Abadía J, López-Millán A-N, Rombolà A, Abadía A (2002) Organic acids and Fe deficiency: a review. Plant and Soil 241:  75-86

Abel S, Nürnberger T, Ahnert V, Krauss G-J, Glund K (2000) Induction of an extracellular cyclic nucleotide phosphodiesterase as an accessory ribonucleolytic activity during phosphate starvation of cultured tomato cells. Plant Physiology 122:  543-52

Ae N, Arihara J, Okada K, Yoshihara T, Johansen C (1990) Phosphorus uptake by pigeon pea and its role in cropping systems of the Indian subcontinent. Science 248:  477-80

Anthony RG, Henriques R, Helfer A, Mészáros T, Rios G, Testerink C, Munnik T, Deák M, Koncz C, Bögre L (2004)  A protein kinase target of a PDK1 signaling pathway is involved in root hair growth in Arabidopsis. The EMBO Journal 23:  572-81

Arahou M, Diem HG (1997)  Iron deficiency induces cluster (proteoid) root formation in Casuarina glauca. Plant and Soil 196:  71-9  

Aung K, Lin S, Wu C-C, Huang Y-T, Su C, Chiou T-J (2006) pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiology 141:  1000-11

Bagnat M, Simons K (2002)  Lipid rafts in protein sorting and cell polarity in budding yeast Saccharomyces cerevisiae . Biological Chemistry 383: 1475-80

Baluška F, Salaj J, Mathur J, Braun M, Jasper F, Šamaj J, Nam-Hai C, Barlow PW, Volkmann D (2000) Root hair formation: F-actin-dependent tip growth is initiatied by local assembly of profilin-supported F-actin meshworks accumulated within expansin-enriched bulges. Developmental Biology 227: 618-32

Bariola PA, Howard CJ, Taylor CB, Verburg MT, Jaglan VD, Green PJ (1994)  The Arabidopsis ribonuclease gene RNS1 is tightly controlled in response to phosphate limitation. The Plant Journal  6: 673-85

Bates TR, Lynch JP (2000) Plant growth and phosphorus accumulation of wild type and two root hair mutants of Arabidopsis thaliana (Brassicaceae). American Journal of Botany 87: 958-63

Bates TR, Lynch JP (1996) Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant, Cell and Environment 19: 529-38

Baumberger N, Ringli C, Keller B (2001)  The chimeric leucin-rich repeat/extensin cell wall protein LRX1 is required for root hair morphogenesis in Arabidopsis thaliana . Genes and Development 15: 1128-39  

Baumberger N, Steiner M, Ryser U, Keller B, Ringli C (2003)  Synergistic interaction of the two paralogus Arabidopsis genes LRX1 and LRX2 in cell wall formation during root hair development. The Plant Journal 35: 71-81

Berger F, Haseloff J, Schiefelbein J, Dolan L (1998b) Positional information in root epidermis is defined during embryogenesis and acts in domains with strict boundaries. Current Biology 8: 421-30

Berger F, Hung C-Y, Dolan L, Schiefelbein J (1998a) Control of cell division in the root epidermis of Arabidopsis thaliana . Developmental Biology 194: 235-45

Bernhardt C, Tierney ML (2000) Expression of AtPRP3, a proline-rich structural cell wall protein from Arabidopsis, is regulated by cell-type-specific developmental pathways involved in root hair formation. Plant Physiology 122: 705-14

Bernhardt C, Zhao M, Gonzalez A, Lloyd A, Schiefelbein J (2005)  The bHLH genes GL3 and EGL3 participate in an intracellular regulatory circuit that controls cell patterning in the Arabidopsis root epidermis. Development 132:  291-8  

Bibikova TN, Blancaflor EB, Gilroy S (1999) Microtubules regulate tip growth and orientation in root hair of Arabidopsis thaliana . The Plant Journal 17:  657-65

Bibikova TN, Jacob T, Dahse I, Gilroy S (1998)  Localized changes in apoplastic and cytoplasmatic pH are associated with root hair development in Arabidopsis thaliana . Development 125: 2925-34

Bieleski RL (1973)  Phosphate pools, phosphate transport, and phosphate availability. Annual Reviews in Plant Physiology  24: 225-52  

Bienfait HF, De Weger LA, Kramer D (1987)  Control of the development of iron-efficiency reactions in potato as a response to iron deficiency is located in the roots. Plant Physiology 83: 244-7

Bischoff F, Vahlkamp L, Molendijk A, Palme K (2000)  Localization of AtROP4 and AtROP6 and interaction with the guanine nucleotide dissociation inhibitor AtRhoGDI1 from Arabidopsis. Plant Molecular Biology 42:  515-30

Bonser AM, Lynch JP, Snapp S (1996)  Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris . The New Phytologist 132: 281-8

Braun M, Baluška F, von Witsch M, Menzel D (1999)  Redistribution of actin, profilin and phosphatidylinositol-4,5-bisphosphate in growing and maturing root hairs. Planta 209: 435-43  

Brown JC, Chaney RL, Ambler JE (1971) A new mutant inefficient in the transport of iron. Physiologica Plantarum 25: 48-53  

Brown JC, Foy CD, Bennett JH, Christiansen MN (1979)  Two light sources differentially affect ferric iron reduction and growth of cotton. Plant Physiology 63: 692-5  

Brumbarova T, Bauer P (2005)  Iron-mediated control of the basic helix-loop-helix protein FER, a regulator of iron uptake in tomato. Plant Physiology 137: 1018-26

Bucher M, Schroeer B, Willmitzer L, Riesmeier JW (1997) Two genes encoding extensin-like proteins are predominantly expressed in tomato root hair cells. Plant Molecular Biology 35: 497-508

Bünning E (1951) Über die Differenzierungsvorgänge in der Cruziferenwurzel. Planta 39: 126-53

Burk DH, Liu B, Zhong R, Morrison WH, Ye Z-H (2001) A katanin-like protein regulates normal cell wall biosynthesis and cell elongation. The Plant Cell 13:  807-27

Burleigh SH, Harrison MJ (1997) A novel gene whose expression in Medicago trunculata roots is suppressed in response to colonization by vesicular-arbuscular mycorrhizal (VAM) fungi and to phosphate nutrition. Plant Molecular Biology 34: 199-208

Burleigh SH, Harrison MJ (1999) The down-regulation of Mt4 -like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots. Plant Physiology  119:  241-8  

Carol RJ, Takeda S, Linstead P, Durrant MC, Kakesova H, Derbyshire P, Drea S, Zarsky V, Dolan L (2005) A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells. Nature 438:  1013-6

Carpita NC, Gibeaut DM (1993)  Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. The Plant Journal 3: 1-30  

Carswell C, Grant BR, Theodorou ME, Harris J, Niere JO, Plaxton WC (1996) The fungicide phosphonate disrupts the phosphate-starvation response in Brassica nigra seedlings. Plant Physiology 110: 105-10

Carswell MC, Grant BR, Plaxton WC (1997)  Disruption of the phosphate-starvation response of oilseed rape suspension cells by the fungicide phosphonate. Planta 203: 67-74

Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inzé D, Sandberg G, Casero PJ, Bennett M (2001) Auxin transport promotes Arabidopsis lateral root initiation. The Plant Cell 13:  843-52

Cassab GI (1998) Plant cell wall proteins. Annual Reviews of Plant Physiology and Plant Molecular Biology 49:  281-309

Chen DL, Delatorre CA, Bakker A, Abel S (2000) Conditional identification of phosphate-starvation-response mutants in Arabidopsis thaliana . Planta 211: 13-22

Chiou T-J, Aung K, Lin S, Wu C-C, Chiang S-F, Su C-L (2006)  Regulation of phosphate homeostasis by microRNA in Arabidopsis. The Plant Cell 18: 412-21

Cho H-T, Cosgrove DJ (2002)  Regulation of root hair initiation and expansin gene expression in Arabidopsis. The Plant Cell 14:  3237-53

Ciereszko I, Johansson H, Hurry V, Kleezkowski LA (2001)  Phosphate status affects the gene expression, protein content and enzymatic activity of UDP-glucose pyrophosphorylase in wildtype and pho mutants of Arabidopsis. Planta 212: 598-605

Cohen CK, Garvin DF, Kochian LV (2004) Kinetik properties of a micronutient transporter from Pisum sativum indicate a primary function in Fe uptake from the soil. Planta 218: 784-92  

Colangelo EP, Guerinot ML (2004) The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. The Plant Cell 16:  3400-12

Connolly EL, Campbell NH, Grotz N, Prichard CL, Guerinot ML (2003) Overexpression of the FRO2 ferric-chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. Plant Physiology 133: 1102-10

Connolly EL, Fett JP, Guerinot ML (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. The Plant Cell 14: 1347-57

Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407: 321-6

Costa S, Shaw P (2006)  Chromatin organization and cell fate switch respond to positional information in Arabidopsis. Nature 439: 493-6  

Cruz-Ramírez A, Oropeza-Aburto A, Razo-Hernánez F, Ramírez-Chávez E, Herrera-Estrella L (2006) Phospholipase DZ2 plays an important role in extraplastidic galactolipid biosynthesis and phosphate recycling in Arabidopsis roots. PNAS 103: 6765-70

Curie C, Alonso JM, Le Jean M, Ecker JR, Briat J-F (2000)  Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochemical Journal 347: 749-55

Daram P, Brunner S, Rausch C, Steiner C, Amrhein N, Bucher M (1999) Pht2;1 encodes a low-affinity phosphate transporter from Arabidopsis. The Plant Cell 11:  2153-66

del Pozo JC, Allona I, Rubio V, Leyva A, de la Peña A, Aragoncillo C, Paz-Ares J (1999) A type 5 acid phosphatase gene from Arabidopsis thaliana is induced by phosphate starvation and by some other types of phosphate mobilising/oxidative stress conditions. The Plant Journal 19: 579-89

Delhaize E (1996) A metal-accumulator mutant of Arabidopsis thaliana. Plant Physiology 111:  849-55

Delhaize E, Randall PJ (1995) Characterization of a phosphate-accumulator mutant of Arabidopsis thaliana . Plant Physiology  107:  207-13

DerMardirossian C, Bokoch GM (2005) GDIs: central regulatory molecules in Rho GTPase activation. Trends in Cell Biology  15: 356-63

Desbrosses G, Josefsson C, Rigas S, Hatzopoulos P, Dolan L (2003) AKT1 and TRH1 are required during root hair elongation in Arabidopsis. Journal of Experimental Botany  54:  781-8

DiDonato R Jr, Roberts LA, Sanderson T, Eisley RB, Walker EL (2004)  Arabidopsis Yellow Stripe-Like2 ( YSL2 ): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes. The Plant Journal 39:  403-14

Diet A, Brunner S, Ringli C (2004) The enl mutants enhance the lrx root hair mutant phenotype of Arabidopsis thaliana. Plant and Cell Physiology 45:  734-41

Diet A, Link B, Seifert GJ, Schellenberg B, Wagner U, Pauly M, Reiter W-D, Ringli C (2006) The Arabidopsis root hair cell wall formation mutant lrx1 is suppressed by mutantions in the RHM1 gene encoding a UDP- L -rhamnose synthase. The Plant Cell  18:  1630-41

Dittmer HJ (1937) A quantitative study of the roots and root hairs of a winter rye plant ( Secale cereale ). American Journal of Botany 24: 417-20

Dolan L (2006) Positional information and mobile transcriptional regulators determine cell pattern in the Arabidopsis root epidermis. Journal of Experimental Botany  57: 51-54

Dolan L, Duckett MD, Grierson C, Linstead P, Schneider K, Lawson E, Dean C, Poethig S, Roberts K (1994)  Clonal relationships and cell patterning in the root epidermis of Arabidopsis. Development 120: 2465-74

Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B (1993)  Cellular organization of the Arabidopsis thaliana root. Development 119: 71-84

Donaldson JG, Cassel D, Kahn RA, Klausner RD (1992a) ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein β-COP to Golgi membranes. PNAS 89: 6408-12

Donaldson JG, Finazzi D, Klausner RD (1992b) Brefeldin A inhibits Golgi membrane-catalyzed exchange of guanine nucleotide onto ARF protein. Nature 360: 350-2

Dong B, Rengel Z, Delhaize E (1998) Uptake and translocation of phosphate by pho2 mutant and wildtype seedlings of Arabidopsis thaliana . Planta 205: 251-6  

Drew MC, Saker LR (1984) Uptake and long-distance transport of phosphate, potassium and chloride in relation to internal ion concentrations in barley: evidence of non-allosteric regulation. Planta 60: 500-7

Duff SMG, Plaxton WC, Lefebvre DD (1991) Phosphate-starvation response in plant cells: de novo synthesis and degradation of acid phosphatases. PNAS 88:  9538-42  

Durrett T, Gassmann W, Rogers E (2006) Functional characterization of FRD3, a novel organic acid effluxer involved in iron homeostasis. Abstract No. S4-O-7 edited by: 13 th International Symposium of Iron Nutrition and Interaction in Plants,, Montpellier

Duy D, Wanner G, Soll J, Philippar K (2006) PIC1: an ancient permease in Arabidopsis chloroplasts mediates transport of metal ions. Abstract No. S4-O-4 edited by: 13 th International Symposium of Iron Nutrition and Interaction in Plants, Montpellier

Eckhardt U, Buckhout TJ (1998) Iron assimilation in Clamydomonas reinhardtii involves ferric reduction and is similar to strategy I higher plants. Journal of Experimental Botany 49: 1219-26

Eckhardt U, Mas Marques A, Buckhout TJ (2001) Two iron-regulated cation transporter from tomato complement metal uptake-deficient yeast mutants. Plant Molecular Biology 45: 437-48

Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. PNAS 93:  5624-8

Eliás M, Drdova E, Ziak D, Bavlnka B, Hala M, Cvrckova F, Soukupova H, Žárský V (2003) The exocyst complex in plants. Cell Biology International  27: 199-201

Estelle MA, Somerville C (1987) Auxin-resistant mutants of Arabidopsis thaliana with an altered morphology. Molecular and General Genetics 206: 200-6  

Evans ML, Ishikawa H, Estelle MA (1994) Response of Arabidopsis roots to auxin studied with high resolution: comparison of wild type and auxin-response mutants. Planta 194:  215-22

Favery B, Ryan E, Foreman J, Linstead P, Boudonck K, Steer M, Shaw P, Dolan L (2001) KOJAK encodes a cellulose synthase-like protein required for root hair cell morphogenesis in Arabidopsis. Genes and Development 15:  79-89

Fischer U, Ikeda Y, Ljung K, Serralbo O, Singh M, Heidstra R, Palme K, Scheres B, Grebe M (2006) Vectorial information for Arabidopsis planar polarity is mediated by combined AUX1 , EIN2 , and GNOM a ctivity. Current Biology 16: 2143-9

Foehse D, Jungk A (1983) Influence of phosphate and nitrate supply on root hair formation of rape, spinach, and tomato plants. Plant and Soil  74: 359-68

Forde B, Lorenzo H (2001) The nutritional control of root development. Plant and Soil  232: 51-68  

Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:  442-6  

Foreman J, Dolan L (2001) Root hairs as a model system for studying plant cell growth. Annals of Botany 88: 1-7

Foyer C, Spencer C (1986) The relationship between phosphate status and photosynthesis in leaves. Planta 167:  369-75

Franco-Zorilla JM, González E, Bustos R, Linhares F, Leyva A, Paz-Ares J (2004) The transcriptional control of plant responses to phosphate limitation. Journal of Experimental Botany 55:  285-93

Franco-Zorrilla JM, Martín AC, Solano R, Rubio V, Leyva A, Paz-Ares J (2002) Mutations at CRE1 impair cytokinin-induced repression of phosphate starvation responses in Arabidopsis. The Plant Journal 32: 353-60

Fredeen AL, Rao IM, Terry N (1989) Influence of phosphorus nutrition on growth and carbon partitioning in Glycine max . Plant Physiology 89: 225-30

Fujii H, Chiou T-J, Lin S, Aung K, Zhu J-K (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Current Biology 15:  2038-43

Gahoonia TS, Nielsen NE (1998) Direct evidence on participation of root hairs in phosphorus ( 32 P) uptake from soil. Plant and Soil 198: 147-52

Gahoonia TS, Nielsen NE (1997) Variation in root hairs of barley cultivars doubled soil phosphorus uptake. Euphytica 98:  177-82

Galway ME, Heckman JW Jr., Schiefelbein JW (1997) Growth and ultrastructure of Arabidopsis root hairs: the rhd3 mutation alters vacuole enlargement and tip growth. Planta 201: 209-18

Galway ME, Lane DC, Schiefelbein JW (1999) Defective control of growth rate and cell diameter in tip-growing root hairs of the rhd4 mutant of Arabidopsis thaliana . Canadian Journal of Botany 77:  494-507

Galway ME, Masucci JD, Lloyd AM, Walbot V, Davis RW, Schiefelbein JW (1994) The TTG gene is required to specify epidermal cell fate and cell patterning in the Arabidopsis root. Developmental Biology 166: 740-54

Gardner WK, Barber DA, Parbery DG (1983) The acquisition of phosphorus by Lupinus albus L. III. The probable mechanism by which phosphorus movement in the soil/root interface is enhanced. Plant and Soil  70: 107-24

Ge Z, Rubio G, Lynch JP (2000) The importance of root gravitropism for inter-root competition and phosphorus acquisition efficiency: results from a geometric simulation model. Plant and Soil 218:  159-71

Gilbert GA, Knight JD, Vance CP, Allan DL (2000) Proteoid root development of phosphorus deficient lupin is mimicked by auxin and phosphonate. Annals of Botany 85:  921-8

González E, Solano R, Rubio V, Leyva A, Paz-Ares J (2005)  PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 is a plant-specific SEC12-related protein that enables the endoplasmatic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. The Plant Cell 17: 3500-12

Grebe M (2004) Ups and downs of tissue and planar polarity in plants. BioEssays 26:  719-29

Grebe M, Friml J, Swarup R, Ljung K, Sandberg G, Terlou M, Palme K, Bennett MJ, Scheres B (2002)  Cell polarity signaling in Arabidopsis involves a BFA-sensitive auxin influx pathway. Current Biology 12:  329-34

Green LS, Rogers EE (2004) FRD3 controls iron localization in Arabidopsis. Plant Physiology 136: 1-9

Grierson PF (1992) Organic acids in the rhizosphere of Baksia integrifolia L.f. Plant and Soil 144: 259-65

Grusak MA (1995)  Whole-root iron(III)-reductase activity throughout the life-cycle or iron-grown Pisum sativum L. (Fabaceae): Relevance to the iron nutrition of developing seeds. Planta 197: 111-7

Hamburger D, Rezzonico E, MacDonald-Comber Petétot J, Somerville C, Poirier Y (2002) Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading of the xylem. The Plant Cell 14:  889-902

Hammond JP, Broadley MR, White PJ (2004)  Genetic responses to phosphorus deficiency. Annals of Botany 94: 323-32

Harada T, Matsuzaki O, Hayashi H, Sugano S, Matsuda A, Nishida E (2003) AKRL1 and AKRL2 activate the JNK pathway. Genes to Cells 8: 493-500

Harrison PM, Arosio P (1996) The ferritins: molecular properties, iron storage function, and cellular regulation. Biochemica Biophysica Acta 1275: 161-203

He Z, Ma Z, Brown KM, Lynch JP (2005) Assessment of inequality of root hair density in Arabidopsis thaliana using the Gini coefficient: a close look at the effect of phosphorus and its interaction with ethylene. Annals of Botany 95:  287-93

Hell R, Stephan UW (2003) Iron uptake, trafficking and homeostasis in plants. Planta 216: 541-51  

Hellmann H, Estelle M (2002) Plant development: regulation by protein degradation. Science 297: 793-7

Helms JB, Rothman JE (1992) Inhibition by brefeldin A of a Golgi membrane enzyme that catalyzes exchange of guanine nucleotide bound to ARF. Nature 360: 352-4

Hemsley PA, Kemp AC, Grierson CS (2005) The TIP GROWTH DEFECTIVE1 S -acyl transferase regulates plant cell growth in Arabidopsis. The Plant Cell 17: 2554-63

Hepler PK, Vidali L, Cheung AY (2001) Polarized cell growth in higher plants. Annual Review of Cell and Developmental Biology 17: 159-87  

Herbik A, Bölling C, Buckhout TJ (2002) The involvement of a multicopper oxidase in iron uptake by the green algae Chlamydomonas reinhardtii. Plant Physiology 130: 2039-48  

Himanen K, Boucheron E, Vanneste S, de Almeida Engler J, Inzé D, Beeckman T (2002)  Auxin-mediated cell cycle activation during early lateral root initiation. The Plant Cell  14: 2339-51

Hobbie L, Estelle M (1995) The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. The Plant Journal  7:  211-20

Horgan JM, Wareing PF (1980) Cytokinins and the growth responses of seedlings of Betula pendula Roth and Acer pseudoplatanus L. to nitrogen and phosphorus deficiency. Journal of Experimental Botany 31: 525-32

Hu Y, Zhong R, Morrison H, Ye Z-H (2003) The Arabidopsis RHD3 gene is required for cell wall biosynthesis and actin organization. Planta 217:  912-21

Hülskamp M (2000)  Cell morphogenesis: how plants split hairs. Current Biology 10: 308-10  

Hülskamp M, Misera S, Jürgens G (1994) Genetic dissection of trichome cell development in Arabidopsis. Cell 76:  555-66

Hung C-Y, Lin Y, Zhang M, Pollock S, Marks MD, Schiefelbein J (1998)  A common position-dependent mechanism controls cell-type patterning and GLABRA2 regulation in the root and hypocotyl epidermis of Arabidopsis. Plant Physiology 117: 73-84  

Inoue T, Higuchi M, Hashimoto Y, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K, Kakimoto T (2001)  Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409: 1060-3  

Ivashuta S, Liu J, Liu J, Lohar DP, Haridas S, Bucciarelli B, VandenBosch KA, Vance CP, Harrison MJ, Gantt JS (2005)  RNA interference identifies a calcium-dependent protein kinase involved in Medicago trunculata root development. The Plant Cell 17: 2911-21

Jacoby M, Wang H-Y, Reidt W, Weisshaar B, Bauer P (2004) FRU (bHLH029) is required for induction of iron mobilization genes in Arabidopsis thaliana. FEBS letters 577: 528-534

Jeschke WD, Kirkby EA, Peuke AD, Pate JS, Hartung W (1997) Effects of P deficiency on assimilation and transport of nitrate and phosphate in intact plants of castor bean ( Ricinus communis L.). Journal of Experimental Botany  48: 75-91

Jeschke WD, Peuke A, Kirkby EA, Pate JS, Hartung W (1996) Effects of P deficiency on the uptake, flows and utilization of C, N, and H 2 O within intact plants of Rhicinus communis L. Journal of Experimental Botany 47: 1737-54

Johnson JF, Vance CP, Allan D (1996) Phosphorus deficiency in Lupinus albus . Altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase. Plant Physiology 112: 31-41  

Jones M, Raymond MJ, Smirnoff N (2006) Analysis of the root hair morphogenesis transcriptome reveals the molecular identity of six genes with roles in root hair development in Arabidopsis. The Plant Journal 45:  83-100

Jones MA, Shen J-J, Fu Y, Li H, Yang Z, Grierson CS (2002) The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth. The Plant Cell 14: 763-76

Joubès J, Chevalier C (2000) Endoreduplication in higher plants. Plant Molecular Biolgy 43: 735-45

Kai M, Masuda Y, Kikuchi Y, Osaki M, Tadano T (1997)  Isolation and characterization of a cDNA from Catharanthus roseus which is highly homologous with phosphate transporter. Soil Science and Plant Nutrition 43:  227-35

Karandashov V, Bucher M (2004) Symbiotic phosphate transport in arbuscular mycorrhizas. Trends in Plant Science 10: 22-9

Kiiskinen M, Korhonen M, Kangasjärvi J (1997) Isolation and characterization of cDNA for a plant mitochondrial phosphate translocator ( Mpt1 ): ozone stress induces Mpt1 mRNA accumulation in birch ( Betula pendula Roth). Plant Molecular Biology 35:  271-9  

Kim DW, Lee SH, Choi S-B, Won S-K, Heo Y-K, Cho M, Park Y-I, Cho H-T (2006) Functional conservation of a root hair cell-specific cis -element in angiosperms with different root hair distribution patterns. The Plant Cell 18: 2958-70

Kim SA, Punshon T, Lanzirotti A, Li L, Alonso JM, Ecker JR, Kaplan J, Guerinot ML (2006) Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science 314: 1295-8

Kim WT, Silverstone A, Yip WK, Dong JG, Yang SF (1992)  Induction of 1-aminocyclopropane-carboxylate synthase mRNA by auxin in mung bean hypocotyls and cultured apple shoots. Plant Physiology 98:  465-71

Koornneef M, Dellaert LWM, van der Veen JH (1982) EMS- and radiation-induced mutation frequencies at individual loci in Arabidopsis thaliana (L.) Heynh. Mutation Research  93: 109-123

Koshino-Kimura Y, Wada T, Tachibana T, Tsugeki R, Ishiguro S, Okada K (2005) Regulation of CAPRICE transcription by MYB proteins for root epidermis differentiation in Arabidopsis. Plant and Cell Physiology 46: 817-26  

Koyama H, Kawamura A, Kihara T, Hara T, Takita E, Shibata D (2000) Overexpression of mitochondrial citrate synthase in Arabidopsis thaliana improved growth on a phosphorus-limited soil. Plant and Cell Physiology 41: 1030-7

Kramer D, Römheld V, Landsberg E-C, Marschner H (1980) Induction of transfer-cell formation by iron deficiency in the root epidermis of Helianthus annuus L. Planta  147: 335-9  

Kristensen I, Larsen PO (1974) Azetidine-2-carboxylic acid derivates from seeds of Fagus silvativa L. and a revised structure for nicotianamine. Phytochemistry 13:  2791-8

Krüger C, Berkowitz O, Stephan UW, Hell R (2002) A metal-binding member of the late embryogenesis abundant protein family transports iron the phloem of Rhicinus communis L. The Journal of Biological Chemistry 277: 25062-9

Kuiper D (1988)  Growth responses of Plantago major L. ssp. pleiosperma (Pilger) to changes in mineral supply. Evidence for regulation by cytokinins. Plant Physiology 87: 555-7

Kuiper D, Schuit J, Kuiper PJC (1988) Effects of internal and external cytokinin concentrations on root growth and shoot to root ratio of Plantago major ssp pleiosperma at different nutrient conditions. Plant and Soil 111:  231-6

Kurata T, Ishida T, Kawabata-Awai C, Noguchi M, Hattori S, Sano R, Nagasaka R, Tominaga R, Koshino-Kimura Y, Kato T, Sato S, Tabata S, Okada K, Wada T (2005) Cell-to-cell movement of the CAPRICE protein in Arabidopsis root epidermal cell differentiation. Development 132: 5387-98  

Kwak S-H, Shen R, Schiefelbein J (2005) Positional signaling mediated by a receptor-like kinase in Arabidopsis. Science 307:  1111-3  

Lamont BB (2003) Structure, ecology and physiology of root clusters - a review. Plant and Soil 248: 1-19  

Landsberg E-C (1996)  Hormonal regulation of iron stress response in sunflower roots: a morphological and cytological investigation. Protoplasma  194:  69-80

Landsberg E-C (1984) Regulation of iron-stress-response by whole plant activity. Journal of Plant Nutrition 7: 609-21

Landsberg E-C (1986) Function of rhizodermal transfer cells in the Fe stress response mechanism of Capsicum annuum L. Plant Physiology 82: 511-7

Lanquar V, Lelievre F, Bolte S, Hames C, Alcon C, Neumann D, Vansuyt G, Curie C, Schroeder A, Krämer U, Barbier-Brygoo H, Thomine S (2005) Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO Journal 24:  4041-51  

Le Jean M, Schikora A, Briat J-F, Curie C (2005)  A loss-of-function mutation in AtYSL1 reveals its role in iron and nicotianamine seed loading. The Plant Journal 44: 769-  

Lee MM, Schiefelbein J (1999)  WEREWOLF, a MYB-related protein in Arabidopsis, is a position-dependent regulator of epidermal cell patterning. Cell 99: 473-83

Lee MM, Schiefelbein J (2002) Cell pattern in the Arabidopsis root epidermis determined by lateral inhibition with feedback. The Plant Cell 14: 611-8

Lefebvre DD, Duff SMG, Fife CA, Julien-Inalsingh C, Plaxton WC (1990) Response to phosphate deprivation in Brassica nigra suspension cells. Enhancement of intracellular, cell surface, and secreted phosphatase activities compared to increases in P i -absorption rate. Plant Physiology  93: 504-11

Leggewie G, Willmitzer L, Riesmeier JW (1997) Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant: identification of phosphate transporters from higher plants. The Plant Cell  9: 381-92  

Ling H-Q, Bauer P, Bereczky Z, Keller B, Ganal M (2002) The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots. PNAS 99: 13938-43

Ling H-Q, Koch G, Bäumlein H, Ganal MW (1999)  Map-based cloning of chloronerva , a gene involved in iron uptake of higher plants encoding nicotinanamine synthase. PNAS 96:  7098-103  

Linkohr BI, Williamson LC, Fitter AH, Leyser HMO (2002) Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. The Plant Journal 29: 751-60

Lipton GS, Blanchar RW, Blevins DG (1987)  Citrate, malate and succinate concentration in exudates from P sufficient and P-stressed Medicago sativa L. seedlings. Plant Physiology 85: 315-7  

Liu C, Muchhal US, Raghothama KG (1997) Differential expression of TPSI1, a phosphate starvation-induced gene in tomato. Plant Molecular Biology 33:  867-74  

Lobréaux S, Briat J-F (1991) Ferritin accumulation and degradation in different organs of pea ( Pisum sativum ) during development. Biochemical Journal 274: 601-6  

Löffler A, Abel S, Jost W, Beintema JJ, Glund K (1992) Phosphate-regulated induction of intracellular ribonucleases in cultured tomato ( Lycopersicon esculentum ) cells. Plant Physiology 98:  1472-8

López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L (2003)  The role of nutrient availability in regulating root architecture. Current Opinion in Plant Biology  6:  280-7

López-Bucio J, Hernández-Abreu E, Sánchez-Calderón L, Nieto-Jacobo MF, Simpson J, Herrera-Estrella L (2002) Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiology 129:  244-56

López-Bucio J, Hernández-Abreu E, Sánchez-Calderón L, Pérez-Torres A, Rampey RA, Bartel B, Herrera-Estrella L (2005)  An auxin transport independent pathway is involved in phosphate stress-induced root architectural alterations in Arabidopsis. Identification of BIG as a mediator of auxin in pericycle cell activation. Plant Physiology 137: 681-91

López-Milán AF, Morales F, Abadía A, Abadía J (2000)  Effects of iron deficiency on the composition of the leaf apoplastic fluid and xylem sap in sugar beet. Implications for iron and carbon transport. Plant Physiology 124: 873-84  

Lynch JP, Brown KM (2001) Topsoil foraging - an architectural adaptation of plants to low phosphorus availability. Plant and Soil 237: 225-237

Ma Z, Baskin TI, Brown KM, Lynch JP (2003) Regulation of root elongation under phosphorus stress involves changes in ethylene responsiveness. Plant Physiology 131:  1-10  

Ma Z, Bielenberg DG, Brown KM, Lynch JP (2001a) Regulation of root hair density by phosphorus availability in Arabidopsis thaliana . Plant, Cell and Environment 24: 459-67

Maas FM, van de Wetering DAM, van Beusichem ML, Bienfait HF (1988) Characterization of phloem iron and its possible role in the regulation of Fe-efficiency reactions. Plant Physiology 87: 167-71

Mähönen AP, Bonke M, Kauppinen L, Riikonen M, Benfey PN, Helariutta Y (2000) A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes and Development 14: 2938-43

Marschner H (1995)  Mineral nutrition of higher plants. 2nd edition, Academic Press, London

Masaoka Y, Kojima M, Sugihara S, Yoshihara T, Koshino M, Ichihara A (1993) Dissolution of ferric phosphate by alfalfa ( Medicago stiva L.) root exudates. Plant and Soil 155/156: 75-8

Masucci JD, Rerie WG, Foreman DR, Zhang M, Galway ME, Marks MD, Schiefelbein JW (1996)  The homeobox gene GLABRA2 is required for position-dependent cell differentiation in the root epidermis of Arabidopsis thaliana. Development 122: 1253-60

Masucci JD, Schiefelbein JW (1994) The rhd6 mutation of Arabidopsis thaliana alters root-hair initiation through an auxin- and ethylene-associated process. Plant Physiology 106: 1335-46

Masucci JD, Schiefelbein JW (1996) Hormones act downstream of TTG and GL2 to promote root hair outgrowth during epidermis development in the Arabidopsis root. The Plant Cell 8: 1505-17

McQueen-Mason S, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall extension in plants. The Plant Cell 4: 1425-33

Miller SS, Liu J, Allan DL, Menzhuber CJ, Fedorova M, Vance CP (2001) Molecular control of acid phosphatase secretion into the rhizosphere of proteoid roots from phosphorus-stressed white lupin. Plant Physiology 127: 594-606

Mimura T, Sakano K, Shimmen T (1996)  Studies on the distribution, re-translocation and homeostasis of inorganic phosphate in barley leaves. Plant, Cell and Environment 19:  311-20  

Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan AS, Raghothama KG, Baek D, Koo YD, Jin JB, Bressan RA, Yun D-J, Hasegawa PM (2005) The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. PNAS  102: 7760-5

Molendijk AJ, Bischoff F, Rajendrakumar CSV, Friml J, Braun M, Gilroy S, Palme K (2001)  Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control planar growth. The EMBO Journal 20: 2779-88

Moog PR, van der Kooij TAW, Brüggemann W, Schiefelbein JW, Kuiper PJC (1995) Response to iron deficiency in Arabidopsis thaliana : The turbo iron reductase does not depend on the formation of root hairs and transfer cells. Planta 195: 505-13

Moorby H, White RE, Nye PH (1988) The influence of phosphate nutrition on H ion efflux from the roots of young rape plants. Plant and Soil 105: 247-56  

Muchhal US, Liu C, Raghothama KG (1997) Ca 2+ -ATPase is expressed differentially in phosphate-starved roots of tomato. Physiologica plantarum  101: 540-4  

Muchhal US, Pardot JM, Raghothama KG (1996) Phosphate transporters from the higher plant Arabidopsis thaliana . PNAS 93: 10519-23

Mudge SR, Rae AL, Diatloff E, Smith FW (2002) Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. The Plant Journal 31: 341-53  

Mukherjee I, Campbell NH, Ash JS, Connolly EL (2006) Expression profiling of the Arabidopsis ferric-chelate reductase (FRO) gene family reveals differential regulation by iron and copper. Planta 223: 1178-90

Müller A, Guan C, Gälweiler L, Tänzler P, Huijser P, Marchant A, Parry G, Bennett M, Wisman E, Palme K (1998)  AtPIN2 defines a locus of Arabidopsis for root gravitropism control. The EMBO Journal 17: 6903-11

Müller R, Nilsson L, Krintel C, Nielsen TH (2004) Gene expression during recovery from phosphate starvation in roots and shoots of Arabidopsis thaliana . Physiologica Plantarum 122: 233-43

Nacry P, Canivenc G, Muller B, Azmi A, Van Onckelen H, Rossignol M, Doumas P (2005)  A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis. Plant Physiology 138: 2061-74

Norvell WA, Welch RM, Adams ML, Kochian LV (1993) Reduction of Fe(III), Mn(III), and Cu(II) chelates by roots of pea ( Pisum sativum L.) or soybean ( Glycine max ). Plant and Soil 155/156: 123-6

Nürnberger T, Abel S, Jost W, Glund K (1990) Induction of an extracellular ribonuclease in cultured tomato cells upon phosphate starvation. Plant Physiology 92:  970-6

Ohashi Y, Oka A, Rodrigues-Pousada R, Possenti M, Ruberti I, Morelli G, Aoyama T (2003) Modulation of phospholipid signaling by GLABRA2 in root-hair pattern formation. Science 300: 1427-30

Oyama T, Shimura Y, Okada K (2002) The IRE gene encodes a proetin kinase homologue and modulates root hair growth in Arabidopsis. The Plant Journal  30: 289-99  

Palmgren MG (2001) Plant plasma membrane H + -ATPases: powerhouses for nutrient uptake. Annual Reviews of Plant Molecular Biology 52: 817-45

Pao SS, Paulsen IT, Saier MH Jr. (1998) Major facilitator superfamily. Microbiology and Molecular Biology Reviews 62:  1-34

Parker JS, Cavell AC, Dolan L, Roberts K, Grierson CS (2000) Genetic interactions during root hair morphogenesis in Arabidopsis. The Plant Cell 12: 1961-74  

Pesch M, Hülskamp M (2004) Creating a two-dimensional pattern de novo during Arabidopsis trichome and root hair initiation. Current Opinion in Genetics and Development 14: 422-7  

Peterson RL (1992) Adaptations of root structure in relation to biotic and abiotic factors. Canadian Journal of Botany  40: 661-75

Peterson RL (1992) Adaptations of root structure in relation to biotic and abiotic factors. Canadian Journal of Botany 40:  661-75

Pich A, Hillmer S, Manteuffel R, Scholz G (1997)  First immunohistochemical localization of the endogenous Fe 2+ -chelator nicotianamine. Journal of Experimental Botany 48: 759-67

Pich A, Manteuffel R, Hillmer S, Scholz G, Schmidt W (2001) Fe homeostasis in plant cells: Does nicotianamine play multiple roles in the regulation of cytoplasmic Fe concentration? Planta 213: 967-76

Pich A, Scholz G, Stephan UW (1994) Iron-dependent changes of heavy metals, nichotianamine, and citrate in different plant organs and in the xylem exudate of two tomato genotypes. Nicotianamine as possible copper translocator. Plant and Soil  165: 189-96

Pilbeam DJ, Cakmak I, Marschner H, Kirkby EA (1993) Effect of withdrawal of phosphorus on nitrate assimilation and PEP carboxylase activity in tomato. Plant and Soil 154:  111-7  

Pinton R, Cesco S, De Nobili M, Santi S, Varanini Z (1998) Water and pyrophosphate extractable humic substances fractions as a source of iron for Fe-deficient cucumber plants. Biology and Fertility of Soils 26: 23-7

Pitts RJ, Cernac A, Estelle M (1998) Auxin and ethylene promote root hair elongation in Arabidopsis. The Plant Journal 16: 553-60

Poirier Y, Bucher M (2002) Phosphate transport and homeostasis in Arabidopsis. The Arabidopsis Book edited by: Somerville CR, Meyerowitz EM, American Society of Plant Biologists, Rockville

Poirier Y, Thoma S, Somerville C, Schiefelbein J (1991)  A mutant of Arabidopsis deficient in xylem loading of phosphate. Plant Physiology 97:  1087-93  

Preuss ML, Schmitz AJ, Thole JM, Bonner HKS, Otegui MS, Nielsen E (2006) A role for the RabA4b effector protein PI-4Kβ1 in polarized expansion of root hair cells in Arabidopsis thaliana . The Journal of Cell Biology  172: 991-8

Preuss ML, Serna J, Falbel TG, Bednarek SY, Nielsen E (2004) The Arabidopsis Rab GTPase RabA4b localizes to the tips of growing root hair cells. The Plant Cell 16: 1589-603

Raghothama KG (1999) Phosphate acquisition. Annual Reviews of Plant Physiology and Molecular Biology 50: 665-93  

Raghothama KG, Karthikeyan AS (2005) Phosphate acquisition. Plant and Soil 274: 37-49

Rausch C, Bucher M (2002) Molecular mechanism of phosphate transport in plants. Planta 216: 23-37  

Reed RC, Brady SR, Muday GK (1998) Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiology 118: 1369-78

Rentel MC, Lecourieux D, Ouaked F, Usher SL, Petersen L, Okamoto H, Knight H, Peck SC, Grierson CS, Hirt H, Knight MR (2004) OXI1 kinase is necessary for oxidative burst-mediated signaling in Arabidopsis. Nature 427:  858-61  

Reymond M, Svistoonoff S, Loudet O, Nussaume L, Desnos T (2006) Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana . Plant, Cell and Environment 29:  115-25

Rigas S, Debrosses G, Haralampidis K, Vincente-Agullo F, Feldmann KA, Grabov A, Dolan L, Hatzopoulos P (2001) TRH1 encodes a potassium transporter required for tip growth in Arabidopsis root hairs. The Plant Cell 13: 139-51

Ringli C, Baumberger N, Diet A, Frey B, Keller B (2002) ACTIN2 is essential for bulge site selection and tip growth during root hair development of Arabidopsis. Plant Physiology 129: 1464-72

Robinson NJ, Procter CM, Collony EL, Guerinot ML (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397: 694-7  

Rogers EE, Eide DJ, Guerinot ML (2000) Altered selectivity in an Arabidopsis metal transporter. PNAS  97:  12356-60

Rogers EE, Guerinot ML (2002) FRD3, a member of the multidrug and protein efflux family controls iron deficiency responses in Arabidopsis. The Plant Cell 14:  1787-99

Romera FJ, Alcántara E (1994) Iron-deficiency stress responses in cucumber ( Cucumis sativus L.) roots. A possible role for ethylene? Plant Physiology 105: 1133-8

Romera FJ, Alcántara E, De la Guardia MD (1999) Ethylene production by Fe-deficient roots and its involvement in the regulation of Fe-deficiency stress responses by strategy I plants. Annals of Botany 83: 51-5

Romera FJ, Lucena C, Alcántara E 2006 Plant hormones influencing iron uptake in plants. Iron Nutrition in Plants and Rhizospheric Microorganisms. edited by: Barton LL, Abadía J, Springer, Netherlands

Römheld V (1987) Different strategies for iron acquisition in higher plants. Physiologica Plantarum 70: 231-34

Römheld V, Marschner H (1986)  Mobilization of iron in the rhizosphere of different plant species. Advances in Plant Nutrition 155-204 edited by: Tinker B, Läuchli A, Praeger, New York

Römheld V, Marschner H (1986) Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiology 80:  175-80

Rubio V, Linhares F, Solano R, Martín AC, Iglesias J, Leyva A, Paz-Ares J (2001) A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes and Development 15:  2122-33

Ryan E, Grierson CS, Cavell A, Steer M, Dolan L (1998)  TIP1 is required for both tip growth and non-tip growth in Arabidopsis. New Phytologist 138: 49-58

Sakano K (1990) Proton/phosphate stoichiometry in uptake of inorganic phosphate by cultured cells of Catharanthus roseus (L.) G. Don. Plant Physiology 93: 479-83

Salama AMSE-DA, Wareing PF (1979) Effects of mineral nutrition on endogenous cytokinins in plant of sunflower ( Helianthus annuus L.). Journal of Experimental Botany 30:  971-81

Šamaj J, Ovecka M, Hlavacka A, Lecourieuw F, Meskiene I, Lichtscheidl I, Lenart P, Salaj J, Volkmann D, Bögre L, Baluška F, Hirt H (2002) Involvement of the mitogen-activated protein kinase SIMK in regulation of root hair tip growth. The EMBO Journal  21: 3296-306

Sánchez-Calderón L, López-Bucio J, Chacón-López A, Cruz-Ramírez A, Nieto-Jacobo F, Dubrovsky JG, Herrera-Estrella L (2005)  Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana . Plant and Cell Physiology  46: 174-84

Sánchez-Calderón L, López-Bucio J, Chacón-López A, Gutiérrez-Ortega A, Hernández-Abreu E, Herrera-Estrella L (2006) Characterization of low phosphorus insensitive mutants reveals a crosstalk between low phosphorus-induced determinate root development and the activation of genes involved in the adaptation of Arabidopsis to phosphorus deficiency. Plant Physiology 140: 879-89

Schaaf G, Schikora A, Häberle J, Vert G, Ludewig U, Briat J-F (2005) A putative function for the Arabidopsis Fe-phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis. Plant and Cell Physiology 46: 762-74

Scheres B (2002)  Plant Patterning: TRY to inhibit your neighbors. Current Biology 12: 804-6

Scheres B (2000) Non-linear signaling for pattern formation? Current Opinion in Plant Biology 3: 412-7

Schiefelbein J (2003) Cell-fate specification in the epidermis: a common patterning mechanism in the root and shoot. Current Opinion in Plant Biology 6: 74-8  

Schiefelbein J, Galway M, Masucci J, Ford S (1993) Pollen tube and root hair tip growth is disrupted in a mutant of Arabidopsis thaliana . Plant Physiology 103: 979-85

Schiefelbein J, Lee MM (2006)  A novel regulatory circuit specifies cell fate in the Arabidopsis root epidermis. Physiologica Plantarum 126: 503-10

Schiefelbein JW, Shipley A, Rowse P (1992) Calcium influx at the tip of growing root-hair cells of Arabidopsis thaliana . Planta 187: 455-9

Schiefelbein JW, Somerville C (1990) Genetic control of root hair development in Arabidopsis thaliana . The Plant Cell 2:  235-43

Schikora A, Schmidt W (2001) Iron stress-induced changes in root epidermal cell fate are regulated independently from physiological responses to low iron availability. Plant Physiology 125: 1679-87

Schikora A, Schmidt W (2002)  Formation of transfer cells and H + -ATPase expression in tomato roots under P and Fe deficiency. Planta 215: 304-11

Schmidt W (1999) Mechanisms and regulation of reduction-based iron uptake in plants. The New Phytologist 141: 1-26

Schmidt W (2003) Iron solutions: acquisition strategies and signaling pathways in plants. Trends in Plant Science  8: 188-93

Schmidt W (2006) Iron stress responses in roots of strategy I plants. Iron nutrition in plants and rhizospere microorganisms. 229-50 edited by: Bar ton LL, Abadia J, Kluwer Academic Publishers, Dordrecht

Schmidt W, Bartels M (1996) Formation of root epidermal transfer cells in Plantago. Plant Physiology 110: 217-25

Schmidt W, Boomgaarden B, Ahrens V (1996) Reduction of root iron in Plantago lanceolata during recovery from Fe deficiency. Physiologica Plantarum 98: 587-93

Schmidt W, Schikora A (2001) Different pathways are involved in phosphate and iron stress-induced alterations of root epidermal cell development. Plant Physiology 125: 2078-84  

Schmidt W, Schikora A, Pich A, Bartels M (2000) Hormones induce an Fe-deficiency-like root epidermal cell pattern in the Fe-inefficient tomato mutant fer. Protoplasma 213:  67-73

Schmidt W, Steinbach S (2000)  Sensing iron - a whole plant approach. Annals of Botany 86: 589-593

Schneider K, Mathur J, Boudonck K, Wells B, Dolan L, Roberts K (1998) The ROOT HAIRLESS1 gene encodes a nuclear protein required for root hair initiation in Arabidopsis. Genes & Development 12: 2013-21

Schneider K, Wells B, Dolan L, Roberts K (1997) Structural and genetic analysis of epidermal cell differentiation in Arabidopsis primary roots. Development 124: 1789-98

Schnittger A, Hülskamp M (2002) Trichome morphogenesis: a cell-cycle perspective. Philosophical Transactions of the Royal Society of London Series B-Biological Science 357: 823-6  

Scholz G (1989)  Effect of nicotianamine on iron re-mobilization in de-rooted tomato seedlings. Biometals 2: 89-91

Seifert GJ, Barber C, Wells B, Dolan L, Roberts K (2002) Galactose biosynthesis in Arabidopsis: genetic evidence for substrate channeling from UDP-D-galctose into cell wall polymers. Current Biology 12:  1840-5

Shin H, Shin H-S, Chen R, Harrison MJ (2006) Loss of At4 function impacts phosphate distribution between the roots and the shoots during phosphate starvation. The Plant Journal 45: 712-26  

Shin H, Shin H-S, Dewbre GR, Harrison MJ (2004) Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. The Plant Journal 39: 629-42

Sieberer BJ, Ketelaar T, Esseling JJ, Emons AMC (2005) Microtubules guide root hair tip growth. New Phytologist 167: 711-9

Smith BN (1984) Iron in higher plants: storage and metabolic role. Journal of Plant Nutrition 7: 759-66  

Smith FW, Ealing PM, Dong B, Delhaize E (1997)  The cloning of two Arabidopsis genes belonging to a phosphate transporter family. The Plant Journal 11: 83-92

Song X-F, Yang C-Y, Liu J, Yang W-C (2006) RPA, a class II ARFGAP protein, activates ARF1 and U5 and plays a role in root hair development in Arabidopsis. Plant Physiology 414:  966-76

Souter M, Topping J, Pullen M, Friml J, Palme K, Hackett R, Grierson D, Lindsey K (2002)  hydra mutants of Arabidopsis are defective in sterol profiles and auxin and ethylen signaling. The Plant Cell 14: 1017-31

Spain BH, Koo D, Ramakrishnan M, Dzudzor B, Colicelli J (1995) Truncated forms of a novel yeast protein suppress the lethality of a G protein a subunit deficiency by interacting with the β subunit. The Journal of Biological Chemistry 270: 25435-44

Spiegel S, Foster D, Kolesnickz R (1996) Signal transduction through lipid second messengers. Current Opinion in Cell Biology 8: 159-67

Steinmann T, Geldner N, Grebe M, Mangold S, Jackson CL, Paris S, Gälweiler L, Palme K, Jürgens G (1999) Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286: 316-8

Stephan UW, Schmidke I, Pich A (1994) Phloem translocation of Fe, Cu, Mn, and Zn in Ricinus seedlings in relation to the concentrations of nicotianamine, an endogenous chelator of divalent metal ions, in different seedling parts. Plant and Soil 165: 181-8

Stephan UW, Schmidke I, Stephan VW, Scholz G (1996) The nicotianamine molecule is made-to-measure for complexation of metal micronutrients in plants. Biometals 9: 84-90

Stephan UW, Scholz G, Rudolph A (1990) Distribution of nicotianamine, a presumed symplast iron transporter, in different organs of sunflower and of a tomato wild type and its mutant chloronerva . Biochemie und Physiologie der Pflanzen 186: 81-8  

Sugimoto-Shirasu K, Roberts GR, Stacey NJ, McCann MC, Maxwell A, Roberts K (2005) RHL1 is an essential component of the plant DNA topoisomerase VI complex and is required for ploidy-dependent cell growth. PNAS 102: 18736-41

Sunkar R, Zhu J-K (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. The Plant Cell 16: 2001-19

Susín S, Abián J, Peleato ML, Sánchez-Baeza F, Abadía A, Gelpi E, Abadía J (1993) Flavin excretion from roots of iron-deficient sugar beet ( Beta vulgaris L.). Planta 193: 514-519

Suzuki T, Miwa K, Ishikawa K, Yamada H, Aiba H, Mizuno T (2001)  The Arabidopsis sensor His-kinase, AHK4, can respond to cytokinins. Plant and Cell Physiology 42: 107-13

Synek L, Schlager N, Eliás M, Quentin M, Hauser M-T, Žárský V (2006) AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. The Plant Journal 48:  54-72

Takabatake R, Hata S, Taniguchi M, Kouchi H, Sugiyama T (1999) Isolation and characterization of cDNAs encoding mitochondrial phosphate transporters in soybean, maize, rice, and Arabidopsis. Plant Molecular Biology 40: 479-86  

Taylor CB, Bariola PA, del Cardayré SB, Raines RT, Green PJ (1993) RNS2: a senescence-associated RNase of Arabidopsis that diverged from the S-RNases before speciation. PNAS 90: 5118-22

Thomine S, Lelièvre F, Debarbieux E, Schroeder JI, Barbier-Brygoo H (2003) AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. The Plant Journal 34: 685-95  

Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant transporter gene family in Arabidopsis with homology to NRAMP genes. PNAS 97: 4991-6  

Ticconi CA, Abel S (2004) Short on phosphate: plant surveillance and countermeasures. Trends in Plant Science 9: 548-55

Ticconi CA, Delatorre CA, Abel S (2001) Attenuation of phosphate starvation responses by phosphite in Arabidopsis. Plant Physiology 127: 963-72

Ticconi CA, Delatorre CA, Lahner B, Salt DE, Abel S (2004) Arabidopsis pdr2 reveals a phosphate-sensitive checkpoint in root development. The Plant Journal 37: 801-14

Tiffin OL (1966) Iron translocation I. Plant culture, exudate sampling, and iron-citrate analysis. Plant Physiology 41: 510-4  

Törjék O, Berger D, Meyer RC, Müssig C, Schmidt KJ, Sörensen TR, Weisshaar B, Mitchel-Olds T, Altmann T (2003) Establishment of a high-affinity SNP-based framework marker set for Arabidopsis. The Plant Journal 36: 122-40  

Torrey J (1950) The induction of lateral roots by indoleacetic acid and root decapitation. American Journal of Botany 37:  257-64

Tsugeki R, Fedoroff NV (1999) Genetic ablation of root cap cells in Arabidopsis. PNAS 96: 12941-6

Ueki K (1978) Control of phosphatase release from cultured tobacco cells. Plant and Cell Physiology 19: 385-92

Ullrich-Eberius CI, Novacky A, van Bel AJE (1984) Phosphate uptake in Lemna gibba G1: energetics and kinetics. Planta 161:  46-52

van Hengel AJ, Barber C, Roberts K (2004) The expression patterns of arabinogalactan-protein AtAGP30 and GLABRA2 reveals a role for abscisic acid in the early stages of root epidermal patterning. The Plant Journal 39: 70-83

Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. The New Phytologist 157: 423-47  

Vernoud V, Horton AC, Yang Z, Nielsen E (2003) Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiology 131: 1191-205

Vert G, Briat J-F, Curie C (2003) Dual regulation of the Arabidopsis high-affinity root iron uptake system by local and long-distance signals. Plant Physiology 132: 796-804

Vert G, Grotz N, Dédaldéchamp F, Gaymard F, Guerinot ML, Briat J-F, Curie C (2002)  IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. The Plant Cell 14: 1223-33

Very A-A, Davies JM (2000) Hyperpolarization-activated calcium channels at the tip of Arabidopsis root hairs. PNAS 97: 9801-6

Vincent P, Chua M, Nogue F, Fairbrother A, Mekeel H, Xu Y, Allen N, Bibikova TN, Gilroy S, Bankaitis VA (2005) A Sec14p-nodulin domain phosphatidylinositol transfer protein polarizes membrane growth of Arabidopsis thaliana root hairs. The Journal of Cell Biology 168: 801-12

Vincente-Agullo F, Rigas S, Desbrosses G, Dolan L, Hatzopoulos P, Grabov A (2004) Potassium carrier TRH1 is required for auxin transport in Arabidopsis roots. The Plant Journal 40:  

Vissenberg K, Fry SC, Verbelen J-P (2001) Root hair initiation is coupled to a highly localized increase of xyloglucan endotransglycosylase action in Arabidopsis roots. Plant Physiology 127: 1125-35

von Wirén N, Klair S, Bansal S, Briat J-F, Khodr H, Shioiri T, Leigh RA, Hider RC (1999) Nicotianamine chelates both FeIII and FeII. Implications for metal transport in plants. Plant Physiology 119: 1107-14

Wada T, Kurata T, Tominaga R, Koshino-Kimura Y, Tachibana T, Goto K, Marks D, Shimura Y, Okada K (2002) Role of a positive regulator of root hair development, CAPRICE , in Arabidopsis root epidermal cell differentiation. Development 129: 5409-19  

Wada T, Tachibana T, Shimura Y, Okada K (1997) Epidermal cell differentiation in Arabidopsis determined by a MYB homolog CPC. Science 277: 1113-6

Wade VJ, Treffry A, Laulhère JP, Bauminger ER, Cleton MI, Mann S (1993) Structure and composition of ferritin cores from pea seed ( Pisum sativum) . Biochimica Biophysica Acta 1161: 91-6

Walker AR, Davison PA, Bolognesi-Winfield AC, James CM, Srinivasan N, Blundell TL, Esch JJ, Marks MD, Gray JC (1999) The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. The Plant Cell 11: 1337-49

Walker JD, Oppenheimer DG, Concienne J, Larkin JC (2000) SIAMESE, a gene controlling the endoreduplication cell cycle in Arabidopsis thaliana trichomes. Development 127: 3931-40

Wang H, Lockwood SK, Hoeltzel MF, Schiefelbein JW (1997) The ROOT HAIR DEFECTIVE3 gene encodes an evolutionarily conserved protein with GTP-binding motifs and is required for regulated cell enlargement in Arabidopsis. Genes and Development 11:  799-811

Wang X, Cnops G, Vanderhaeghen R, De Block S, Van Montagu M, Van Lijsebettens M (2001) AtCSLD3 , a cellulose synthase-like gene important for root hair growth in Arabidopsis. Plant Physiology 126: 575-86

Wasaki J, Yonetani R, Kai M, Osaki M (2003) Expression of the OsPI1 gene, cloned from rice roots using cDNA microarray, rapidly responds to phosphorus status. New Phytologist 158: 239-48  

Waters BM, Blevins DG, Eide DJ (2002) Characterization of FRO1, a pea ferric-chelate reductase involved in root iron acquisition. Plant Physiology 129: 85-94

Webb M, Jouannic S, Foreman J, Linstead P, Dolan L (2002) Cell specification in the Arabidopsis root epidermis requires the activity of ECTOPIC ROOT HAIR3 - a katanin-p60 protein. Development 129: 123-31

Welch RM, Norvell WA, Schaefer SC, Shaft JE, Kochian LV (1993) Induction of iron(III) and copper(II) reduction in pea ( Pisum sativum L.) roots by Fe and Cu status: Does the root-cell plasmalemma Fe(III)-chelate reductase perform a general role in regulating cation uptake? Planta 190: 555-61

Wellman CH, Osterloff PL, Mohiuddin U (2003)  Fragments of the earliest land plants. Nature 425:  282-5

White PF, Robson AD (1989) Rhizosphere acidification and Fe 3+ reduction in lupins and peas: Iron deficiency in lupins is not due to a poor ability to reduce Fe 3+ . Plant and Soil 119:  163-75

Willemsen V, Friml J, Grebe M, van den Toorn A, Palme K, Scheres B (2003) Cell polarity and PIN protein positioning in Arabidopsis require STEROL METHYLTRANSFERASE1 function. The Plant Cell 15: 612-25

Williamson LC, Ribrioux SPCP, Fitter AH, Leyser HMO (2001)  Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiology  126: 875-82  

Wilson AK, Pickett FB, Turner JC, Estelle M (1990) A dominant mutation in Arabidopsis confers resistance to auxin, ethylene and abscisic acid. Molecular and General Genetics 222: 377-83

Wintz H, Fox T, Wu Y-Y, Feng V, Chen W, Chang H-S, Zhu T, Vulpe C (2003) Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis. The Journal of Biological Chemistry 278: 47644-53

Wykoff DD, Grossman AR, Weeks DP, Usuda H, Shimogawara K (1999) Psr1, a nuclear localized protein that regulates phosphorus metabolism in Clamydomonas. PNAS 96: 15336-41  

Wymer CL, Bibikova TN, Gilroy S (1997) Cytoplasmic free calcium distributions during the development of root hairs of Arabidopsis thaliana . The Plant Journal 12: 427-39

Xu C-R, Liu C, Wang Y-L, Li L-C, Chen W-Q, Xu Z-H, Bai S-N (2005) Histone acetylation affects expression of cellular patterning genes in the Arabidopsis root epidermis. PNAS 102: 14469-74

Xu J, Scheres B (2005)  Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR1 function in epidermal cell polarity. The Plant Cell 17: 525-36

Yalovsky S, Rodríguez-Concepción M, Gruissem W (1999)  Lipid modifications of proteins - slipping in and out of membranes. Trends in Plant Science  4:  439-45

Yan F, Zhu Y, Müller C, Zörb C, Schubert S (2002) Adaptation of H + -pumping and plasma membrane H + ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiology 129: 50-63

Yi K, Wu Z, Zhou J, Du L, Guo L, Wu Y, Wu P (2005) OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiology 138: 2087-96

Yu Y-B, Yang SF (1979) Auxin-induced ethylene production and its inhibition by aminoethoxyvinylglycine and cobalt ion. Plant Physiology 64:  1074-7  

Zhang C, Römheld V, Marschner H (1995) Distribution pattern of root-supplied 59 iron in iron-sufficient and -deficient bean plants. Journal of Plant Nutrition 18: 2049-58

Zhang Y-J, Lynch JP, Brown KM (2003) Ethylene and phosphorus availability have interacting yet distinct effects on root hair development. Journal of Experimental Botany 54: 2351-61  

Zheng H, Kunst L, Hawes C, Moore I (2004)  A GFP-based assay reveals a role for RHD3 in transport between the endoplasmic reticulum and Golgi apparatus. The Plant Journal 37: 398-414  

Zheng Z-L, Yang Z (2000) The Rop GTPase: an emerging signaling switch in plants. Plant Molecular Biology 44: 1-9  

© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 4.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML generated: