[Seite 98↓]


1  Statistisches Bundesamt (Herausg.). Gesundheitsbericht für Deutschland: Gesundheitsberichterstattung des Bundes. Metzler-Poeschel-Verlag, Stuttgart; 1998: 162-164, 462

2  Lohr M. Innere Medizin: Kompendium für Studium und Klinik. 1.Auflage, Ullstein-Medical-Verlag, Wiesbaden; 1998: 2

3  Ganten D, Ruckpaul K. Herz-Kreislauf-Erkrankungen. 1. Auflage, Springer-Verlag; 1998: 147-200

4  Schäfer JR. Präventive Kardiologie: Prophylaxe der koronaren Herzkrankheit. 1.Auflage, Schattauer-Verlag, Stuttgart, New York; 1998: 58-59

5  Braunwald E, für die deutsche Ausgabe: Schmailzi KJG. Zellular- und Molekularbiologie kardiovaskulärer Erkrankungen. in: Harrisons Innere Medizin. 13.Auflage (Deutsche Ausgabe), Blackwell Wissenschaftsverlag GmbH Berlin; 1995: 1124-1130

6  Packer, M. Survival in patients with chronic heart failure and its potential modification by drug therapy.In: Cohn JN (Herausg.). Drug Treatment of Heart Failure, 2nd ed. ATC International; 1988: 273

7  Swynghedauw, B. Molecular mechanisms of myocardial remodeling. Physiol Rev. 1999; 79: 215-62

8  Eichhorn EJ, Bristow MR. Medical therapy can improve the biological properties of the chronically failing heart. A new era in the treatment of heart failure. Circulation. 1996; 94: 2285-2296

9  Colucci WS. Molecular and cellular mechanisms of myocardial failure. Am J Cardiol. 1997; 80: 15L-25L

10  Blaufarb IS, Sonnenblick EH. The renin-angiotensin system in left ventricular remodeling. Am J Cardiol. 1996; 77: 8C-16C

11  Nakamura K, Fushimi K, Kouchi H, et al. Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II. Circulation. 1998; 98: 794-799


[Seite 99↓]
Kingma JG Jr. Cardiac adaptation to ischemia-reperfusion injury. Ann N Y Acad Sci. 1999; 874: 83-99

13  Pauletto P, Piccolo D, Scannapieco G, et al. Left ventricular hypertrophy in hypertension. Changes in isomyosins and creatine-kinase isoenzymes. Am J Med. 1988; 84: 122-124

14  Nascimben L, Ingwall JS, Pauletto P, et al. Creatine kinase system in failing and nonfailing human myocardium. Circulation. 1996; 94: 1894-1901

15  Ingwall JS, Bradke FR, Pavelec RS, et al. Alterations in creatine phosphokinase activity and isoenzyme composition in the volume loaded, hypertrophied heart. Circulation. 1976; 54 (Suppl II): 59

16  Ingwall JS, Kramer MF, Fifer MA, et al. The creatine kinase system in normal and diseased human myocardium. N Engl J Med. 1985; 313: 1050-1054

17  Ingwall JS. The hypertrophied myocardium accumulates the MB-creatine kinase isozyme. Eur Heart J. 1984; 5 (Suppl F): 129-139

18  Pryor WA. Oxy-radicals and related species: Their formation, lifetimes and reactions. Annu Rev Physiol. 1986; 48: 657-667

19  Guarnieri C, Muscari C, Caldarera CM. Oxygen radicals and tissue damage in heart hypertrophy, in: Harris P, Pool-Wilson PA (eds.) Advances in myocardiology. Plenum press Publishing Corp. New York, 1985; Vol. 5: 191-199

20  Petkau A. Role of superoxide dismutase in modification of radiation injury. Br J Cancer. 1987; 55, (Suppl VIII): 87-95

21  McCord JM, Roy RS. The pathophysiology of superoxide. Roles in inflammation and ischemia. Can J Physiol Pharmacol. 1982; 60: 1346-1352

22  Kukreja RC, Hess ML. The oxygen free radical system: from equation through membrane-protein interactions to cardiovascular injury and protection. Cardiovas Res. 1992; 26: 641-655

23  Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem. 1997; 272: 20313-20316


[Seite 100↓]
Schimke I, Haberland A. Sauerstoff-Radikale und Herz-Kreislauf-Krankheiten: Pathogenetische Mechanismen, therapeutische Möglichkeiten. Z Kardiol. 1993; 82: 601-609

25  Sies H. Strategies of antioxidant defence. Eur J Biochem. 1993; 215: 213-219

26  Flohe L, Schlegel W. Glutathionperoxidase. IV. Intrazelluläre Verteilung des Glutathionperoxidase-Systems in der Rattenleber. Hoppe Seylers Z Physiol Chem. 1971; 352: 1401-1410

27  Stryer L. Biochemie. 5. Auflage, Spektrum Akademischer Verlag GmbH, Heidelberg, Berlin, Oxford; 1994: 454-455

28  McCord JM, Fridovich I. Superoxiddismutase. An enzymatic function for erythrocuprein (hemocuprein). J Biol Chem. 1969; 224: 6049-6055

29  Haberland A, Mäder K, Stößer R, et al. Comparison of malondialdehyde and hydrogen peroxide modified CuZnSOD by EPR spectroscopy. Agent Actions. 1993; 40: 166-170

30  Olafsdottir K, Reed DJ. Retention of oxidized glutathion by isolated liver mitochondria during hydroperoxide treatment. Biochim Biophys Acta. 1988; 964: 377-382

31  Zoeger D, Beyersmann D, Rensig L, et al. Stressverarbeitung in der Zelle. Naturwiss Rdsch. 1992; 45: 9-12

32  Das DK, Engelmann RM, Kimura Y. Molecular adaptation of cellular defences following preconditioning of the heart by repeated ischemia. Cardiovasc Res. 1993; 27: 578-584

33  Benjamin JB, McMillan DR. Stress (heat shock) proteins: molecular chaprones in cardiovascular biology and disease. Circ Res. 1998; 83: 117-132

34  Goldhaber JI, Weiss JN. Oxygen free radicals and cardiac reperfusion abnormities. Hypertension. 1992; 20: 118-127

35  Schimke I, Haberland A, Will-Shahab L, et al. In vitro effects of reactive O2 species on the ß-receptor-adenylylcyclase-system. Mol Cell Biochem. 1992; 110: 41-46

36  Kalra A, Lautner JD, Lorne Massey K, et al. Oxygen free radical induced release of lysosomal enzymes in vitro. Mol Cell Biochem. 1988; 84: 233-238


[Seite 101↓]
Imlay JA, Chin SM, Linn S. Toxic DNA damage by hydrogen peroxide through the fenton reaction in vivo and in vitro. Science. 1988; 240: 640-642

38  Dhalla NS, Temsah RM, Netticadan T. Role of oxidative stress in cardiovascular diseases. J Hypertens. 2000; 18: 655-673

39  Fukuchi T, Kobayashi A, Kaneko M, et al. Possible involvement of free radicals and antioxidants in the early stages of the development of cardiomyopathy in BIO 14.6 syrian hamster. Jpn Heart J. 1991; 32: 655-666

40  Gupta M, Singal PK. Higher antioxidative capacity during a chronic stable heart hypertrophy. Circ Res. 1989 ; 64: 398-406

41  Wagner KD, Geil D, Schimke I, et al. Decreased susceptibility of contractile function to hypoxia/reoxygenation in chronic infarcted rat hearts. J Mol Cell Cardiol. 1998; 30: 2341-2353

42  Kirshenbaum LA, Hill M, Singal KP. Endogenous antioxidants in isolated hypertrophied cardiac myocytes and hypoxia-reoxygenation induces injury. J Mol Cell Cardiol. 1995; 27: 263-274

43  Benjamin IJ, McMillan DR. Stress (Heat Shock) Proteins. Molecular Chaperones in Cardiovascular Biology and Disease. Circ Res.1998; 83: 117-132

44  Delcayre C, Samuel JL, Marotte F, et al. Synthesis of stress proteins in rat cardiac myocytes 2-4 days after imposition of hemodynamic overload. J Clin Invest. 1988; 82: 460-468

45  Joyeux M, Lagneux C, Bricca G, et al. Heat stress-induced resistance to myocardial infarction in the isolated heart from transgenic [(mREN-2)27] hypertensive rats. Cardiovasc Res. 1998; 40: 124-130

46  Leger JP, Smith FM, Currie RW. Confocal microscopic localization of constitutive and heat shock-induced proteins HSP70 and HSP27 in the rat heart. Circulation. 2000; 102: 1703-1709

47  Lutsch G, Wieske W, Stahl J, et al. Localization of hsp25/27 and α B-Crystallin in heart and kidney tissue by immunofluorescence and immunoelectron microscopy. Eur J Cell Biol. 1995; 67 (Suppl. 41): 25


[Seite 102↓]
Benndorf R, Hayeß K, Rayazantsew S, et al. Phosphorylation and supramolecular organization of murine small heat shock protein hsp25 abolish its actin polymerization-inhibiting activity. J Biol Chem. 1994; 269: 20780-20784

49  Kaufmann SHE, Schoel B. Heat shock proteins as antigens in immunity against infection and self. In: Morimoto RI, Tissieres A, Georgopoulos C. The biology of heat shock proteins and molecular chaprones. Cold Spring Harbor Laboratory press. 1994: 495

50  Singal PK, Kirshenbaum LA. A relative deficit in antioxidant reserve may contribute in cardiac failure. Can J Cardiol. 1990; 6: 47-49

51  Das DK, Engelman RM, Kimura Y. Molecular adaptation of cellular defences following preconditioning of the heart by repeated ischemia. Cardiovasc Res. 1993; 27: 578-584

52  Maulik N, Engelman RM, Wei Z, et al. Interleukin-1 9 preconditioning reduces myocardial ischemia reperfusion injury. Circulation. 1993; 88: 387-394

53  Xi L, Chelliah J, Nayeem MA, et al. Whole body heat shock fails to protect mouse heart against ischemia/reperfusion injury: role of 72 kDa heat shock protein and antioxidant enzymes. J Mol Cell Cardiol. 1998; 30: 2213-2227

54  Kukreja RC, Kontos MC, Loesser KE, et al. Oxidant stress increases heat shock protein 70 nRNA in isolated perfused rat heart. Am J Physiol. 1995; 267: H2213-H2219

55  Ohtsuki T, Matsumoto M, Kuwabara K, et al. Influence of oxidative stress on induced tolerance to ischemia in gerbil hippocampal neurons. Brain Res. 1992; 599: 246-252

56  Bohlender J, Fukamizu A, Lippoldt A, et al. High human renin hypertension in transgenic rats. Hypertension. 1997; 29: 428-434

57  Bohlender J, Ménard J, Wagner J, et al. Human renin-dependent hypertension in rats transgenic for human angiotensinogen. Hypertension. 1996; 27: 535-540

58  Johns TNP, Olson BJ. Experimental myocardial infarction. A method of coronary artery occlusion in small animals. Ann Surg. 1954; 140: 675-682

59  Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erytrocyte gluthatione peroxidase. J Lab Clin Med. 1967; 70: 158-169


[Seite 103↓]
Beauchamp C, Fridovich I. Superoxide dismutase: improved assay and an assay applicable to acrylamide gels. J Anal Biochem. 1971; 44: 276-287

61  Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979; 95: 351-358

62  Lutsch G, Vetter R, Offhauss U, et al. Abundance and location of the small heat shock proteins HSP25 and alphaB-crystallin in rat and human heart. Circulation.1997; 96: 3466-3476

63  [63]Lowry et al. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951; 193: 265-275

64  Sadoshima J, Izumo S. Molecular characterization of angiotensin II--induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res. 1993; 73: 413-423

65  Baker KM, Aceto JF. Angiotensin II stimulation of protein synthesis and cell growth in chick heart cells. Am J Physiol. 1990; 259: H610-H618

66  Puri PL, Avantaggiati ML, Burgio VL, et al. Reactive oxygen intermediates mediate angiotensin II-induced c-Jun.c-Fos heterodimer DNA binding activity and proliferative hypertrophic responses in myogenic cells. J Biol Chem. 1995; 270: 22129-22134

67  Swynghedauw B, Chevalier B, Medigue C, et al. Molecular basis of the regression of cardiac hypertrophy. J Card Fail. 1996; 2 (Suppl 4): S21-S27

68  Baillard C, Mansier P, Ennezat PV, et al. Converting enzyme inhibition normalizes QT interval in spontaneously hypertensive rats. Hypertension. 2000; 36: 350-354

69  Linz W, Scholkens BA, Ganten D. Converting enzyme inhibition specifically prevents the development and induces regression of cardiac hypertrophy in rats. Clin Exp Hypertens. 1989; 11: 1325-1350

70  Heymes C, Swynghedauw B, Chevalier B. Activation of angiotensinogen and angiotensin-converting enzyme gene expression in the left ventricle of senescent rats. Circulation. 1994; 90: 1328-1333

71  Laser A, Ingwall JS, Tian R, et al. Regional biochemical remodeling in non-infarcted tissue of rat heart post-myocardial infarction. J Mol Cell Cardiol. 1996; 28: 1531-1538


[Seite 104↓]
Spencer RG, Buttrick PM, Ingwall JS. Function and bioenergetics in isolated perfused trained rat hearts. Am J Physiol. 1997; 272: H409-417

73  Hügel S, Horn M, Groot MD, et al. Effects of ACE inhibition and β -receptor blockade on energy metabolism in rats postmyocardial infarction. Am J Physiol. 1999; 277: H2167-H2175

74  Ingwall JS, Atkinson DE, Clarke K, et al. Energetic correlates of cardiac failure: Changes in the creatine kinase system in the failing myocardium. Eur Heart J. 1990; 11 (Suppl.B): 108-115

75  Sharkey SW, Murakami MM, Smith SA, et al. Canine myocardial creatine kinase isoenzymes after chronic coronary artery occlusion. Circulation. 1991; 84: 2211

76  Dhalla AK; Singal PK. Antioxidant changes in hypertrophied and failing guinea pig hearts. Am J Physiol. 1994; 266: H1280-H1285

77  Kumar CT, Reddy VK, Prasad M, et al. Dietary supplementation of vitamin E protects heart tissue from exercise-induced oxidant stress. Mol Cell Biochem. 1992; 111: 109-115

78  Tokoro T, Ito H, Suzuki T. Alterations in mitochondrial DNA and enzyme activities in hypertrophied myocardium of stroke-prone SHRS. Clin Exp Hypertens. 1996; 18: 595-606

79  Ito H, Torii M, Suzuki T. Decreased superoxide dismutase activity and increased superoxide anion production in cardiac hypertrophy of spontaneously hypertensive rats. Clin Exp Hypertens. 1995; 17: 803-816

80  Russo C, Olivieri O, Girelli D, et al. Anti-oxidant status and lipid peroxidation in patients with essential hypertension. J Hypertens. 1998; 16: 1267-1271

81  Comini L, Gaia G, Curello S, et al. Right heart failure chronically stimulates heat shock protein 72 in heart and liver but not in other tissues. Cardiovasc Res. 1996; 31: 882-890

82  Knowlton AA, Kapadia S, Torre-Amione G, et al. Differential expression of heat shock proteins in normal and failing human hearts. J Mol Cell Cardiol. 1998; 30: 811-818


[Seite 105↓]
Lutsch G, Vetter R, Offhauss U, et al. Abundance and location of the small heat shock proteins Hsp25 and alphaB-crystallin in rat and human heart. Circulation. 1997; 96: 3466-3476

84  Dillmann WH. Small heat shock proteins and protection against injury. Ann N Y Acad Sci. 1999; 874: 66-68

85  Martin JL, Mestril R, Hilal-Dandan R, et al. Small heat shock proteins and protection against ischemic injury in cardiac myocytes. Circulation. 1997; 96: 4343–4348

86  Mehlen P, Kretz-Remy C, Preville X, et al. Human hsp27, Drosophila hsp27 and human α B-crystallin expression-mediated increase in glutathione is essential for the protective activity of these proteins against TNF α -induced cell death. EMBO J. 1996; 15: 2695-2706

87  Preville X, Salvemini F, Giraud S, et al. Mammalian small heat stress proteins protect against oxidative stress through their ability to increase glucose-6-phosphat dehydrogenase activity and by maintaining optimal cellular detoxifying machinery. Exp Cell Res. 1999; 247: 61-78

88  Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res. 2000; 86: 494-501

89  Mohazzab-H KM, Kaminski PM, Wolin MS. NADH oxidoreductase is a major source of superoxide anion in bovine coronary artery endothelium. Am J Physiol. 1994; 266: H2568–H2572

90  Ferrari R, Agnoletti L, Comini L, et al. Oxidative stress during myocardial ischaemia and heart failure. Eur Heart J. 1998; 19 (Suppl B): B2-B11

91  Cheng W, Li B, Kajstura J, et al. Stretch-induced programmed myocyte cell death. J Clin Invest. 1995; 96: 2247-2259

92  Mantle D, Patel VB, Why HJ, et al. Effects of lisinopril and amlodipine on antioxidant status in experimental hypertension. Clin Chim Acta. 2000; 299: 1-10

93  Allen DG, Orchard CH. Myocardial contractile function during ischemia and hypoxia. Circ Res. 1987; 60: 153-168


[Seite 106↓]
Bers DM. Ca transport during contraction and relaxation in mammalian ventricular muscle. Basic Res Cardiol. 1997; 92 (Suppl 1): 1-10

95  Rowe TC, Manson NH, Caplan M, et al. Hydrogen peroxide and hydroxyl radical mediation of activated leucocyte depression of cardiac sarcoplasmatic reticulum. Circ Res. 1983; 53: 584-591

96  Theres H, Wagner KD, Schulz S, et al. Oxygen radical system in chronic infarcted rat heart: the effect of combined beta blockade and ACE inhibition. J Cardiovasc Pharmacol. 2000; 35: 708-715

97  Matsui Y, Hashimoto H, Tsukamoto H, et al. Disappearance and appearance of isoenzymes of creatine kinase, lactate dehydrogenase and aspartate aminotransferase in the myocardium undergoing infarction. Cardiovasc Res. 1989; 23: 249-253

98  Roth E, Torok B, Zsoldos T, et al. Lipid peroxidation and scavenger mechanism in experimentally induced heart infarcts . Basic Res Cardiol. 1985; 80: 530-536

99  Herbaczynska-Cedro K, Gordon-Majszak W. Evidence for increased lipid peroxidation in the non-ischaemic portion of the heart with coronary occlusion. Cardiovasc Res. 1989; 23: 98-103

100  Siwik DA, Tzotzis JD Pimental DR, et al. Inhibition of copper-zinc superoxide dismutase induces cell growth, hypertrophic phenotype, and apoptosis in neonatal rat cardiac myocytes in vitro. Circ Res. 1999; 85: 147-153

101  Assem M, Teyssier JR, Benderitter M, et al. Pattern of superoxide dismutase enzymatic activity and RNA changes in rat heart ventricles after myocardial infarction. Am J Pathol. 1997; 151: 549-555

102  Marber MS, Walker JM, Latchman DS, et al. Myocardial protection after whole body heat stress in the rabbit is dependent on metabolic substrate and is related to the amount of the inducible 70-kD heat stress protein. J Clin Invest. 1994; 93: 1087-1094

103  Marber MS, Mestril R, Chi SH, et al. Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J Clin Invest.1995; 95: 1446–1456


[Seite 107↓]
Yu H, Yokoyama M, Asano G. Time course of expression and localization of heat shock protein 72 in the ischemic and reperfused rat heart. Jpn Circ J. 1999; 63: 278-287

105  Kilgore JL, Musch TI, Ross CR. Regional distribution of Hsp70 proteins after myocardial infraction. Basic Res Cardiol. 1996; 91: 283-288

106  Knowlton AA, Eberli FR, Brecher P, et al. A single myocardial stretch or decreased systolic fiber shortening stimulates the expression of heat shock protein 70 in the isolated, erythrocyte-perfused rabbit heart. J Clin Invest. 1991; 88: 2018-2025

107  Osaki J, Haneda T, Kashiwagi Y, et al. Pressure-induced expression of heat shock protein 70 mRNA in adult rat hearts is coupled both to protein kinase A-dependent and protein kinase C-dependent systems. J Hypertens. 1998; 16: 1193-1200

108  Andres J, Sharma HS, Knoll R, et al. Expression of heat shock proteins in the normal and stunned porcine myocardium. Cardiovasc Res. 1993; 27: 1421-1429

109  Yoshida T, Maulik N, Engelman RM, et al. Glutathione peroxidase knockout mice are susceptible to myocardial ischemia reperfusion injury. Circulation. 1997; 96 (Suppl II): 216-220

110  Ho YS, Magnenat JL, Gargano M, et al. The nature of antioxidant defense mechanisms: a lesson from transgenic studies. Environ Health Perspect. 1998; 106 (Suppl 5): 1219-1228

111  Yoshida T, Maulik N, Engelman RM, et al. Targeted disruption of the mouse Sod I gene makes the hearts vulnerable to ischemic reperfusion injury. Circ Res. 2000; 86: 264-269

112  Theres HP, Wagner KD, Romberg D, et al. Combined treatment with ramipril and metoprolol prevents changes in the creatine kinase isoenzyme system and improves hemodynamic function in rat hearts after myocardial infarction. Cardiovasc Drugs Ther. 2000; 14: 597-606

113  Neubauer S, Frank M, Hu K, et al. Changes of creatine kinase gene expression in rat heart post-myocardial infarction. J Mol Cell Cardiol. 1998; 30: 803-810

114  Neubauer S, Horn M, Naumann A, et al. Impairment of energy metabolism in intact residual myocardium of rat hearts with chronic myocardial infarction. J Clin Invest. 1995; 95: 1092-1100


[Seite 108↓]
Laser A, Neubauer S, Tian R, et al. Long-term beta-blocker treatment prevents chronic creatine kinase and lactate dehydrogenase system changes in rat hearts after myocardial infarction. J Am Coll Cardiol. 1996; 27: 487-493

116  Bristow MR, Anderson FL, Port JD, et al. Differences in beta-adrenergic neuroeffector mechanisms in ischemic versus idiopathic dilated cardiomyopathy. Circulation. 1991; 84: 1024-1039

117  Ishikawa K, Hashimoto H, Mitani S, et al. Enalapril improves heart failure induced by monocrotaline without reducing pulmonary hypertension in rats: role of preserved myocardial creatine kinase and lactate dehydrogenase isoenzymes. Int J Cardiol. 1995; 47: 225-233

118  Hill MF, Singal PK. Antioxidant and oxidative stress changes during heart failure subsequent to myocardial infarction in rats. Am J Pathol. 1996; 148: 291-300

119  Schimke I, Schikora M, Meyer R, et al. Oxidative stress in the human heart is associated with changes in the antioxidative defense as shown after heart transplantation. Mol Cell Biochem. 2000; 204: 89-96

120  Hill MF, Singal PK. Right and left myocardial antioxidant response during heart failure subsequent to myocardial infarction. Circulation. 1997; 96: 2414-2420

121  Tanonaka K, Yoshida H, Toga W, et al. Myocardial heat shock proteins during the development of heart failure. Biochem Biophys Res Commun. 2001; 283: 520-525

122  Kaufmann SHE, Schoel B. Heat shock proteins as antigens in immunity against infection and self.In: Morimoto RI, Tissieres A, Georgopoulos C, eds. The biology of heat shock proteins and molecular chaperones.: Laboratory Press. Cold Spring Harbor, NY; 1994: 495

123  Iliskovic N, Hasinoff BB, Malisza KL, et al. Mechanisms of beneficial effects of probucol in adriamycin cardiomyopathy. Mol Cell Biochem. 1999; 196: 43-49

124  Sanders RA, Rauscher FM, Watkins JB 3rd. Effects of quercetin on antioxidant defense in streptozotocin-induced diabetic rats. J Biochem Mol Toxicol. 2001; 15: 143-149


[Seite 109↓]
Ihnken K, Morita K, Buckberg GD, et al. Prevention of reoxygenation injury in hypoxaemic immature hearts by priming the extracorporeal circuit with antioxidants. Cardiovasc Surg. 1997; 5: 608-619

126  Stephens NG, Parsons A, Schofield PM, et al. Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet. 1996; 347: 781-786

127  Ozer NK, Azzi A. Effect of vitamin E on the development of atherosclerosis. Toxicology. 2000; 148: 179-185

128  Sethi R, Takeda N, Nagano M, et al. Beneficial effects of vitamin E treatment in acute myocardial infarction. J Cardiovasc Pharmacol Ther. 2000; 5: 51-58

129  Demidov ON, Tyrenko VV, Svistov AS, et al. Heat shock proteins in cardiosurgery patients. Eur J Cardiothorac Surg. 1999; 16: 444-449

130  Gowda A, Yang C, Asimakis GK, et al. Heat shock improves recovery and provides protection against global ischemia after hypothermic storage. Ann Thorac Surg. 1998; 66: 1991-1997

© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 3.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am: