[Seite 52↓]


[1] Dobbing, J. (1974): The later growth of the brain and its vulnerability, Pediatrics (53) [1], Seite 2-6. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=4588131

[2] Wyllie, A. H.; Kerr, J. F. und Currie, A. R. (1980): Cell death: the significance of apoptosis, Int Rev Cytol (68), Seite 251-306. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7014501

[3] Ishimaru, M. J.; Ikonomidou, C.; Tenkova, T. I.; Der, T. C.; Dikranian, K.; Sesma, M. A. und Olney, J. W. (1999): Distinguishing excitotoxic from apoptotic neurodegeneration in the developing rat brain, J Comp Neurol (408) [4], Seite 461-76. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10340498

[4] Ishimaru, M.; Ikonomidou, C.; Dikranian, K. und Olney, J. W. (1997), Soc. Neurosci. Abstr. (23), Seite 895.

[5] Krammer, P.H. (2000): Apoptose, Deutsches Ärzteblatt (97), Seite C1315-C1322.

[6] Raff, M. C. (1992): Social controls on cell survival and cell death, Nature (356) [6368], Seite 397-400. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1557121

[7] Blom, W.M. (2000): Cell death in rat hepatocytes: Apoptosis-inducing and -protective mechanisms, Cytologie, celbiologie en elfysiologie, Division of Toxicology, Leiden-Amsterdam Center for Drug-Research (LACDR): Universiteit Leiden Leiden, Niederlande.

[8] Kerr, J. F.; Wyllie, A. H. und Currie, A. R. (1972): Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics, Br J Cancer (26) [4], Seite 239-57. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=4561027

[9] Vaux, D. L. und Korsmeyer, S. J. (1999): Cell death in development, Cell (96) [2], Seite 245-54. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9988219

[10] Petit, P. X.; Zamzami, N.; Vayssiere, J. L.; Mignotte, B.; Kroemer, G. und Castedo, M. (1997): Implication of mitochondria in apoptosis, Mol Cell Biochem (174) [1-2], Seite 185-8. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9309685

[11] Kantrow, S. P. und Piantadosi, C. A. (1997): Release of cytochrome c from liver mitochondria during permeability transition, Biochem Biophys Res Commun (232) [3], Seite 669-71. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9126333

[12] Zamzami, N.; Susin, S. A.; Marchetti, P.; Hirsch, T.; Gomez-Monterrey, I.; Castedo, M. und Kroemer, G. (1996): Mitochondrial control of nuclear apoptosis, J Exp Med (183) [4], Seite 1533-44. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8666911

[13] Susin, S. A.; Zamzami, N.; Castedo, M.; Hirsch, T.; Marchetti, P.; Macho, A.; Daugas, E.; Geuskens, M. und Kroemer, G. (1996): Bcl-2 inhibits the mitochondrial release of an apoptogenic protease, J Exp Med (184) [4], Seite 1331-41. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8879205

[14] Toescu, E. C. (1998): Apoptosis and cell death in neuronal cells: where does Ca2+ fit in?, Cell Calcium (24) [5-6], Seite 387-403. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10091008 und Webseite der Uni Birmingham: http://medweb.bham.ac.uk/research/toescu/Teaching/NDegen/Apoptosis.html

[15] Jacobson, M. D.; Weil, M. und Raff, M. C. (1997): Programmed cell death in animal development, Cell (88) [3], Seite 347-54. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9039261

[16] Boustany, Rose-Mary und Hannun, Yusuf A. (1999): Concepts and Methods, Apoptosis in Neurobiology, Seite 3-4, CRC Press, Boca Raton.

[17] Lerner, T. (1995): Isolation of a novel gene underlying Batten disease, CLN3. The International Batten Disease Consortium, Cell (82) [6], Seite 949-57. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7553855

[18] Barinaga, M. (1998): Is apoptosis key in Alzheimer's disease?, Science (281) [5381], Seite 1303-4. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9735049

[19] Watkins, J. C. und Evans, R. H. (1981): Excitatory amino acid transmitters, Annu Rev Pharmacol Toxicol (21), Seite 165-204. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=6112965

[20] Pin, J. P. und Duvoisin, R. (1995): The metabotropic glutamate receptors: structure and functions, Neuropharmacology (34) [1], Seite 1-26. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7623957

[21] Dingledine, Raymond und McBain, Chris J. (1999): II.)15. Three Classes of Ionotropic Glutamate Receptor, Siegel, George J.; Agranoff, Bernard W.; Albers, R. Wayne; Fisher, Stephen K. und Uhler, Michael D., Basic neurochemistry : molecular, cellular, and medical aspects, 6th. Auflage, Seite xxi, 1183, Lippincott-Raven Publishers, Philadelphia.

[22] Johnson, J. W. und Ascher, P. (1987): Glycine potentiates the NMDA response in cultured mouse brain neurons, Nature (325) [6104], Seite 529-31. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2433595

[23] Mori, H. und Mishina, M. (1995): Structure and function of the NMDA receptor channel, Neuropharmacology (34) [10], Seite 1219-37. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8570021

[24] Ishii, T.; Moriyoshi, K.; Sugihara, H.; Sakurada, K.; Kadotani, H.; Yokoi, M.; Akazawa, C.; Shigemoto, R.; Mizuno, N.; Masu, M. und et al. (1993): Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits, J Biol Chem (268) [4], Seite 2836-43. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8428958

[25] Das, S.; Sasaki, Y. F.; Rothe, T.; Premkumar, L. S.; Takasu, M.; Crandall, J. E.; Dikkes, P.; Conner, D. A.; Rayudu, P. V.; Cheung, W.; Chen, H. S.; Lipton, S. A. und Nakanishi, N. (1998): Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A, Nature (393) [6683], Seite 377-81. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9620802

[26] Kato, N. und Yoshimura, H. (1993): Reduced Mg2+ block of N-methyl-D-aspartate receptor-mediated synaptic potentials in developing visual cortex, Proc Natl Acad Sci U S A (90) [15], Seite 7114-8. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8394010

[27] Tingley, W. G.; Roche, K. W.; Thompson, A. K. und Huganir, R. L. (1993): Regulation of NMDA receptor phosphorylation by alternative splicing of the C-terminal domain, Nature (364) [6432], Seite 70-3. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8316301

[28] Moriyoshi, K.; Masu, M.; Ishii, T.; Shigemoto, R.; Mizuno, N. und Nakanishi, S. (1991): Molecular cloning and characterization of the rat NMDA receptor, Nature (354) [6348], Seite 31-7. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1834949

[29] Ikeda, H.; Dawes, E. und Hankins, M. (1992): Spontaneous firing level distinguishes the effects of NMDA and non-NMDA receptor antagonists on the ganglion cells in the cat retina, Eur J Pharmacol (210) [1], Seite 53-9. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1350987

[30] Akazawa, C.; Shigemoto, R.; Bessho, Y.; Nakanishi, S. und Mizuno, N. (1994): Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats, J Comp Neurol (347) [1], Seite 150-60. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7798379

[31] It*o, Masao (1984): Granule Cells, The Cerebellum and Neural Control, Seite 74-85, Raven Press, New York.

[32] Burgoyne, R. D. und Cambray-Deakin, M. A. (1988): The cellular neurobiology of neuronal development: the cerebellar granule cell, Brain Res (472) [1], Seite 77-101. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=3277691

[33] Chuang, D. M.; Gao, X. M. und Paul, S. M. (1992): N-methyl-D-aspartate exposure blocks glutamate toxicity in cultured cerebellar granule cells, Mol Pharmacol (42) [2], Seite 210-6. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1355259

[34] D'Angelo, E.; Rossi, P.; De Filippi, G.; Magistretti, J. und Taglietti, V. (1994): The relationship between synaptogenesis and expression of voltage-dependent currents in cerebellar granule cells in situ, J Physiol Paris (88) [3], Seite 197-207. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7530548

[35] Altman, J. (1982): The Cerebellum, New Vistas, Palay, Sanford L. und Chan-Palay, Victoria, The Cerebellum, New Vistas, Seite 8-49, Springer-Verlag, Berlin ; New York.

[36] Altman, J. (1972): Postnatal development of the cerebellar cortex in the rat. 3. Maturation of the components of the granular layer, J Comp Neurol (145) [4], Seite 465-513. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=4114591

[37] Rakic, P. (1971): Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus Rhesus, J Comp Neurol (141) [3], Seite 283-312. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=4101340

[38] Edmonson, J. C. und Hatten, M. E. (1987): Glial-guided granule neuron migration in vitro: a high-resolution time-lapse video microscopic study, J Neurosci (7) [6], Seite 1928-34. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=3598656

[39] Burgoyne, R. D.; Pearce, I. A. und Cambray-Deakin, M. (1988): N-methyl-D-aspartate raises cytosolic calcium concentration in rat cerebellar granule cells in culture, Neurosci Lett (91) [1], Seite 47-52. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2845308

[40] Howe, J. R.; Cull-Candy, S. G. und Colquhoun, D. (1991): Currents through single glutamate receptor channels in outside-out patches from rat cerebellar granule cells, J Physiol (432), Seite 143-202. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1715916

[41] Komuro, H. und Rakic, P. (1993): Modulation of neuronal migration by NMDA receptors, Science (260) [5104], Seite 95-7. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8096653

[42] Zhu, X. Z. und Chuang, D. M. (1987): Modulation of calcium uptake and D-aspartate release by GABAB receptors in cultured cerebellar granule cells, Eur J Pharmacol (141) [3], Seite 401-8. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2822450

[43] Laurie, D. J.; Wisden, W. und Seeburg, P. H. (1992): The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development, J Neurosci (12) [11], Seite 4151-72. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1331359

[44] Ben-Ari, Y.; Khazipov, R.; Leinekugel, X.; Caillard, O. und Gaiarsa, J. L. (1997): GABAA, NMDA and AMPA receptors: a developmentally regulated 'menage a trois', Trends Neurosci (20) [11], Seite 523-9. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9364667

[45] Obrietan, K. und van den Pol, A. N. (1995): GABA neurotransmission in the hypothalamus: developmental reversal from Ca2+ elevating to depressing, J Neurosci (15) [7 Pt 1], Seite 5065-77. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7623135

[46] Spitzer, N. C.; Olson, E. und Gu, X. (1995): Spontaneous calcium transients regulate neuronal plasticity in developing neurons, J Neurobiol (26) [3], Seite 316-24. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7775965

[47] Gu, X. und Spitzer, N. C. (1997): Breaking the code: regulation of neuronal differentiation by spontaneous calcium transients, Dev Neurosci (19) [1], Seite 33-41. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9078431

[48] Lucas, D.R. et al. (1957): The toxic effect of sodium L-glutamate on the inner layers of the retina, Arch. Ophtalmol. (58), Seite 193-201.

[49] Olney, J. W. (1969): Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate, Science (164) [880], Seite 719-21. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=5778021

[50] Benveniste, H.; Drejer, J.; Schousboe, A. und Diemer, N. H. (1984): Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis, J Neurochem (43) [5], Seite 1369-74. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=6149259

[51] Ikonomidou, C.; Mosinger, J. L.; Salles, K. S.; Labruyere, J. und Olney, J. W. (1989): Sensitivity of the developing rat brain to hypobaric/ischemic damage parallels sensitivity to N-methyl-aspartate neurotoxicity, J Neurosci (9) [8], Seite 2809-18. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2671294

[52] Olney, J. W.; Ikonomidou, C.; Mosinger, J. L. und Frierdich, G. (1989): MK-801 prevents hypobaric-ischemic neuronal degeneration in infant rat brain, J Neurosci (9) [5], Seite 1701-4. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2656934

[53] McDonald, J. W.; Silverstein, F. S. und Johnston, M. V. (1987): MK-801 protects the neonatal brain from hypoxic-ischemic damage, Eur J Pharmacol (140) [3], Seite 359-61. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2820765

[54] Yan, G. M.; Ni, B.; Weller, M.; Wood, K. A. und Paul, S. M. (1994): Depolarization or glutamate receptor activation blocks apoptotic cell death of cultured cerebellar granule neurons, Brain Res (656) [1], Seite 43-51. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7804844

[55] Pohl, D.; Bittigau, P.; Ishimaru, M. J.; Stadthaus, D.; Hubner, C.; Olney, J. W.; Turski, L. und Ikonomidou, C. (1999): N-Methyl-D-aspartate antagonists and apoptotic cell death triggered by head trauma in developing rat brain, Proc Natl Acad Sci U S A (96) [5], Seite 2508-13. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10051673

[56] Neuroscience, Society for 1999 Policies on the Use of Animals and Humans in Neuroscience Research http://apu.sfn.org/content/Publications/HandbookfortheUseofAnimalsinNeuroscienceResearch/Policy.htm

[57] DeOlmos, J. S. und Ingram, W. R. (1971): An improved cupric-silver method for impregnation of axonal and terminal degeneration, Brain Res (33) [2], Seite 523-9. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=4109198

[58] Carlsen, J. und De Olmos, J. S. (1981): A modified cupric-silver technique for the impregnation of degenerating neurons and their processes, Brain Res (208) [2], Seite 426-31. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=6163509

[59] Alheid, G. F.; Beltramino, C. A.; De Olmos, J. S.; Forbes, M. S.; Swanson, D. J. und Heimer, L. (1998): The neuronal organization of the supracapsular part of the stria terminalis in the rat: the dorsal component of the extended amygdala, Neuroscience (84) [4], Seite 967-96. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9578390

[60] Ahrens, P.; Schleicher, A.; Zilles, K. und Werner, L. (1990): Image analysis of Nissl-stained neuronal perikarya in the primary visual cortex of the rat: automatic detection and segmentation of neuronal profiles with nuclei and nucleoli, J Microsc (157 ( Pt 3)), Seite 349-65. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2332885

[61] Gavrieli, Y.; Sherman, Y. und Ben-Sasson, S. A. (1992): Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation, J Cell Biol (119) [3], Seite 493-501. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1400587

[62] Cruz-Orive, L. M. und Weibel, E. R. (1990): Recent stereological methods for cell biology: a brief survey, Am J Physiol (258) [4 Pt 1], Seite L148-56. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2185653

[63] Sherwood, Nancy M. und Timiras, Paola S. (1970): A stereotaxic atlas of the developing rat brain, University of California Press, Berkeley,, ISBN 520016564.

[64] Charriaut-Marlangue, C. und Ben-Ari, Y. (1995): A cautionary note on the use of the TUNEL stain to determine apoptosis, Neuroreport (7) [1], Seite 61-4. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8742417

[65] Grasl-Kraupp, B.; Ruttkay-Nedecky, B.; Koudelka, H.; Bukowska, K.; Bursch, W. und Schulte-Hermann, R. (1995): In situ detection of fragmented DNA (TUNEL assay) fails to discriminate among apoptosis, necrosis, and autolytic cell death: a cautionary note, Hepatology (21) [5], Seite 1465-8. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7737654

[66] Bittigau, P.; Pohl, D.; Sifringer, M.; Shimizu, H.; Ikeda, M.; Ishimaru, M.; Stadthaus, D.; Fuhr, S.; Dikranian, K.; Olney, J. W. und Ikonomidou, C. (1998): Modeling Pediatric Head Trauma: Mechanisms of Degeneration and Potential Strategies for Neuroprotection, Restor Neurol Neurosci (13) [1,2], Seite 11-23. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12671284

[67] Schäfer, H. 1994 Biomathemetik für Mediziner Secondary Title: Skript der Philipps-Universität Marburg Marburg an der Lahn

[68] Bittigau, P.; Sifringer, M.; Pohl, D.; Stadthaus, D.; Ishimaru, M.; Shimizu, H.; Ikeda, M.; Lang, D.; Speer, A.; Olney, J. W. und Ikonomidou, C. (1999): Apoptotic neurodegeneration following trauma is markedly enhanced in the immature brain, Ann Neurol (45) [6], Seite 724-35. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10360764

[69] Saraste, A. (1999): Morphologic criteria and detection of apoptosis, Herz (24) [3], Seite 189-95. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10412642

[70] Hwang, J. Y.; Kim, Y. H.; Ahn, Y. H.; Wie, M. B. und Koh, J. Y. (1999): N-Methyl-D-aspartate receptor blockade induces neuronal apoptosis in cortical culture, Exp Neurol (159) [1], Seite 124-30. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10486181

[71] Ikonomidou, C.; Bosch, F.; Miksa, M.; Bittigau, P.; Vockler, J.; Dikranian, K.; Tenkova, T. I.; Stefovska, V.; Turski, L. und Olney, J. W. (1999): Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain, Science (283) [5398], Seite 70-4. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9872743

[72] Hörster, Friederike (2001): NMDA Rezeptoren und apoptotische Neurodegeneration während der frühen Entwicklung der Ratte, Doctor medicinae, Neuropädiatrie: Charité - Campus Virchow-Klinikum Berlin.

[73] Ikonomidou, C.; Bittigau, P.; Ishimaru, M. J.; Wozniak, D. F.; Koch, C.; Genz, K.; Price, M. T.; Stefovska, V.; Horster, F.; Tenkova, T.; Dikranian, K. und Olney, J. W. (2000): Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome, Science (287) [5455], Seite 1056-60. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10669420

[74] Vezzani, A.; Serafini, R.; Stasi, M. A.; Caccia, S.; Conti, I.; Tridico, R. V. und Samanin, R. (1989): Kinetics of MK-801 and its effect on quinolinic acid-induced seizures and neurotoxicity in rats, J Pharmacol Exp Ther (249) [1], Seite 278-83. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2540317

[75] Monyer, H.; Burnashev, N.; Laurie, D. J.; Sakmann, B. und Seeburg, P. H. (1994): Developmental and regional expression in the rat brain and functional properties of four NMDA receptors, Neuron (12) [3], Seite 529-40. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7512349

[76] Zhong, J.; Carrozza, D. P.; Williams, K.; Pritchett, D. B. und Molinoff, P. B. (1995): Expression of mRNAs encoding subunits of the NMDA receptor in developing rat brain, J Neurochem (64) [2], Seite 531-9. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7830045

[77] Olney, J. W.; Labruyere, J. und Price, M. T. (1989): Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs, Science (244) [4910], Seite 1360-2. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2660263

[78] Fix, A.S. (1994): Pathomorphological effects of N-methyl-D-aspartate antagonists in the rat posterior cingulate/retrosplenial cerebral cortex, Drug. Dev. Res. (24), Seite 147-152.

[79] Ellison, G. (1994): Competitive and non-competitive NMDA antagonists induce similar limbic degeneration, Neuroreport (5) [18], Seite 2688-92. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7696633

[80] Corso, T. D.; Sesma, M. A.; Tenkova, T. I.; Der, T. C.; Wozniak, D. F.; Farber, N. B. und Olney, J. W. (1997): Multifocal brain damage induced by phencyclidine is augmented by pilocarpine, Brain Res (752) [1-2], Seite 1-14. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9106435

[81] Wozniak, D. F.; Dikranian, K.; Ishimaru, M. J.; Nardi, A.; Corso, T. D.; Tenkova, T.; Olney, J. W. und Fix, A. S. (1998): Disseminated Corticolimbic Neuronal Degeneration Induced in Rat Brain by MK-801: Potential Relevance to Alzheimer's Disease, Neurobiology of Disease (5) [5], Seite 305-322. http://www.sciencedirect.com/science/article/B6WNK-45J5CT7-G/2/bc96366a1c1f9c577f82a14db731e3ef

[82] Olney, J. W.; Labruyere, J.; Wang, G.; Wozniak, D. F.; Price, M. T. und Sesma, M. A. (1991): NMDA antagonist neurotoxicity: mechanism and prevention, Science (254) [5037], Seite 1515-8. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1835799

[83] Ishimaru, M.; Fukamauchi, F. und Olney, J. W. (1995): Halothane prevents MK-801 neurotoxicity in the rat cingulate cortex, Neurosci Lett (193) [1], Seite 1-4. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7566654

[84] Jevtovic-Todorovic, V.; Kirby, C. O. und Olney, J. W. (1997): Isoflurane and propofol block neurotoxicity caused by MK-801 in the rat posterior cingulate/retrosplenial cortex, J Cereb Blood Flow Metab (17) [2], Seite 168-74. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9040496

[85] Olney, J. W. und Farber, N. B. (1994): Efficacy of clozapine compared with other antipsychotics in preventing NMDA-antagonist neurotoxicity, J Clin Psychiatry (55 Suppl B), Seite 43-6. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7961572

[86] Farber, N. B.; Foster, J.; Duhan, N. L. und Olney, J. W. (1995): alpha 2 adrenergic agonists prevent MK-801 neurotoxicity, Neuropsychopharmacology (12) [4], Seite 347-9. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7576011

[87] Farber, N. B.; Hanslick, J.; Kirby, C.; McWilliams, L. und Olney, J. W. (1998): Serotonergic agents that activate 5HT2A receptors prevent NMDA antagonist neurotoxicity, Neuropsychopharmacology (18) [1], Seite 57-62. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9408919

[88] Kim, S. H.; Price, M. T.; Olney, J. W. und Farber, N. B. (1999): Excessive cerebrocortical release of acetylcholine induced by NMDA antagonists is reduced by GABAergic and alpha2-adrenergic agonists, Mol Psychiatry (4) [4], Seite 344-52. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10483051

[89] Hasegawa, M.; Kinoshita, H.; Amano, M.; Hasegawa, T.; Kameyama, T. und Nabeshima, T. (1993): MK-801 increases endogenous acetylcholine release in the rat parietal cortex: a study using brain microdialysis, Neurosci Lett (150) [1], Seite 53-6. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8469404

[90] Farber, N. B.; Wozniak, D. F.; Price, M. T.; Labruyere, J.; Huss, J.; St Peter, H. und Olney, J. W. (1995): Age-specific neurotoxicity in the rat associated with NMDA receptor blockade: potential relevance to schizophrenia?, Biol Psychiatry (38) [12], Seite 788-96. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8750036

[91] Berridge, M. J.; Bootman, M. D. und Lipp, P. (1998): Calcium--a life and death signal, Nature (395) [6703], Seite 645-8. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9790183

[92] McConkey, D. J. und Orrenius, S. (1997): The role of calcium in the regulation of apoptosis, Biochem Biophys Res Commun (239) [2], Seite 357-66. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9344835

[93] Valjent, E.; Caboche, J. und Vanhoutte, P. (2001): Mitogen-activated protein kinase/extracellular signal-regulated kinase induced gene regulation in brain: a molecular substrate for learning and memory?, Mol Neurobiol (23) [2-3], Seite 83-99. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11817219

[94] Thiels, E. und Klann, E. (2001): Extracellular signal-regulated kinase, synaptic plasticity, and memory, Rev Neurosci (12) [4], Seite 327-45. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11783718

[95] Lennmyr, F.; Karlsson, S.; Gerwins, P.; Ata, K. A. und Terent, A. (2002): Activation of mitogen-activated protein kinases in experimental cerebral ischemia, Acta Neurol Scand (106) [6], Seite 333-40. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12460137

[96] Curtis, J. und Finkbeiner, S. (1999): Sending signals from the synapse to the nucleus: possible roles for CaMK, Ras/ERK, and SAPK pathways in the regulation of synaptic plasticity and neuronal growth, J Neurosci Res (58) [1], Seite 88-95. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10491574

[97] Yano, S.; Tokumitsu, H. und Soderling, T. R. (1998): Calcium promotes cell survival through CaM-K kinase activation of the protein-kinase-B pathway, Nature (396) [6711], Seite 584-7. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9859994

[98] Brunet, A.; Datta, S. R. und Greenberg, M. E. (2001): Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway, Curr Opin Neurobiol (11) [3], Seite 297-305. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11399427

[99] Bonni, A.; Brunet, A.; West, A. E.; Datta, S. R.; Takasu, M. A. und Greenberg, M. E. (1999): Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms, Science (286) [5443], Seite 1358-62. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10558990

[100] Cole, A. J.; Saffen, D. W.; Baraban, J. M. und Worley, P. F. (1989): Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation, Nature (340) [6233], Seite 474-6. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2547165

[101] Wisden, W.; Errington, M. L.; Williams, S.; Dunnett, S. B.; Waters, C.; Hitchcock, D.; Evan, G.; Bliss, T. V. und Hunt, S. P. (1990): Differential expression of immediate early genes in the hippocampus and spinal cord, Neuron (4) [4], Seite 603-14. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2108708

[102] Schulz, S.; Siemer, H.; Krug, M. und Hollt, V. (1999): Direct evidence for biphasic cAMP responsive element-binding protein phosphorylation during long-term potentiation in the rat dentate gyrus in vivo, J Neurosci (19) [13], Seite 5683-92. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10377374

[103] Cammarota, M.; Bevilaqua, L. R.; Ardenghi, P.; Paratcha, G.; Levi de Stein, M.; Izquierdo, I. und Medina, J. H. (2000): Learning-associated activation of nuclear MAPK, CREB and Elk-1, along with Fos production, in the rat hippocampus after a one-trial avoidance learning: abolition by NMDA receptor blockade, Brain Res Mol Brain Res (76) [1], Seite 36-46. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10719213

[104] Hardingham, G. E.; Fukunaga, Y. und Bading, H. (2002): Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways, Nat Neurosci (5) [5], Seite 405-14. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11953750

[105] Silva, A. J.; Kogan, J. H.; Frankland, P. W. und Kida, S. (1998): CREB and memory, Annu Rev Neurosci (21), Seite 127-48. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9530494

[106] Barco, A.; Alarcon, J. M. und Kandel, E. R. (2002): Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture, Cell (108) [5], Seite 689-703. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11893339

[107] Walton, M. R. und Dragunow, I. (2000): Is CREB a key to neuronal survival?, Trends Neurosci (23) [2], Seite 48-53. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10652539

[108] Mantamadiotis, T.; Lemberger, T.; Bleckmann, S. C.; Kern, H.; Kretz, O.; Martin Villalba, A.; Tronche, F.; Kellendonk, C.; Gau, D.; Kapfhammer, J.; Otto, C.; Schmid, W. und Schutz, G. (2002): Disruption of CREB function in brain leads to neurodegeneration, Nat Genet (31) [1], Seite 47-54. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11967539

[109] Ikonomidou, C. und Turski, L. (2002): Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury?, Lancet Neurol (1) [6], Seite 383-6. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12849400

[110] Mattson, M. P.; Culmsee, C.; Yu, Z. und Camandola, S. (2000): Roles of nuclear factor kappaB in neuronal survival and plasticity, J Neurochem (74) [2], Seite 443-56. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10646495

[111] Meberg, P. J.; Kinney, W. R.; Valcourt, E. G. und Routtenberg, A. (1996): Gene expression of the transcription factor NF-kappa B in hippocampus: regulation by synaptic activity, Brain Res Mol Brain Res (38) [2], Seite 179-90. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8793106

[112] Lipsky, R. H.; Xu, K.; Zhu, D.; Kelly, C.; Terhakopian, A.; Novelli, A. und Marini, A. M. (2001): Nuclear factor kappaB is a critical determinant in N-methyl-D-aspartate receptor-mediated neuroprotection, J Neurochem (78) [2], Seite 254-64. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11461961

[113] Mattson, M. P. und Camandola, S. (2001): NF-kappaB in neuronal plasticity and neurodegenerative disorders, J Clin Invest (107) [3], Seite 247-54. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11160145

[114] Yu, Z.; Zhou, D.; Bruce-Keller, A. J.; Kindy, M. S. und Mattson, M. P. (1999): Lack of the p50 subunit of nuclear factor-kappaB increases the vulnerability of hippocampal neurons to excitotoxic injury, J Neurosci (19) [20], Seite 8856-65. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10516305

[115] Hamburger, V. (1949): Proliferation, differentiation and degeneration of the spinal ganglia of the chick embryo under normal and experimental conditions, J. Exp. Zool. (111), Seite 457-502.

[116] Yuan, J. und Yankner, B. A. (2000): Apoptosis in the nervous system, Nature (407) [6805], Seite 802-9. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11048732

[117] Verhage, M.; Maia, A. S.; Plomp, J. J.; Brussaard, A. B.; Heeroma, J. H.; Vermeer, H.; Toonen, R. F.; Hammer, R. E.; van den Berg, T. K.; Missler, M.; Geuze, H. J. und Sudhof, T. C. (2000): Synaptic assembly of the brain in the absence of neurotransmitter secretion, Science (287) [5454], Seite 864-9. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10657302

[118] Riccio, A.; Ahn, S.; Davenport, C. M.; Blendy, J. A. und Ginty, D. D. (1999): Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons, Science (286) [5448], Seite 2358-61. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10600750

[119] Tao, X.; Finkbeiner, S.; Arnold, D. B.; Shaywitz, A. J. und Greenberg, M. E. (1998): Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism, Neuron (20) [4], Seite 709-26. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9581763

[120] Shieh, P. B.; Hu, S. C.; Bobb, K.; Timmusk, T. und Ghosh, A. (1998): Identification of a signaling pathway involved in calcium regulation of BDNF expression, Neuron (20) [4], Seite 727-40. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9581764

[121] Lee, H. und Choi, B. H. (1992): Density and distribution of excitatory amino acid receptors in the developing human fetal brain: a quantitative autoradiographic study, Exp Neurol (118) [3], Seite 284-90. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1339116

[122] Dobbing, J. und Sands, J. (1979): Comparative aspects of the brain growth spurt, Early Hum Dev (3) [1], Seite 79-83. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=118862

[123] Reich, D. L. und Silvay, G. (1989): Ketamine: an update on the first twenty-five years of clinical experience, Can J Anaesth (36) [2], Seite 186-97. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2650898

[124] White, P. F.; Way, W. L. und Trevor, A. J. (1982): Ketamine--its pharmacology and therapeutic uses, Anesthesiology (56) [2], Seite 119-36. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=6892475

[125] Jevtovic-Todorovic, V.; Todorovic, S. M.; Mennerick, S.; Powell, S.; Dikranian, K.; Benshoff, N.; Zorumski, C. F. und Olney, J. W. (1998): Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin, Nat Med (4) [4], Seite 460-3. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9546794

[126] Cheung, P. Y.; Peliowski, A. und Robertson, C. M. (1998): The outcome of very low birth weight neonates (</=1500 g) rescued by inhaled nitric oxide: neurodevelopment in early childhood, J Pediatr (133) [6], Seite 735-9. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9842035

[127] Gressens, P.; Rogido, M.; Paindaveine, B. und Sola, A. (2002): The impact of neonatal intensive care practices on the developing brain, J Pediatr (140) [6], Seite 646-53. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12072865

[128] Kinsella, J. P.; Walsh, W. F.; Bose, C. L.; Gerstmann, D. R.; Labella, J. J.; Sardesai, S.; Walsh-Sukys, M. C.; McCaffrey, M. J.; Cornfield, D. N.; Bhutani, V. K.; Cutter, G. R.; Baier, M. und Abman, S. H. (1999): Inhaled nitric oxide in premature neonates with severe hypoxaemic respiratory failure: a randomised controlled trial, Lancet (354) [9184], Seite 1061-5. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10509496

[129] Richter, H.J. (1989): Pharmazeutisch-Medizinisches Lexikon, VEB-Verlag, Berlin.

[130] Lovinger, D. M.; White, G. und Weight, F. F. (1989): Ethanol inhibits NMDA-activated ion current in hippocampal neurons, Science (243) [4899], Seite 1721-4. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2467382

[131] Hoffman, P. L.; Rabe, C. S.; Moses, F. und Tabakoff, B. (1989): N-methyl-D-aspartate receptors and ethanol: inhibition of calcium flux and cyclic GMP production, J Neurochem (52) [6], Seite 1937-40. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2542453

[132] Reynolds, J. D. und Brien, J. F. (1995): Ethanol neurobehavioural teratogenesis and the role of L-glutamate in the fetal hippocampus, Can J Physiol Pharmacol (73) [9], Seite 1209-23. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8748970

[133] Meyer, L. S.; Kotch, L. E. und Riley, E. P. (1990): Alterations in gait following ethanol exposure during the brain growth spurt in rats, Alcohol Clin Exp Res (14) [1], Seite 23-7. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2178467

[134] Jones, K. L. und Smith, D. W. (1973): Recognition of the fetal alcohol syndrome in early infancy, Lancet (2) [7836], Seite 999-1001. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=4127281

[135] Coles, C. D.; Smith, I. E. und Falek, A. (1987): Prenatal alcohol exposure and infant behavior: immediate effects and implications for later development, Adv Alcohol Subst Abuse (6) [4], Seite 87-104. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=3425480

[136] Gilman, S.; Junck, L.; Markel, D. S.; Koeppe, R. A. und Kluin, K. J. (1990): Cerebral glucose hypermetabolism in Friedreich's ataxia detected with positron emission tomography, Ann Neurol (28) [6], Seite 750-7. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2285262

[137] Hatazawa, J.; Brooks, R. A.; Dalakas, M. C.; Mansi, L. und Di Chiro, G. (1988): Cortical motor-sensory hypometabolism in amyotrophic lateral sclerosis: a PET study, J Comput Assist Tomogr (12) [4], Seite 630-6. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=3260610

[138] Dalakas, M. C.; Hatazawa, J.; Brooks, R. A. und Di Chiro, G. (1987): Lowered cerebral glucose utilization in amyotrophic lateral sclerosis, Ann Neurol (22) [5], Seite 580-6. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=3501273

[139] Blass, J. P.; Sheu, R. K. und Cedarbaum, J. M. (1988): Energy metabolism in disorders of the nervous system, Rev Neurol (Paris) (144) [10], Seite 543-63. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2973643

[140] Ford, L. M.; Sanberg, P. R.; Norman, A. B. und Fogelson, M. H. (1989): MK-801 prevents hippocampal neurodegeneration in neonatal hypoxic-ischemic rats, Arch Neurol (46) [10], Seite 1090-6. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2552968

[141] Hattori, H.; Morin, A. M.; Schwartz, P. H.; Fujikawa, D. G. und Wasterlain, C. G. (1989): Posthypoxic treatment with MK-801 reduces hypoxic-ischemic damage in the neonatal rat, Neurology (39) [5], Seite 713-8. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2651970

[142] Davis, S. M.; Albers, G. W.; Diener, H. C.; Lees, K. R. und Norris, J. (1997): Termination of Acute Stroke Studies Involving Selfotel Treatment. ASSIST Steering Committed, Lancet (349) [9044], Seite 32. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8999265

[143] McBurney, R. N. (1997): Development of the NMDA ion-channel blocker, aptiganel hydrochloride, as a neuroprotective agent for acute CNS injury, Int Rev Neurobiol (40), Seite 173-95. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8989621

[144] Bittigau, P.; Sifringer, M.; Genz, K.; Reith, E.; Pospischil, D.; Govindarajalu, S.; Dzietko, M.; Pesditschek, S.; Mai, I.; Dikranian, K.; Olney, J. W. und Ikonomidou, C. (2002): Antiepileptic drugs and apoptotic neurodegeneration in the developing brain, Proc Natl Acad Sci U S A (99) [23], Seite 15089-94. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12417760

© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 3.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am: