[Seite 103↓]

8 Referenzen

[1] Howard, A.; Farrar, J.; Hilfiker, M.; Johnson, B.; Takatsu, K.; Hamaoka, T. und Paul, W. E. (1982): Identification of a T cell-derived B cell growth factor distinct from interleukin 2., J Exp Med, (Band 155), Seite 914-924.

[2] Yokota, T.; Otsuka, T.; Mosmann, T.; Banchereau, J.; DeFrance, T.; Blanchard, D.; De Vries, J. E.; Lee, F. und Arai, K. (1986): Isolation and characterization of a human interleukin cDNA clone, homologous to mouse B-cell stimulatory factor 1, that expresses B-cell- and T-cell-stimulating activities, Proc Natl Acad Sci U S A, (Band 83), No. 16, Seite 5894-8.

[3] Mitchell, L. C.; Davis, L. S. und Lipsky, P. E. (1989): Promotion of human T lymphocyte proliferation by IL-4, J Immunol, (Band 142), No. 5, Seite 1548-57.

[4] Toi, M.; Harris, A. L. und Bicknell, R. (1991): Interleukin-4 is a potent mitogen for capillary endothelium, Biochem Biophys Res Commun, (Band 174), No. 3, Seite 1287-93.

[5] Feghali, C. A.; Bost, K. L.; Boulware, D. W. und Levy, L. S. (1992): Human recombinant interleukin-4 induces proliferation and interleukin-6 production by cultured human skin fibroblasts, Clin Immunol Immunopathol, (Band 63), No. 2, Seite 182-7.

[6] Snapper, C. M.; Finkelman, F. D. und Paul, W. E. (1988): Regulation of IgG1 and IgE production by interleukin 4, Immunol Rev, (Band 102), Seite 51-75.

[7] Coffman, R. L.; Lebman, D. A. und Rothman, P. (1993): Mechanism and regulation of immunoglobulin isotype switching, Adv Immunol, (Band 54), Seite 229-70.

[8] Kuhn, R.; Rajewsky, K. und Muller, W. (1991): Generation and analysis of interleukin-4 deficient mice, Science, (Band 254), No. 5032, Seite 707-10.

[9] Conrad, D. H.; Keegan, A. D.; Kalli, K. R.; Van Dusen, R.; Rao, M. und Levine, A. D. (1988): Superinduction of low affinity IgE receptors on murine B lymphocytes by lipopolysaccharide and IL-4, J Immunol, (Band 141), No. 4, Seite 1091-7.

[10] Defrance, T.; Aubry, J. P.; Rousset, F.; Vanbervliet, B.; Bonnefoy, J. Y.; Arai, N.; Takebe, Y.; Yokota, T.; Lee, F.; Arai, K. und et al. (1987): Human recombinant interleukin 4 induces Fc epsilon receptors (CD23) on normal human B lymphocytes, J Exp Med, (Band 165), No. 6, Seite 1459-67.

[11] Noelle, R.; Krammer, P. H.; Ohara, J.; Uhr, J. W. und Vitetta, E. S. (1984): Increased expression of Ia antigens on resting B cells: an additional role for B-cell growth factor, Proc Natl Acad Sci U S A, (Band 81), No. 19, Seite 6149-53.

[12] Rousset, F.; Malefijt, R. W.; Slierendregt, B.; Aubry, J. P.; Bonnefoy, J. Y.; Defrance, T.; Banchereau, J. und de Vries, J. E. (1988): Regulation of Fc receptor for IgE (CD23) and class II MHC antigen expression on Burkitt's lymphoma cell lines by human IL-4 and IFN-gamma, J Immunol, (Band 140), No. 8, Seite 2625-32.

[Seite 104↓]

[13] Shields, J. G.; Armitage, R. J.; Jamieson, B. N.; Beverley, P. C. und Callard, R. E. (1989): Increased expression of surface IgM but not IgD or IgG on human B cells in response to IL-4, Immunology, (Band 66), No. 2, Seite 224-7.

[14] Maggi, E.; Parronchi, P.; Manetti, R.; Simonelli, C.; Piccinni, M. P.; Rugiu, F. S.; De Carli, M.; Ricci, M. und Romagnani, S. (1992): Reciprocal regulatory effects of IFN-gamma and IL-4 on the in vitro development of human Th1 and Th2 clones, J Immunol, (Band 148), No. 7, Seite 2142-7.

[15] Scott, P. (1991): IFN-gamma modulates the early development of Th1 and Th2 responses in a murine model of cutaneous leishmaniasis, J Immunol, (Band 147), No. 9, Seite 3149-55.

[16] Seder, R. A.; Boulay, J. L.; Finkelman, F.; Barbier, S.; Ben Sasson, S. Z.; Le Gros, G. und Paul, W. E. (1992): CD8+ T cells can be primed in vitro to produce IL-4, J Immunol, (Band 148), No. 6, Seite 1652-6.

[17] Mosmann, T. R.; Cherwinski, H.; Bond, M. W.; Giedlin, M. A. und Coffman, R. L. (1986): Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins, J Immunol, (Band 136), No. 7, Seite 2348-57.

[18] Romagnani, S. (1994): Lymphokine production by human T cells in disease states, Annu Rev Immunol, (Band 12), Seite 227-57.

[19] Mosmann, T. R. und Sad, S. (1996): The expanding universe of T-cell subsets: Th1, Th2 and more, Immunol Today, (Band 17), No. 3, Seite 138-46.

[20] Song, Z.; Casolaro, V.; Chen, R.; Georas, S. N.; Monos, D. und Ono, S. J. (1996): Polymorphic nucleotides within the human IL-4 promoter that mediate overexpression of the gene, J Immunol, (Band 156), No. 2, Seite 424-9.

[21] Hershey, G. K.; Friedrich, M. F.; Esswein, L. A.; Thomas, M. L. und Chatila, T. A. (1997): The association of atopy with a gain-of-function mutation in the alpha subunit of the interleukin-4 receptor, N Engl J Med, (Band 337), No. 24, Seite 1720-5.

[22] Mitsuyasu, H.; Izuhara, K.; Mao, X. Q.; Gao, P. S.; Arinobu, Y.; Enomoto, T.; Kawai, M.; Sasaki, S.; Dake, Y.; Hamasaki, N.; Shirakawa, T. und Hopkin, J. M. (1998): Ile50Val variant of IL4R alpha upregulates IgE synthesis and associates with atopic asthma, Nat Genet, (Band 19), No. 2, Seite 119-20.

[23] Akashi, K. (1993): The role of interleukin-4 in the negative regulation of leukemia cell growth, Leuk Lymphoma, (Band 9), No. 3, Seite 205-9.

[24] Okabe, M.; Kuni eda, Y.; Sugiwura, T.; Tanaka, M.; Miyagishima, T.; Saiki, I.; Minagawa, T.; Kurosawa, M.; Itaya, T. und Miyazaki, T. (1991): Inhibitory effect of interleukin-4 on the in vitro growth of Ph1-positive acute lymphoblastic leukemia cells, Blood, (Band 78), No. 6, Seite 1574-80.

[Seite 105↓]

[25] Akashi, K.; Shibuya, T.; Harada, M.; Takamatsu, Y.; Uike, N.; Eto, T. und Niho, Y. (1991): Interleukin 4 suppresses the spontaneous growth of chronic myelomonocytic leukemia cells, J Clin Invest, (Band 88), No. 1, Seite 223-30.

[26] Yanagisawa, K.; Hatta, N.; Watanabe, I.; Horiuchi, T.; Hasegawa, H. und Fujita, S. (1995): IL-4 stimulates the growth of chronic myelomonocytic leukemia cells (CMMoL) once leukemic transformation has occurred, Leukemia, (Band 9), No. 6, Seite 1056-9.

[27] Jansen, J.H.; Fibbe, W.E.; Wientjens, G.J.; Willemze, R. und Kluin-Nelemans, J.C. (1993): Inhibitory effect of interleukin-4 on the proliferation of acute myeloid leukemia cells with myelo-monocytic differentiation (AML-M4/M5); the role of interleukin-6., Leukemia, (Band 7), No. 643.

[28] Spits, H.; Yssel, H.; Takebe, Y.; Arai, N.; Yokota, T.; Lee, F.; Arai, K.; Banchereau, J. und de Vries, J. E. (1987): Recombinant interleukin 4 promotes the growth of human T cells, J Immunol, (Band 139), No. 4, Seite 1142-7.

[29] Spits, H.; Yssel, H.; Paliard, X.; Kastelein, R.; Figdor, C. und de Vries, J. E. (1988): IL-4 inhibits IL-2-mediated induction of human lymphokine-activated killer cells, but not the generation of antigen-specific cytotoxic T lymphocytes in mixed leukocyte cultures, J Immunol, (Band 141), No. 1, Seite 29-36.

[30] Nagler, A.; Lanier, L. L. und Phillips, J. H. (1988): The effects of IL-4 on human natural killer cells. A potent regulator of IL-2 activation and proliferation, J Immunol, (Band 141), No. 7, Seite 2349-51.

[31] Kawakami, Y.; Custer, M. C.; Rosenberg, S. A. und Lotze, M. T. (1989): IL-4 regulates IL-2 induction of lymphokine-activated killer activity from human lymphocytes, J Immunol, (Band 142), No. 10, Seite 3452-61.

[32] Widmer, M. B.; Acres, R. B.; Sassenfeld, H. M. und Grabstein, K. H. (1987): Regulation of cytolytic cell populations from human peripheral blood by B cell stimulatory factor 1 (interleukin 4), J Exp Med, (Band 166), No. 5, Seite 1447-55.

[33] Kawakami, Y.; Rosenberg, S. A. und Lotze, M. T. (1988): Interleukin 4 promotes the growth of tumor-infiltrating lymphocytes cytotoxic for human autologous melanoma, J Exp Med, (Band 168), No. 6, Seite 2183-91.

[34] Fanslow, W. C.; Clifford, K.; VandenBos, T.; Teel, A.; Armitage, R. J. und Beckmann, M. P. (1990): A soluble form of the interleukin 4 receptor in biological fluids, Cytokine, (Band 2), No. 6, Seite 398-401.

[35] Golumbek, P. T.; Lazenby, A. J.; Levitsky, H. I.; Jaffee, L. M.; Karasuyama, H.; Baker, M. und Pardoll, D. M. (1991): Treatment of established renal cancer by tumor cells engineered to secrete interleukin-4, Science, (Band 254), No. 5032, Seite 713-6.

[Seite 106↓]

[36] Grusby, M. J.; Nabavi, N.; Wong, H.; Dick, R. F.; Bluestone, J. A.; Schotz, M. C. und Glimcher, L. H. (1990): Cloning of an interleukin-4 inducible gene from cytotoxic T lymphocytes and its identification as a lipase, Cell, (Band 60), No. 3, Seite 451-9.

[37] Russell, S. M.; Keegan, A. D.; Harada, N.; Nakamura, Y.; Noguchi, M.; Leland, P.; Friedmann, M. C.; Miyajima, A.; Puri, R. K. und Paul, W. E. (1993): Interleukin-2 receptor gamma chain: a functional component of the interleukin-4 receptor, Science, (Band 262), No. 5141, Seite 1880-3.

[38] Kondo, M.; Takeshita, T.; Ishii, N.; Nakamura, M.; Watanabe, S.; Arai, K. und Sugamura, K. (1993): Sharing of the interleukin-2 (IL-2) receptor gamma chain between receptors for IL-2 and IL-4, Science, (Band 262), No. 5141, Seite 1874-7.

[39] Aman, M. J.; Tayebi, N.; Obiri, N. I.; Puri, R. K.; Modi, W. S. und Leonard, W. J. (1996): cDNA cloning and characterization of the human interleukin 13 receptor alpha chain, J Biol Chem, (Band 271), No. 46, Seite 29265-29270.

[40] Miloux, B.; Laurent, P.; Bonnin, O.; Lupker, J.; Caput, D.; Vita, N. und Ferrara, P. (1997): Cloning of the human IL-13R alpha1 chain and reconstitution with the IL4R alpha of a functional IL-4/IL-13 receptor complex, FEBS Lett, (Band 401), No. 2-3, Seite 163-6.

[41] Caput, D.; Laurent, P.; Kaghad, M.; Lelias, J. M.; Lefort, S.; Vita, N. und Ferrara, P. (1996): Cloning and characterization of a specific interleukin (IL)-13 binding protein structurally related to the IL-5 receptor alpha chain, J Biol Chem, (Band 271), No. 28, Seite 16921-6.

[42] Park, L. S.; Friend, D.; Sassenfeld, H. M. und Urdal, D. L. (1987): Characterization of the human B cell stimulatory factor 1 receptor, J Exp Med, (Band 166), No. 2, Seite 476-88.

[43] Bazan, J. F. (1990): Structural design and molecular evolution of a cytokine receptor superfamily, Proc Natl Acad Sci U S A, (Band 87), No. 18, Seite 6934-8.

[44] Miyazaki, T.; Maruyama, M.; Yamada, G.; Hatakeyama, M. und Taniguchi, T. (1991): The integrity of the conserved 'WS motif' common to IL-2 and other cytokine receptors is essential for ligand binding and signal transduction, Embo J, (Band 10), No. 11, Seite 3191-7.

[45] Yin, T.; Tsang, M. L. und Yang, Y. C. (1994): JAK1 kinase forms complexes with interleukin-4 receptor and 4PS/insulin receptor substrate-1-like protein and is activated by interleukin-4 and interleukin-9 in T lymphocytes, J Biol Chem, (Band 269), No. 43, Seite 26614-7.

[46] Miyazaki, T.; Kawahara, A.; Fujii, H.; Nakagawa, Y.; Minami, Y.; Liu, Z. J.; Oishi, I.; Silvennoinen, O.; Witthuhn, B. A.; Ihle, J. N. und et al. (1994): Functional activation of Jak1 and Jak3 by selective association with IL-2 receptor subunits, Science, (Band 266), No. 5187, Seite 1045-7.

[Seite 107↓]

[47] Ihle, J. N. und Kerr, I. M. (1995): Jaks and Stats in signaling by the cytokine receptor superfamily, Trends Genet, (Band 11), No. 2, Seite 69-74.

[48] Keegan, A. D.; Nelms, K.; White, M.; Wang, L. M.; Pierce, J. H. und Paul, W. E. (1994): An IL-4 receptor region containing an insulin receptor motif is important for IL-4-mediated IRS-1 phosphorylation and cell growth, Cell, (Band 76), No. 5, Seite 811-20.

[49] Sun, X. J.; Wang, L. M.; Zhang, Y.; Yenush, L.; Myers, M. G., Jr.; Glasheen, E.; Lane, W. S.; Pierce, J. H. und White, M. F. (1995): Role of IRS-2 in insulin and cytokine signalling, Nature, (Band 377), No. 6545, Seite 173-7.

[50] O'Neill, TJ; Craparo, A. und Gustafson, T. A. (1994): Characterization of an interaction between insulin receptor substrate 1 and the insulin receptor by using the two-hybrid system, Mol Cell Biol, (Band 14), No. 10, Seite 6433-42.

[51] Wang, L. M.; Myers, M. G., Jr.; Sun, X. J.; Aaronson, S. A.; White, M. und Pierce, J. H. (1993): IRS-1: essential for insulin- and IL-4-stimulated mitogenesis in hematopoietic cells, Science, (Band 261), No. 5128, Seite 1591-4.

[52] Hou, J.; Schindler, U.; Henzel, W. J.; Ho, T. C.; Brasseur, M. und McKnight, S. L. (1994): An interleukin-4-induced transcription factor: IL-4 Stat, Science, (Band 265), No. 5179, Seite 1701-6.

[53] Kotanides, H. und Reich, N. C. (1993): Requirement of tyrosine phosphorylation for rapid activation of a DNA binding factor by IL-4, Science, (Band 262), No. 5137, Seite 1265-7.

[54] Kotanides, H. und Reich, N. C. (1996): Interleukin-4-induced STAT6 recognizes and activates a target site in the promoter of the interleukin-4 receptor gene, J Biol Chem, (Band 271), No. 41, Seite 25555-61.

[55] Schindler, C.; Kashleva, H.; Pernis, A.; Pine, R. und Rothman, P. (1994): STF-IL-4: a novel IL-4-induced signal transducing factor, Embo J, (Band 13), No. 6, Seite 1350-6.

[56] Takeda, K.; Tanaka, T.; Shi, W.; Matsumoto, M.; Minami, M.; Kashiwamura, S.; Nakanishi, K.; Yoshida, N.; Kishimoto, T. und Akira, S. (1996): Essential role of Stat6 in IL-4 signalling, Nature, (Band 380), No. 6575, Seite 627-30.

[57] Ryan, J. J.; McReynolds, L. J.; Keegan, A.; Wang, L. H.; Garfein, E.; Rothman, P.; Nelms, K. und Paul, W. E. (1996): Growth and gene expression are predominantly controlled by distinct regions of the human IL-4 receptor, Immunity, (Band 4), No. 2, Seite 123-32.

[Seite 108↓]

[58] Deutsch, H. H.; Koettnitz, K.; Chung, J. und Kalthoff, F. S. (1995): Distinct sequence motifs within the cytoplasmic domain of the human IL-4 receptor differentially regulate apoptosis inhibition and cell growth, J Immunol, (Band 154), No. 8, Seite 3696-703.

[59] Pernis, A.; Witthuhn, B.; Keegan, A. D.; Nelms, K.; Garfein, E.; Ihle, J. N.; Paul, W. E.; Pierce, J. H. und Rothman, P. (1995): Interleukin 4 signals through two related pathways, Proc Natl Acad Sci U S A, (Band 92), No. 17, Seite 7971-5.

[60] Zamorano, J. und Keegan, A. D. (1998): Regulation of apoptosis by tyrosine-containing domains of IL-4R alpha: Y497 and Y713, but not the STAT6-docking tyrosines, signal protection from apoptosis, J Immunol, (Band 161), No. 2, Seite 859-67.

[61] Harada, N.; Yang, G.; Miyajima, A. und Howard, M. (1992): Identification of an essential region for growth signal transduction in the cytoplasmic domain of the human interleukin-4 receptor, J Biol Chem, (Band 267), No. 32, Seite 22752-8.

[62] Seldin, D. C. und Leder, P. (1994): Mutational analysis of a critical signaling domain of the human interleukin 4 receptor, Proc Natl Acad Sci U S A, (Band 91), No. 6, Seite 2140-4.

[63] Harada, N.; Higuchi, K.; Wakao, H.; Hamasaki, N. und Izuhara, K. (1998): Identification of the critical portions of the human IL-4 receptor alpha chain for activation of STAT6, Biochem Biophys Res Commun, (Band 246), No. 3, Seite 675-80.

[64] Mikita, T.; Campbell, D.; Wu, P. G.; Williamson, K. und Schindler, U. (1996): Requirements for interleukin-4-induced gene expression and functional characterization of Stat6, Mol Cell Biol, (Band 16), No. 10, Seite 5811-20.

[65] Moriggl, R.; Erhardt, I.; Kammer, W.; Berchtold, S.; Schnarr, B.; Lischke, A.; Groner, B. und Friedrich, K. (1998): Activation of STAT6 is not dependent on phosphotyrosine-mediated docking to the interleukin-4 receptor and can be blocked by dominant-negative mutants of both receptor subunits, Eur J Biochem, (Band 251), No. 1-2, Seite 25-35.

[66] Lewis, B. (1996): Nuclear splicing, Lewis, B., Genes, Seite 885-920.

[67] Zahler, A. M.; Lane, W. S.; Stolk, J. A. und Roth, M. B. (1992): SR proteins: a conserved family of pre-mRNA splicing factors, Genes Dev, (Band 6), No. 5, Seite 837-47.

[68] Cavaloc, Y.; Popielarz, M.; Fuchs, J. P.; Gattoni, R. und Stevenin, J. (1994): Characterization and cloning of the human splicing factor 9G8: a novel 35 kDa factor of the serine/arginine protein family, Embo J, (Band 13), No. 11, Seite 2639-49.

[69] Screaton, G. R.; Caceres, J. F.; Mayeda, A.; Bell, M. V.; Plebanski, M.; Jackson, D. G.; Bell, J. I. und Krainer, A. R. (1995): Identification and characterization of three members of the human SR family of pre-mRNA splicing factors, Embo J, (Band 14), No. 17, Seite 4336-49.

[Seite 109↓]

[70] Chaudhary, N.; McMahon, C. und Blobel, G. (1991): Primary structure of a human arginine-rich nuclear protein that colocalizes with spliceosome components, Proc Natl Acad Sci U S A, (Band 88), No. 18, Seite 8189-93.

[71] Ge, H.; Zuo, P. und Manley, J. L. (1991): Primary structure of the human splicing factor ASF reveals similarities with Drosophila regulators, Cell, (Band 66), No. 2, Seite 373-82.

[72] Fu, X. D. und Maniatis, T. (1992): Isolation of a complementary DNA that encodes the mammalian splicing factor SC35, Science, (Band 256), No. 5056, Seite 535-8.

[73] Krainer, A. R.; Conway, G. C. und Kozak, D. (1990): Purification and characterization of pre-mRNA splicing factor SF2 from HeLa cells, Genes Dev, (Band 4), No. 7, Seite 1158-71.

[74] Fu, X. D. (1995): The superfamily of arginine/serine-rich splicing factors, RNA, (Band 1), No. 7, Seite 663-80.

[75] Valcarcel, J.; Gaur, R. K.; Singh, R. und Green, M. R. (1996): Interaction of U2AF65 RS region with pre-mRNA branch point and promotion of base pairing with U2 snRNA [corrected] [published erratum appears in Science 1996 Oct 4;274(5284):21], Science, (Band 273), No. 5282, Seite 1706-9.

[76] Zamore, P. D.; Patton, J. G. und Green, M. R. (1992): Cloning and domain structure of the mammalian splicing factor U2AF, Nature, (Band 355), No. 6361, Seite 609-14.

[77] Newman, A. J. (1997): The role of U5 snRNP in pre-mRNA splicing, Embo J, (Band 16), No. 19, Seite 5797-800.

[78] Staknis, D. und Reed, R. (1994): SR proteins promote the first specific recognition of Pre-mRNA and are present together with the U1 small nuclear ribonucleoprotein particle in a general splicing enhancer complex, Mol Cell Biol, (Band 14), No. 11, Seite 7670-82.

[79] Kohtz, J. D.; Jamison, S. F.; Will, C. L.; Zuo, P.; Luhrmann, R.; Garcia Blanco, M. A. und Manley, J. L. (1994): Protein-protein interactions and 5'-splice-site recognition in mammalian mRNA precursors, Nature, (Band 368), No. 6467, Seite 119-24.

[80] Wu, J. Y. und Maniatis, T. (1993): Specific interactions between proteins implicated in splice site selection and regulated alternative splicing, Cell, (Band 75), No. 6, Seite 1061-70.

[81] Zuo, P. und Maniatis, T. (1996): The splicing factor U2AF35 mediates critical protein-protein interactions in constitutive and enhancer-dependent splicing, Genes Dev, (Band 10), No. 11, Seite 1356-68.

[Seite 110↓]

[82] Champion-Arnaud, P. und Reed, R. (1994): The prespliceosome components SAP 49 and SAP 145 interact in a complex implicated in tethering U2 snRNP to the branch site, Genes Dev, (Band 8), No. 16, Seite 1974-83.

[83] Gozani, O.; Feld, R. und Reed, R. (1996): Evidence that sequence-independent binding of highly conserved U2 snRNP proteins upstream of the branch site is required for assembly of spliceosomal complex A, Genes Dev, (Band 10), No. 2, Seite 233-43.

[84] Madhani, H. D. und Guthrie, C. (1992): A novel base-pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome, Cell, (Band 71), No. 5, Seite 803-17.

[85] Manley, J. L. und Tacke, R. (1996): SR proteins and splicing control, Genes Dev, (Band 10), No. 13, Seite 1569-79.

[86] Krainer, A. R.; Conway, G. C. und Kozak, D. (1990): The essential pre-mRNA splicing factor SF2 influences 5' splice site selection by activating proximal sites, Cell, (Band 62), No. 1, Seite 35-42.

[87] Caceres, J. F.; Stamm, S.; Helfman, D. M. und Krainer, A. R. (1994): Regulation of alternative splicing in vivo by overexpression of antagonistic splicing factors, Science, (Band 265), No. 5179, Seite 1706-9.

[88] Adams, M. D.; Rudner, D. Z. und Rio, D. C. (1996): Biochemistry and regulation of pre-mRNA splicing, Curr Opin Cell Biol, (Band 8), No. 3, Seite 331-9.

[89] Tanaka, K.; Watakabe, A. und Shimura, Y. (1994): Polypurine sequences within a downstream exon function as a splicing enhancer, Mol Cell Biol, (Band 14), No. 2, Seite 1347-54.

[90] Wang, Z.; Hoffmann, H. M. und Grabowski, P. J. (1995): Intrinsic U2AF binding is modulated by exon enhancer signals in parallel with changes in splicing activity, RNA, (Band 1), No. 1, Seite 21-35.

[91] Lavigueur, A.; La Branche, H.; Kornblihtt, A. R. und Chabot, B. (1993): A splicing enhancer in the human fibronectin alternate ED1 exon interacts with SR proteins and stimulates U2 snRNP binding, Genes Dev, (Band 7), No. 12A, Seite 2405-17.

[92] Watakabe, A.; Tanaka, K. und Shimura, Y. (1993): The role of exon sequences in splice site selection, Genes Dev, (Band 7), No. 3, Seite 407-18.

[93] Sun, Q.; Mayeda, A.; Hampson, R. K.; Krainer, A. R. und Rottman, F. M. (1993): General splicing factor SF2/ASF promotes alternative splicing by binding to an exonic splicing enhancer, Genes Dev, (Band 7), No. 12B, Seite 2598-608.

[94] Woppmann, A.; Will, C. L.; Kornstadt, U.; Zuo, P.; Manley, J. L. und Luhrmann, R. (1993): Identification of an snRNP-associated kinase activity that phosphorylates arginine/serine rich domains typical of splicing factors, Nucleic Acids Res, (Band 21), No. 12, Seite 2815-22.

[Seite 111↓]

[95] Mermoud, J. E.; Cohen, P. T. und Lamond, A. I. (1994): Regulation of mammalian spliceosome assembly by a protein phosphorylation mechanism, Embo J, (Band 13), No. 23, Seite 5679-88.

[96] Mermoud, J. E.; Cohen, P. und Lamond, A. I. (1992): Ser/Thr-specific protein phosphatases are required for both catalytic steps of pre-mRNA splicing, Nucleic Acids Res, (Band 20), No. 20, Seite 5263-9.

[97] Gui, J. F.; Lane, W. S. und Fu, X. D. (1994): A serine kinase regulates intracellular localization of splicing factors in the cell cycle, Nature, (Band 369), No. 6482, Seite 678-82.

[98] Gui, J. F.; Tronchere, H.; Chandler, S. D. und Fu, X. D. (1994): Purification and characterization of a kinase specific for the serine- and arginine-rich pre-mRNA splicing factors, Proc Natl Acad Sci U S A, (Band 91), No. 23, Seite 10824-8.

[99] Wang, H. Y.; Lin, W.; Dyck, J. A.; Yeakley, J. M.; Songyang, Z.; Cantley, L. C. und Fu, X. D. (1998): SRPK2: a differentially expressed SR protein-specific kinase involved in mediating the interaction and localization of pre-mRNA splicing factors in mammalian cells, J Cell Biol, (Band 140), No. 4, Seite 737-50.

[100] Colwill, K.; Feng, L. L.; Yeakley, J. M.; Gish, G. D.; Caceres, J. F.; Pawson, T. und Fu, X. D. (1996): SRPK1 and Clk/Sty protein kinases show distinct substrate specificities for serine/arginine-rich splicing factors, J Biol Chem, (Band 271), No. 40, Seite 24569-75.

[101] Melcher, M. L. und Thorner, J. (1996): Identification and characterization of the CLK1 gene product, a novel CaM kinase-like protein kinase from the yeast Saccharomyces cerevisiae, J Biol Chem, (Band 271), No. 47, Seite 29958-68.

[102] Eperon, I. C.; Ireland, D. C.; Smith, R. A.; Mayeda, A. und Krainer, A. R. (1993): Pathways for selection of 5' splice sites by U1 snRNPs and SF2/ASF, Embo J, (Band 12), No. 9, Seite 3607-17.

[103] Zahler, A. M.; Neugebauer, K. M.; Lane, W. S. und Roth, M. B. (1993): Distinct functions of SR proteins in alternative pre-mRNA splicing, Science, (Band 260), No. 5105, Seite 219-22.

[104] Zahler, A. M. und Roth, M. B. (1995): Distinct functions of SR proteins in recruitment of U1 small nuclear ribonucleoprotein to alternative 5' splice sites, Proc Natl Acad Sci U S A, (Band 92), No. 7, Seite 2642-6.

[105] Lin, C. H. und Patton, J. G. (1995): Regulation of alternative 3' splice site selection by constitutive splicing factors, RNA, (Band 1), No. 3, Seite 234-45.

[Seite 112↓]

[106] Utz, P. J.; Hottelet, M.; van Venrooij, W. J. und Anderson, P. (1998): Association of phosphorylated serine/arginine (SR) splicing factors with the U1-small ribonucleoprotein (snRNP) autoantigen complex accompanies apoptotic cell death, J Exp Med, (Band 187), No. 4, Seite 547-60.

[107] Smith, C. W.; Patton, J. G. und Nadal Ginard, B. (1989): Alternative splicing in the control of gene expression, Annu Rev Genet, (Band 23), Seite 527-77.

[108] Raines, M. A.; Liu, L.; Quan, S. G.; Joe, V.; DiPersio, J. F. und Golde, D. W. (1991): Identification and molecular cloning of a soluble human granulocyte-macrophage colony-stimulating factor receptor, Proc-Natl-Acad-Sci-U-S-A, (Band 88), No. 18, Seite 8203-7.

[109] Pleiman, C. M.; Gimpel, S. D.; Park, L. S.; Harada, H.; Taniguchi, T. und Ziegler, S. F. (1991): Organization of the murine and human interleukin-7 receptor genes: two mRNAs generated by differential splicing and presence of a type I-interferon-inducible promoter, Mol Cell Biol, (Band 11), No. 6, Seite 3052-9.

[110] Horiuchi, S.; Koyanagi, Y.; Zhou, Y.; Miyamoto, H.; Tanaka, Y.; Waki, M.; Matsumoto, A.; Yamamoto, M. und Yamamoto, N. (1994): Soluble interleukin-6 receptors released from T cell or granulocyte/macrophage cell lines and human peripheral blood mononuclear cells are generated through an alternative splicing mechanism, Eur J Immunol, (Band 24), No. 8, Seite 1945-8.

[111] Ross, R. J.; Esposito, N.; Shen, X. Y.; Von Laue, S.; Chew, S. L.; Dobson, P. R.; Postel Vinay, M. C. und Finidori, J. (1997): A short isoform of the human growth hormone receptor functions as a dominant negative inhibitor of the full-length receptor and generates large amounts of binding protein, Mol Endocrinol, (Band 11), No. 3, Seite 265-73.

[112] Gale, R. E.; Freeburn, R. W.; Khwaja, A.; Chopra, R. und Linch, D. C. (1998): A truncated isoform of the human beta chain common to the receptors for granulocyte-macrophage colony-stimulating factor, interleukin-3 (IL-3), and IL-5 with increased mRNA expression in some patients with acute leukemia, Blood, (Band 91), No. 1, Seite 54-63.

[113] Tuypens, T.; Plaetinck, G.; Baker, E.; Sutherland, G.; Brusselle, G.; Fiers, W.; Devos, R. und Tavernier, J. (1992): Organization and chromosomal localization of the human interleukin 5 receptor alpha-chain gene, Eur Cytokine Netw, (Band 3), No. 5, Seite 451-9.

[114] Mosley, B.; Beckmann, M. P.; March, C. J.; Idzerda, R. L.; Gimpel, S. D.; VandenBos, T.; Friend, D.; Alpert, A.; Anderson, D. und Jackson, J. (1989): The murine interleukin-4 receptor: molecular cloning and characterization of secreted and membrane bound forms, Cell, (Band 59), No. 2, Seite 335-48.

[Seite 113↓]

[115] Nakamura, Y.; Komatsu, N. und Nakauchi, H. (1992): A truncated erythropoietin receptor that fails to prevent programmed cell death of erythroid cells, Science, (Band 257), No. 5073, Seite 1138-41.

[116] Vandenbark, G. R.; deCastro, C. M.; Taylor, H.; Dew Knight, S. und Kaufman, R. E. (1992): Cloning and structural analysis of the human c-kit gene, Oncogene, (Band 7), No. 7, Seite 1259-66.

[117] Wypych, J.; Bennett, L. G.; Schwartz, M. G.; Clogston, C. L.; Lu, H. S.; Broudy, V. C.; Bartley, T. D.; Parker, V. P. und Langley, K. E. (1995): Soluble kit receptor in human serum, Blood, (Band 85), No. 1, Seite 66-73.

[118] Heaney, M. L. und Golde, D. W. (1996): Soluble cytokine receptors, Blood, (Band 87), No. 3, Seite 847-57.

[119] Budel, L. M.; Dong, F.; Lowenberg, B. und Touw, I. P. (1995): Hematopoietic growth factor receptors: structure variations and alternatives of receptor complex formation in normal hematopoiesis and in hematopoietic disorders, Leukemia, (Band 9), No. 4, Seite 553-61.

[120] Crosier, K. E.; Hall, L. R.; Vitas, M. R. und Crosier, P. S. (1997): Expression and functional analysis of two isoforms of the human GM-CSF receptor alpha chain in myeloid development and leukaemia, Br J Haematol, (Band 98), No. 3, Seite 540-8.

[121] Heaney, M. L.; Vera, J. C.; Raines, M. A. und Golde, D. W. (1995): Membrane-associated and soluble granulocyte/macrophage-colony-stimulating factor receptor alpha subunits are independently regulated in HL-60 cells, Proc Natl Acad Sci U S A, (Band 92), No. 6, Seite 2365-9.

[122] Idzerda, R. L.; March, C. J.; Mosley, B.; Lyman, S. D.; Vanden Bos, T.; Gimpel, S. D.; Din, W. S.; Grabstein, K. H.; Widmer, M. B. und Park, L. S. (1990): Human interleukin 4 receptor confers biological responsiveness and defines a novel receptor superfamily, J Exp Med, (Band 171), No. 3, Seite 861-73.

[123] Platzer, C.; Ode Hakim, S.; Reinke, P.; Docke, W. D.; Ewert, R. und Volk, H. D. (1994): Quantitative PCR analysis of cytokine transcription patterns in peripheral mononuclear cells after anti-CD3 rejection therapy using two novel multispecific competitor fragments, Transplantation, (Band 58), No. 2, Seite 264-8.

[124] Kebelmann-Betzing, C.; Seeger, K.; Dragon, S.; Schmitt, G.; Möricke, A.; Schild, T. A.; Henze, G. und Beyermann, B. (1998): Advantages of a new Taq DNA polymerase in multiplex PCR and time-release PCR, Biotechniques, (Band 24 (1)), Seite 154-158.

[125] Wrighton, N.; Campbell, L. A.; Harada, N.; Miyajima, A. und Lee, F. (1992): The murine interleukin-4 receptor gene: genomic structure, expression and potential for alternative splicing, Growth Factors, (Band 6), No. 2, Seite 103-18.

[Seite 114↓]

[126] Enssle, K.; Enders, B.; Kurrle, R.; Lauffer, L.; Schorlemmer, H. U.; Dickneite, G.; Kanzy, E. J. und Seiler, F. R. (1995): Biology of natural and recombinant soluble interleukin-4 receptor, Behring Inst Mitt, (Band 96), Seite 103-17.

[127] Malabarba, M. G.; Kirken, R. A.; Rui, H.; Koettnitz, K.; Kawamura, M.; JJ, O. Shea; Kalthoff, F. S. und Farrar, W. L. (1995): Activation of JAK3, but not JAK1, is critical to interleukin-4 (IL4) stimulated proliferation and requires a membrane-proximal region of IL4 receptor alpha, J Biol Chem, (Band 270), No. 16, Seite 9630-7.

[128] Chen, C. Y.; Xu, N. und Shyu, A. B. (1995): mRNA decay mediated by two distinct Au-rich elements from c-fos and granulocyte-macrophage colony-stimulating factor transcripts: different deadenylation kinetics and uncoupling from translation, Mol Cell Biol, (Band 15), No. 10, Seite 5777-88.

[129] Goldberg, M. A.; Gaut, C. C. und Bunn, H. F. (1991): Erythropoietin mRNA levels are governed by both the rate of gene transcription and posttranscriptional events, Blood, (Band 77), No. 2, Seite 271-7 *LHM: Bestand in der Charit‚ -> siehe Zeitschriftenkatalog!.

[130] Seiser, C.; Posch, M.; Thompson, N. und Kuhn, L. C. (1995): Effect of transcription inhibitors on the iron-dependent degradation of transferrin receptor mRNA, J Biol Chem, (Band 270), No. 49, Seite 29400-6.

[131] Rajagopalan, L. E. und Malter, J. S. (1997): Regulation of eukaryotic messenger RNA turnover, Prog Nucleic Acid Res Mol Biol, (Band 56), Seite 257-86.

[132] Ross, J. (1996): Control of messenger RNA stability in higher eukaryotes, Trends Genet, (Band 12), No. 5, Seite 171-5.

[133] Waterhouse, N.; Kumar, S.; Song, Q.; Strike, P.; Sparrow, L.; Dreyfuss, G.; Alnemri, E. S.; Litwack, G.; Lavin, M. und Watters, D. (1996): Heteronuclear ribonucleoproteins C1 and C2, components of the spliceosome, are specific targets of interleukin 1beta-converting enzyme-like proteases in apoptosis, J Biol Chem, (Band 271), No. 46, Seite 29335-41.

[134] Casciola Rosen, L. A.; Miller, D. K.; Anhalt, G. J. und Rosen, A. (1994): Specific cleavage of the 70-kDa protein component of the U1 small nuclear ribonucleoprotein is a characteristic biochemical feature of apoptotic cell death, J Biol Chem, (Band 269), No. 49, Seite 30757-60.

[135] Boise, L. H. und Thompson, C. B. (1997): Bcl-x(L) can inhibit apoptosis in cells that have undergone Fas-induced protease activation, Proc Natl Acad Sci U S A, (Band 94), No. 8, Seite 3759-64.

[136] Utz, P. J.; Hottelet, M.; Schur, P. H. und Anderson, P. (1997): Proteins phosphorylated during stress-induced apoptosis are common targets for autoantibody production in patients with systemic lupus erythematosus, J Exp Med, (Band 185), No. 5, Seite 843-54.

[Seite 115↓]

[137] Boise, L. H.; Gottschalk, A. R.; Quintans, J. und Thompson, C. B. (1995): Bcl-2 and Bcl-2-related proteins in apoptosis regulation, Curr Top Microbiol Immunol, (Band 200), Seite 107-21.

[138] Screaton, G. R.; Xu, X. N.; Olsen, A. L.; Cowper, A. E.; Tan, R.; McMichael, A. J. und Bell, J. I. (1997): LARD: a new lymphoid-specific death domain containing receptor regulated by alternative pre-mRNA splicing, Proc Natl Acad Sci U S A, (Band 94), No. 9, Seite 4615-9.

[139] Shaham, S. und Horvitz, H. R. (1996): An alternatively spliced C. elegans ced-4 RNA encodes a novel cell death inhibitor, Cell, (Band 86), No. 2, Seite 201-8.

[140] Wang, L.; Miura, M.; Bergeron, L.; Zhu, H. und Yuan, J. (1994): Ich-1, an Ice/ced-3-related gene, encodes both positive and negative regulators of programmed cell death., Cell, (Band 78), Seite 739-50.

© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 3.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am: