated cerebellar granule cell death by blocking caspase-3-like activity. J Neurosci 2001; 21: 3104-3112

78  Martin, DP et al.: Inhibitors of protein synthesis and RNA synthesis prevent neuronal death caused by nerve growth factor deprivation. J Cell Biol 1988; 106: 829-844

79  Purves, D: Body and Brain: A Trophic Theory of Neural Connections (Havard Press, Cambridge, Massachusetts, 1988)

80  Cheng, Y et al.: Marked Age-dependent Neuroprotection by Brain-derived Neurotrophic Factor Against Neonatal Hypoxic-Ischemic Brain Injury. Ann Neurol 1997; 41: 521-529

81  Holtzmann, DM et al.: NGF protects the neonatal brain against hypoxic-ischemic injury. Ann Neurol 1996; 39: 114-122

82  Cheng, B et al.: Basic fibroblast growth factor selectively increases AMPA-receptor subunit GluR1 protein level and differentially modulates Ca2 + responses to AMPA and NMDA in hippocampal neurons. J Neurochem 1995; 65: 2525-2536

83  Yuan, J and Yankner, BA: Apoptosis in the nervous system. Nature 2000; 407(6805): 802-809

84  Yao, R and Cooper, GM: Regulation of the RAS signal pathway by GTPase-activating protein in PC12 cells. Oncogene 1995; 11: 1607-1614

85  Philpott, KL et al.: Activated phosphatidylinositol 3-kinase and AKT kinase promote survival of superior cervical neurons. J Cell Biol 1997; 139: 809-815

86  Datta, SR et al.: Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91: 231-241

87  Du, K and Montminy, M: CREB is a regulatory target for the protein kinase AKT/PKB. J Biol Chem 1998 ;273: 32377-32379

88  Kane, LP et al.: Induction of NF-κB by the Akt/PKB kinase. Curr Biol 1999; 9: 601-604

89  Bonni, A et al.: Cell survival promoted by the RAS-MAPK signaling pathway by transcription-dependent an-independent mechanisms. Science 1999; 286: 1358-1362

90  Xia, Z et al.: Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 1995; 270: 1326-1331

91  Lee, R et al.: Regulation of cell survival by secreted proneurotrophins. Science 2001; 294: 1945-1948

92  Lee, FS et al.: The uniqueness of being a neurotrophin receptor. Curr Opin Neurobiol 2001 ;11: 281-286

93  Buckley, S et al.: ERK activation protects against DNA damage and apoptosis in hyperoxic rat AEC2.AM J Physiol1999; L159-166

94  Dobbin, J et al.: The later growth of the brain and its vulnerability. Scientific Foundation of Pediatrics 1974: 565-577

95  Dobbin J, Sands J: Comparative aspects of the brain growth spurt. Early Hum.Dev. 1979; 3: 79-83

96  Ikonomidou, C et al.: Sensitivity of the developing rat brain to hypobaric/ischemic damage parallels sensitivity to N-methyl-aspartate neurotoxicity. J.Neurosci 1989; 9: 2809-2818

97  Bittigau, P et al.: Apoptotic neurodegeneration following trauma is markedly enhanced in the immature brain. Ann Neurol 1999; 45: 724-735

98  Pohl, D et al.: N-methyl-D-aspartate antagonists and apoptotic cell death triggered by head trauma in developing brain. Proc.Natl.Acad.Sci.USA 1999; 96: 2508-2513

99  Ikonomidou, C et al.: Blockade of NMDA receptors an apoptotic neurodegeneration in the developing brain. Science 1999; 283: 70-74

100  Ikonomidou C et al.: Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome. Science 2000; 287: 1056-1060

101  Vaux, DL et al.: Cell death in development. Cell 1999; 96: 245-254

102  Hengartner, MO: The biochemistry of apoptosis. Nature 2000; 407: 770-776

103  Burek, MJ and Oppenheim, RW: Programmed cell death in the developing nervous system. Brain Pathol 1996; 6: 427-446

104  Meier, P et al.: Apoptosis in development. Nature 2000; 407: 796-801

105  Rich, T et al.: Defying death after DNA damage. Nature 2000; 407: 777-783

106  Kerr, JFR et al.: Apoptosis: a basic biological phenomenon with wideranging implication in tissue kinetics. Br J Cancer 1972; 26: 239-257

107  Ishimaru, M et al.: Distinguishing excitotoxic from apoptotic neurodegeneration in the developing rat brain. J Comp Neurol 1999; 408: 461-476

108  Li, P at al.: Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997; 91: 479-489

109  Barinaga, M: Forcing a path to cell death. Science 1996; 273: 735-737

110  Wallach, D: Placing death under control. Nature 1997;388: 123-126

111  Nagat, S: Apoptosis by death factor. Cell 1998; 88: 355-365

112  Borovitskaya, AE et al.: Gamma-radiation-induced cell death in the fetal rat brain posseses molecular characteristics of apoptosis and is associated with specific messenger RNA elevation. Brain Res 1996; 35: 19-30

113  Mesner, P et al.: A timeable of events during programmed cell death induced by trophic factor withdrawal from neuronal PC12 cells. J Neurosci 1995; 15: 7357-7366

114  Maroto, R et al.: BCL-2 related protein expression in apoptosis: oxidative stress versus serum deprivation in PC12 cells. J.Neurochem.1997; 69: 514-523

115  Green, DR: Mitochondria and Apoptosis. Sience 1998; 281: 1309-1312

116  Eilers, A et al.: Role of the Jun kinase pathway in the regulation of c-Jun expression and apoptosis in sympathetic neurons. J Neurosci 1998; 18: 1713-1724

117  Adams, JM et al.: The Bcl-2 Protein Family: Arbiters of Cell Survival. Science 1998; 281: 1322-1326

118  Thornberry, N et al.: Caspase –Enemies within. Science 1998; 281: 1312-1316

119  Chomczynski, P and Sacchi, N: Single-step method of RNA isolation by acid guanidinium-isothiocyanate-phenol-chloroform extraction. Anal Biocem 1987; 162: 156-159

120  Kaiser AD and Hogness, DS: The transformation of Escherichia coli with deoxyribonucleic acid isolated from bacteriophage lambda-dg. J Mol Biol 1960; 2: 392-415

121  Lohmann, J et al.: REN display, a rapid and efficient method for nonradioactive differential display mRNA isolation. Biotechniques 1995; 18: 200-202

122  De Olmos, J et al.: An improved cupric-silver method for impregnation of axonal and terminal degeneration. Brain Res 1971; 33: 523-529

123  Cruz-Orive, LM et al.: Recent stereological methods for cell biology: a brief survey. Am J Physiol 1990; 258: L148-L156

124  Gavrieli, Y et al.: Identification of Programmed Cell Death in situ via specific labeling of nuclear DNA-Fragmentation. J Cell Biol 1992; 119: 493-501

125  Shi, SR et al.: Antigen retrieval immunohistochemistry: past, present, and future. J Histochem Cytochem 1997; 45: 327-343

126  Taylor, DL et al.: Oxidative metabolism, apoptosis and perinatal brain injury. Brain Pathol 1999; 9: 93-117

127  Yakovlev, AG and Faden, AI: Caspase-dependent apoptotic pathways in CNS injury. Mol Neurobiol 2001;24: 131-144

128  Cheema, ZF et al.: Fas/Apo [apoptosis]-1 and associated proteins in the differentiating cerebral cortex: induction of caspase-dependent cell death and activation of NF-kappaB. J Neurosci 1999; 19: 1754-1770

129  Shimohama, S et al.: Differential expression of rat brain caspase family proteins during development and aging. Biochem Biophys Res Commun 2001; 289: 1063-1066

130  Jin, K et al.: Fas (CD95) may mediate delayed cell death in hippocampal CA1 sector after global cerebral ischemia. J Cereb Blood Flow Metab 2001; 21: 1411-1421

131  Garden, GA et al.: Caspase cascade in human immunodeficiency virus-associated neurodegeneration. J Neurosci 2002; 22: 4015-4024

132  Northington, FJ et al.: Delayed neurodegeneration in neonatal rat thalamus after hypoxia-ischemia is apoptosis. J Neurosci 2001; 21: 1931-1938

133  Jevtovic-Todorovic, V et al.: Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci 2003; 23: 876-882

134  Bittigau, P et al.: Antiepileptic drugs and apoptotic neurodegeneration in the developing brain. Proc Natl Acad Sci USA 2002; 99: 15089-15094

135  Gurd, JW et al.: Differential effects of hypoxia-ischemia on subunit expression and tyrosine phosphorylation at the NMDA receptor in 7- and 21-day-old rats. J Neurochem 2002; 82: 848-856

136  Mavelli, I et al.: Superoxide dismutase, glutathione peroxidase and catalane in developing rat brain. Biochem J 1982; 204: 535-540

137  Takikawa, M et al.: Temporospatial relationship between the expressions of superoxide dismutase and nitric oxide synthase in the developing human brain: immunohistochemical and immunoblotting analyses. Acta Neuropathol (Berl) 2001; 102: 572-580

138  Hoehn, T et al.: Hyperoxia causes inducible nitric oxide synthase-mediated cellular damage to the immature rat brain .. Pediatr Res 2003; 54: 179-184

139  Mishra, OP et al.: Nitric oxide-mediated Ca2+ -influx in neuronal nuclei and cortical synaptosomes of normoxic and hyoxic newborn piglets. Neurosci Lett 2002; 318: 93-97

140  Edwards, M et al.: APE/Ref-1 responses to oxidative stress in aged rats. J Neurosci Res 1998; 54: 635-638

141  Taeusch, HW and Ballard, RA: Avery’s Diseases of the Newborn, 7th ed. Saunders, Philadelphia 1998

142  Teitel, D: Physiologic development of the cardiovascular system in the fetus. In Fetal and Neonatal Physiology (R. Polin and W. Fox, W., Eds.), pp. 609-619. Saunders, Philadelphia 1992

143  Penrice, J et al.: Proton magnetic resonance spectroscopy of the brain in normal preterm and term infants, and early changes after perinatal hypoxia-ischemia. Pediatr Res 1997; 40: 6-14

144  Robertson, NJ et al.: Characterization of cerebral white matter damage in preterm infants using 1H and 31P magnetic resonance spectroscopy. J Cereb Blood Flow Metab 2000; 20: 1446-1456

145  Heumann, R: Neurotrophin signalling. Curr Opinion Neurobiol 1994; 4: 668-679

146  Okoye, G et al.: Increased expression of brain-derived neurotrophic factor preserves retinal function and slows cell death form rhodopsin mutation or oxidative damage. J Neurosci 2003; 23: 4164-4172

147  Yamada, H et al.: Hyperoxia causes decreased expression of vascular endothelial growth factor and endothelial cell apoptosis in adult retina. H. J Cell Physiol 1999; 179: 149-156

148  Lu, Y et al.: Activated Akt protects the lung from oxidant-induced injury and delays death of mice. J Exp Med 2001; 193: 545-549

149  Kornblum, HI et al.: Induction of brain derived neurotrophic factor mRNA by seizures in neonatal and juvenile rat brain. Brain Res Mol Brain Res 1997; 44: 219-228

150  Felderhoff-Mueser, U et al.: Pathways leading to apoptotic neurodegeneration following trauma to the developing rat brain. Neurobiol Dis 2002; 11: 231-245

151  Climent, E et al.: Ethanol exposure enhances cell death in the developing cerebral cortex: role of brain-derived neurotrophic factor and its signaling pathways. J Neurosci Res 2002; 68: 213-225

152  Han, BH and Holtzman, DM: BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via ERK pathway. J Neurosci 2000; 20: 5775-5781

153  Serpier, H et al.: Antagonistic effects of interferon-gamma and interleukin-4 on fibroblast cultures. J Invest Dermatol 1997; 109: 158-162

154  Bennett, BL et al.: Interleukin-4 suppression of tumor necrosis factor α-stimulated E-selectin gene transcription is mediated by STAT6 antagonism of NF-kB. J Biol Chem 1997; 272: 10212-10219

155  Venters, HD et al.: A new concept in neurodegeneration: TNF α is a silencer of survival signals. Trends Neurosci 2000; 23: 175-180

156  Allan, SM and Rothwell, NJ: Cytokines and acute neurodegeneration. Nat Rev Neurosci 2001; 2: 734-744

157  Botchkina, GI et al.: Expression of TNF and TNF receptors (p55 and p75) in the rat brain after focal cerebral ischemia. Mol Med 1997; 3: 765-781

158  Knoblach, SM et al.: Early neuronal expression of tumor necrosis factor-α after experimental brain injury contributes to neurological impairment. J Neuroimmunol 1999; 95: 115-125

159  Barone, FC et al.: Tumor necrosis factor-α. A mediator of focal ischemic brain injury. Stroke 1997;28: 1233-1244

160  New, DR et al.: HIV-1 Tat induces neuronal death via tumor necrosis factor-α and activation of non-N-methyl-D-asparate receptors by a NFκB-independent mechanism. J Biol Chem 1998; 273: 17852-17858

161  Sullivan, PG et al.: Exacerbation of damage and altered NFκB activation in mice lacking tumor necrosis factor receptor after traumatic brain injury. J Neurosci 1999; 19: 6248-6256

162  Pomerantz, BJ et al.: Inhibition of caspase 1 reduces human myocardial ischemic dysfunction via inhibition of IL-18 and IL-1β. Proc Natl Acad Sci USA 2001; 98: 2871-2876

163  McRae, A et al.: Microglia activation after neonatal hypoxic-ischemia. Brain Res Dev Brain Res 1995; 84: 245-252

164  Yatsiv, I et al.: Elevated intracranial IL-18 in humans and mice after traumatic brain injury and evidence of neuroprotective effects of IL-18-binding protein after experimental closed head injury. J Cereb Blood Flow Metab 2002; 22: 971-978

165  Relton, JK and Rothwell, NJ: Interleukin-1 receptor antagonist inhibits ischaemic and excitotoxic neuronal damage in the rat. Brain Res Bull 1992; 29: 243-246

166  Loddick, SA and Rothwell, NJ: Neuroprotective effects of human recombinat interleukin-1 receptor antagonist in focal cerebral ischaemia in the rat. J Cereb Blood Flow Metab 1996; 16: 932-940

167  Yakovlev, AG et al .: Activation of CPP32-like caspase contributes to neuronal apoptosis and neurological dysfunction after traumatic brain injury. J Neurosci 1997; 17: 7415-7424

168  Cheng, Y et al.: Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury. J Clin Invest 1998; 101: 1992-1999

169  Hara, H et al.: Inhibition of interleukin 1beta converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proc Natl Acad Sci USA 1997; 94: 2007-2012

170  Rabuffetti, M et al.: Inhibition of caspase-1-like activity by Ac-Tyr-Val-Ala-Asp-chloromethyl ketone induces long-lasting neuroprotection in cerebral ischemia through apoptosis reduction and decrease of proinflammatory cytokines. J Neurosci 2000; 20: 4398-4404

171  Fink, KB et al.: Reduction of post-traumatic brain injury and free radical production by inhibition of the caspase-1 cascade. Neuroscience 1999; 94: 1213-1218

172  Schielke, GP et al.: Reduced ischemic brain injury in interleukin-1 beta converting enzyme-deficient mice. J Cereb Blood Flow Metab 1998; 18: 180-185

173  Yrjanheikki, J et al.: A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci USA 1999; 96: 13496-13500

174  Aizawa, Y et el.: Cloning and expression of interleukin-18 binding protein. FEBS Lett 1999; 445: 338-342

175  Kim SH et al.: Structural requirements of six naturally occurring isoforms of the IL-18 binding protein to inhibit IL-18. Proc Natl Acad Sci USA 2000; 97: 1190-1195

176  Novick, D et al.: Interleukin-18 binding protein: a novel modulator of the Th1 cytokine response. Immunity 1999; 10: 127-136

177  Novick, D et al.: A novel IL-18BP ELISA shows elevated serum IL-18BP in sepsis and extensive decrease of free IL-18. Cytokine 2001; 14: 334-342

178  Reznikov, LL et al.: IL-18 binding protein increases spontaneous and IL-1-induced prostaglandin production via inhibition of IFN-[gamma]. Proc Natl Acad Sci USA 2000; 97: 2174-2179

179  Dinarello, CA and Fantuzzi, G: Interleukin-18 and host defense against infection. JID 2003; 187: 370-384

180  Strle, K et al.: Interleukin-10 in the brain. Crit Rev Immunol 2001;21: 427-449

181  Kelly, A et al.: The anti-inflammatory cytokine, interleukin (IL-)10, blocks the inhibitory effect of IL-1 beta on long term potentiation. A role for JNK. J Biol Chem 2001; 276: 45564-45572

182  Vitkovic, L et al.: Anti-inflammtory cytokines: expression and action in the brain. Neuroimmunomodulation 2001; 9: 295-312

183  Mattson, MP et al.: Fibroblast growth factor and glutamate: opposing roles in the generation and degeneration of hippocampal neuroarchitecture. J Neurosci 1989; 9: 3728-3732

184  Schottelius, AJG et al.: Interleukin-10 signaling blocks inhibitor of kB kinase activity and nuclear factor kB DNA binding. J Biol Chem 1999; 45: 31868-31874

185  Du, Y et al.: Activation of a caspase 3-related cysteine protease is required for glutamate-mediated apoptosis of cultured cerebellar granule neurons. Proc Natl Acad Sci USA 1997; 94: 11657-11662

186  Tenneti, L and Lipton, SA: Involvement of activated caspase-3 like proteases in N-methyl-D-aspartate-induced apoptosis in cerebrocortical neurons. J Neurochem 2000; 74: 134-142

187  Moran, J et al.: Caspase-3 expression by cerebellar granule neurons is regulated by calcium and cyclic AMP. J Neurochem 1999; 73: 568-577

188  Grilli, M et al.: Interleukin-10 modulates neuronal threshold of vulnerability to ischemic damage. Eur J Neurosci 2000; 12: 1-8

189  Bethea, JR et al.: Systemically administered interleukin-10 reduces tumor necrosis factor alpha produktion and significantly improves functional recovery following traumatic spinal cord injury in rats. J Neurotrauma 1999; 16: 851-863

190  Di, Santo, E et al.: Systemic interleukin 10 administration inhibits brain tumor necrosis factor production in mice. Eur J Pharmacol 1997; 336: 197-202


© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 4.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am:
26.10.2005