[page 99↓]


Agatonovic-Kustrin, S. and Beresford, R. (2000): Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research, J Pharm Biomed Anal 22 [5], pp.717-27. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10815714

Aki, M.; Shimbara, N.; Takashina, M.; Akiyama, K.; Kagawa, S.; Tamura, T.; Tanahashi, N.; Yoshimura, T.; Tanaka, K. and Ichihara, A. (1994): Interferon-gamma induces different subunit organizations and functional diversity of proteasomes, J Biochem (Tokyo) 115 [2], pp.257-69.

Altuvia, Y.; Schueler, O. and Margalit, H. (1995): Ranking potential binding peptides to MHC molecules by a computational threading approach, J Mol Biol 249 [2], pp.244-50. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7540211

Ayalon, O.; Hughes, E. A.; Cresswell, P.; Lee, J.; O'Donnell, L.; Pardi, R. and Bender, J. R. (1998): Induction of transporter associated with antigen processing by interferon gamma confers endothelial cell cytoprotection against natural killer-mediated lysis, Proc Natl Acad Sci U S A 95 [5], pp.2435-40. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9482903

Boes, B.; Hengel, H.; Ruppert, T.; Multhaup, G.; Koszinowski, U. H. and Kloetzel, P. M. (1994): Interferon gamma stimulation modulates the proteolytic activity and cleavage site preference of 20S mouse proteasomes, J Exp Med 179 [3], pp.901-9.

Bradley, Andrew P (1997): The use of the area under the ROC curve in the evaluation of machine learning algorithms, Pattern Recognition 30 [7], pp.1145-1159.

Breiman, L.; Friedman, J.H.; Olshen, R.A. and Stone, C. J. (1984): Classification and Regression Trees, CRC Press.

Brusic, V.; van Endert, P.; Zeleznikow, J.; Daniel, S.; Hammer, J. and Petrovsky, N. (1999): A neural network model approach to the study of human TAP transporter, In Silico Biol 1 [2], pp.109-21.

Cardozo, C. and Kohanski, R. A. (1998): Altered properties of the branched chain amino acid-preferring activity contribute to increased cleavages after branched chain residues by the "immunoproteasome", J Biol Chem 273 [27], pp.16764-70. http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/referer?http://www.jbc.org/cgi/content/full/273/27/16764 http://www.jbc.org/cgi/content/full/273/27/16764

[page 100↓]

Cohen, S. L. and Chait, B. T. (1996): Influence of matrix solution conditions on the MALDI-MS analysis of peptides and proteins, Anal Chem 68 [1], pp.31-7..

Daniel, S.; Brusic, V.; Caillat-Zucman, S.; Petrovsky, N.; Harrison, L.; Riganelli, D.; Sinigaglia, F.; Gallazzi, F.; Hammer, J. and van Endert, P. M. (1998): Relationship between peptide selectivities of human transporters associated with antigen processing and HLA class I molecules, J Immunol 161 [2], pp.617-24..

Daniel, S.; Caillat-Zucman, S.; Hammer, J.; Bach, J. F. and van Endert, P. M. (1997): Absence of functional relevance of human transporter associated with antigen processing polymorphism for peptide selection, J Immunol 159 [5], pp.2350-7..

Dolenc, I.; Seemuller, E. and Baumeister, W. (1998): Decelerated degradation of short peptides by the 20S proteasome, FEBS Lett 434 [3], pp.357-61.

Donnes, P. and Elofsson, A. (2002): Prediction of MHC class I binding peptides, using SVMHC, BMC Bioinformatics 3 [1], p. 25. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12225620

Doytchinova, Irini A. ; Blythe, Martin J. and Flower, Darren R. (2002): Additive Method for the Prediction of Protein-Peptide Binding Affinity. Application to the MHC Class I Molecule HLA-A*0201, Journal of Proteome Research 1 [3], pp.263-272.

Emmerich, N. P.; Nussbaum, A. K.; Stevanovic, S.; Priemer, M.; Toes, R. E.; Rammensee, H. G. and Schild, H. (2000): The Human 26 S and 20 S Proteasomes Generate Overlapping but Different Sets of Peptide Fragments from a Model Protein Substrate, J Biol Chem 275 [28], pp.21140-21148.

Falk, K.; Rotzschke, O.; Stevanovic, S.; Jung, G. and Rammensee, H. G. (1991): Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules, Nature 351 [6324], pp.290-6. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1709722

Frontline Systems, Inc. 1999 Solver DLL V3.5

[page 101↓]

Gaczynska, M.; Goldberg, A. L.; Tanaka, K.; Hendil, K. B. and Rock, K. L. (1996): Proteasome subunits X and Y alter peptidase activities in opposite ways to the interferon-gamma-induced subunits LMP2 and LMP7, J Biol Chem 271 [29], pp.17275-80. http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/referer?http://www.jbc.org/cgi/content/full/271/29/17275

Gaczynska, M.; Rock, K. L. and Goldberg, A. L. (1993): Gamma-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes [see comments] [published erratum appears in Nature 1995 Mar 16;374(6519):290], Nature 365 [6443], pp.264-7. http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/referer?http://www.ncbi.nlm.nih.gov/htbin-post/Omim/getmim%3ffield=medline_uid&search=8396732

Garboczi, D. N.; Utz, U.; Ghosh, P.; Seth, A.; Kim, J.; VanTienhoven, E. A.; Biddison, W. E. and Wiley, D. C. (1996): Assembly, specific binding, and crystallization of a human TCR-alphabeta with an antigenic Tax peptide from human T lymphotropic virus type 1 and the class I MHC molecule HLA-A2, J Immunol 157 [12], pp.5403-10. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8955188

Goldberg, A. L.; Cascio, P.; Saric, T. and Rock, K. L. (2002): The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides, Mol Immunol 39 [3-4], pp.147-64.

Groettrup, M.; Khan, S.; Schwarz, K. and Schmidtke, G. (2001): Interferon-gamma inducible exchanges of 20S proteasome active site subunits: Why?, Biochimie 83 [3-4], pp.367-72..

Groll, M.; Bajorek, M.; Kohler, A.; Moroder, L.; Rubin, D. M.; Huber, R.; Glickman, M. H. and Finley, D. (2000): A gated channel into the proteasome core particle, Nat Struct Biol 7 [11], pp.1062-7.

Groll, M.; Ditzel, L.; Lowe, J.; Stock, D.; Bochtler, M.; Bartunik, H. D. and Huber, R. (1997): Structure of 20S proteasome from yeast at 2.4 A resolution, Nature 386 [6624], pp.463-71.

Gubler, B.; Daniel, S.; Armandola, E. A.; Hammer, J.; Caillat-Zucman, S. and van Endert, P. M. (1998): Substrate selection by transporters associated with antigen processing occurs during peptide binding to TAP, Mol Immunol 35 [8], pp.427-33..

Gulukota, K.; Sidney, J.; Sette, A. and DeLisi, C. (1997): Two complementary methods for predicting peptides binding major histocompatibility complex molecules, J Mol Biol 267 [5], pp.1258-67..

Heinemeyer, W.; Kleinschmidt, J. A.; Saidowsky, J.; Escher, C. and Wolf, D. H. (1991): Proteinase yscE, the yeast proteasome/multicatalytic-multifunctional proteinase: mutants unravel its function in stress induced proteolysis and uncover its necessity for cell survival, Embo J 10 [3], pp.555-62.

Hildebrand, Peter; Peters, B.; Goede, A.; Preissner, R and Frommel, C.: Prediction of Contacts in Membrane Helices, manuscript in preparation.

Hilt, W. and Wolf, D. H. (1995): Proteasomes of the yeast S. cerevisiae: genes, structure and functions, Mol Biol Rep 21 [1], pp.3-10.

Hilt, W. and Wolf, D. H. (1996): Proteasomes: destruction as a programme, Trends Biochem Sci 21 [3], pp.96-102. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8882582

Holzhutter, H. G.; Frommel, C. and Kloetzel, P. M. (1999): A theoretical approach towards the identification of cleavage- determining amino acid motifs of the 20 S proteasome, J Mol Biol 286 [4], pp.1251-65. http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/referer?http://www.idealibrary.com/links/citation/0022-2836/286/1251

[page 102↓]

Jameson, S. C. and Bevan, M. J. (1992): Dissection of major histocompatibility complex (MHC) and T cell receptor contact residues in a Kb-restricted ovalbumin peptide and an assessment of the predictive power of MHC-binding motifs, Eur J Immunol 22 [10], pp.2663-7. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1396971

Janek, K.; Wenschuh, H.; Bienert, M. and Krause, E. (2001): Phosphopeptide analysis by positive and negative ion matrix-assisted laser desorption/ionization mass spectrometry, Rapid Commun Mass Spectrom 15 [17], pp.1593-9..

Kesmir, C.; Nussbaum, A. K.; Schild, H.; Detours, V. and Brunak, S. (2002): Prediction of proteasome cleavage motifs by neural networks, Protein Eng 15 [4], pp.287-96.

Kessler, J. H.; Beekman, N. J.; Bres-Vloemans, S. A.; Verdijk, P.; van Veelen, P. A.; Kloosterman-Joosten, A. M.; Vissers, D. C.; ten Bosch, G. J.; Kester, M. G.; Sijts, A.; Wouter Drijfhout, J.; Ossendorp, F.; Offringa, R. and Melief, C. J. (2001): Efficient identification of novel HLA-A(*)0201-presented cytotoxic T lymphocyte epitopes in the widely expressed tumor antigen PRAME by proteasome-mediated digestion analysis, J Exp Med 193 [1], pp.73-88.

Khan, A. R.; Baker, B. M.; Ghosh, P.; Biddison, W. E. and Wiley, D. C. (2000): The structure and stability of an HLA-A*0201/octameric tax peptide complex with an empty conserved peptide-N-terminal binding site, J Immunol 164 [12], pp.6398-405. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10843695

Kisselev, A. F.; Akopian, T. N.; Woo, K. M. and Goldberg, A. L. (1999): The sizes of peptides generated from protein by mammalian 26 and 20 S proteasomes. Implications for understanding the degradative mechanism and antigen presentation, J Biol Chem 274 [6], pp.3363-71. http://www.jbc.org/cgi/content/full/274/6/3363

Kloetzel, P. M. (2001): Antigen processing by the proteasome, Nat Rev Mol Cell Biol 2 [3], pp.179-87..

Kohler, A.; Bajorek, M.; Groll, M.; Moroder, L.; Rubin, D. M.; Huber, R.; Glickman, M. H. and Finley, D. (2001): The substrate translocation channel of the proteasome, Biochimie 83 [3-4], pp.325-32..

Krause, E.; Wenschuh, H. and Jungblut, P. R. (1999): The dominance of arginine-containing peptides in MALDI-derived tryptic mass fingerprints of proteins, Anal Chem 71 [19], pp.4160-5..

Kuckelkorn, U.; Frentzel, S.; Kraft, R.; Kostka, S.; Groettrup, M. and Kloetzel, P. M. (1995): Incorporation of major histocompatibility complex--encoded subunits LMP2 and LMP7 changes the quality of the 20S proteasome polypeptide processing products independent of interferon-gamma, Eur J Immunol 25 [9], pp.2605-11.

[page 103↓]

Kuttler, C.; Nussbaum, A. K.; Dick, T. P.; Rammensee, H. G.; Schild, H. and Hadeler, K. P. (2000): An algorithm for the prediction of proteasomal cleavages, J Mol Biol 298 [3], pp.417-29.. http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/referer?http://www.idealibrary.com/links/citation/0022-2836/298/417

Lankat-Buttgereit, B. and Tampe, R. (2002): The transporter associated with antigen processing: function and implications in human diseases, Physiol Rev 82 [1], pp.187-204. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11773612

Lauvau, G.; Kakimi, K.; Niedermann, G.; Ostankovitch, M.; Yotnda, P.; Firat, H.; Chisari, F. V. and van Endert, P. M. (1999): Human transporters associated with antigen processing (TAPs) select epitope precursor peptides for processing in the endoplasmic reticulum and presentation to T cells, J Exp Med 190 [9], pp.1227-40..

Lorenzen, S.; Peters, B.; Frommel, C. and Preissner, R: Identification of Cis-prolines from their sequence environment, manuscript in preparation.

Mamitsuka, H. (1998): Predicting peptides that bind to MHC molecules using supervised learning of hidden Markov models, Proteins 33 [4], pp.460-74. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9849933

Milik, M.; Sauer, D.; Brunmark, A. P.; Yuan, L.; Vitiello, A.; Jackson, M. R.; Peterson, P. A.; Skolnick, J. and Glass, C. A. (1998): Application of an artificial neural network to predict specific class I MHC binding peptide sequences, Nat Biotechnol 16 [8], pp.753-6..

Momburg, F.; Roelse, J.; Hammerling, G. J. and Neefjes, J. J. (1994): Peptide size selection by the major histocompatibility complex-encoded peptide transporter, J Exp Med 179 [5], pp.1613-23. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8163941

Momburg, F.; Roelse, J.; Howard, J. C.; Butcher, G. W.; Hammerling, G. J. and Neefjes, J. J. (1994): Selectivity of MHC-encoded peptide transporters from human, mouse and rat, Nature 367 [6464], pp.648-51.

Neumann, L. and Tampe, R. (1999): Kinetic analysis of peptide binding to the TAP transport complex: evidence for structural rearrangements induced by substrate binding, J Mol Biol 294 [5], pp.1203-13. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10600378

Niedermann, G.; Grimm, R.; Geier, E.; Maurer, M.; Realini, C.; Gartmann, C.; Soll, J.; Omura, S.; Rechsteiner, M. C.; Baumeister, W. and Eichmann, K. (1997): Potential immunocompetence of proteolytic fragments produced by proteasomes before evolution of the vertebrate immune system, J Exp Med 186 [2], pp.209-20. http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/referer?http://www.jem.org/cgi/content/full/186/2/209

[page 104↓]

Nijenhuis, M.; Schmitt, S.; Armandola, E. A.; Obst, R.; Brunner, J. and Hammerling, G. J. (1996): Identification of a contact region for peptide on the TAP1 chain of the transporter associated with antigen processing, J Immunol 156 [6], pp.2186-95..

Nussbaum, A. K.; Kuttler, C.; Hadeler, K. P.; Rammensee, H. G. and Schild, H. (2001): PAProC: a prediction algorithm for proteasomal cleavages available on the WWW, Immunogenetics 53 [2], pp.87-94.

Olumee, Z.; Sadeghi, M.; Tang, X. and Vertes, A. (1995): Amino Acid Composition and Wavelength Effects in Matrix-assisted Laser Desorption / Ionization, Rapid Communications in Mass Spectrometry 9, pp.744-752.

Parker, K. C.; Bednarek, M. A. and Coligan, J. E. (1994): Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains, J Immunol 152 [1], pp.163-75..

Peters, B.; Janek, K.; Kuckelkorn, U. and Holzhutter, H. G. (2002): Assessment of proteasomal cleavage probabilities from kinetic analysis of time-dependent product formation, J Mol Biol 318 [3], pp.847-62.

Peters, Björn; Bulik, Sascha; Tampe, Robert; van Endert, Peter M. and Holzhutter, Hermann-Georg (2003): Identifying MHC-I epitopes by predicting the TAP transport efficiency of epitope precursors, submitted to Journal of Immunology.

Peters, Björn; Tong, Weiwei; Sidney, John; Sette, Alessandro and Weng, Zhiping (2003): Examining the Independent Binding Assumption for Binding of Peptide Epitopes to MHC-I Molecules, submitted to Bioinformatics.

Press, William H.; Teukolsky, Saul A.; Vetterling, William T. and Flannery, Brian P. (1992): Numerical Recipes in C, 2. ed., Cambridge University Press.

Rammensee, H.; Bachmann, J.; Emmerich, N. P.; Bachor, O. A. and Stevanovic, S. (1999): SYFPEITHI: database for MHC ligands and peptide motifs, Immunogenetics 50 [3-4], pp.213-9..

Rammensee, H. G.; Friede, T. and Stevanoviic, S. (1995): MHC ligands and peptide motifs: first listing, Immunogenetics 41 [4], pp.178-228. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7890324

Rock, K. L. and Goldberg, A. L. (1999): Degradation of cell proteins and the generation of MHC class I-presented peptides, Annu Rev Immunol 17, pp.739-79.

Rotzschke, O.; Falk, K.; Deres, K.; Schild, H.; Norda, M.; Metzger, J.; Jung, G. and Rammensee, H. G. (1990): Isolation and analysis of naturally processed viral peptides as recognized by cytotoxic T cells, Nature 348 [6298], pp.252-4. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1700304

Rotzschke, O.; Falk, K.; Stevanovic, S.; Jung, G.; Walden, P. and Rammensee, H. G. (1991): Exact prediction of a natural T cell epitope, Eur J Immunol 21 [11], pp.2891-4. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1718764

[page 105↓]

Saric, T.; Chang, S. C.; Hattori, A.; York, I. A.; Markant, S.; Rock, K. L.; Tsujimoto, M. and Goldberg, A. L. (2002): An IFN-gamma-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I-presented peptides, Nat Immunol 3 [12], pp.1169-76.

Schubert, U.; Anton, L. C.; Gibbs, J.; Norbury, C. C.; Yewdell, J. W. and Bennink, J. R. (2000): Rapid degradation of a large fraction of newly synthesized proteins by proteasomes, Nature 404 [6779], pp.770-4. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10783891

Schueler-Furman, O.; Altuvia, Y.; Sette, A. and Margalit, H. (2000): Structure-based prediction of binding peptides to MHC class I molecules: application to a broad range of MHC alleles, Protein Sci 9 [9], pp.1838-46..

Schwarz, K.; de Giuli, R.; Schmidtke, G.; Kostka, S.; van den Broek, M.; Kim, K. B.; Crews, C. M.; Kraft, R. and Groettrup, M. (2000): The selective proteasome inhibitors lactacystin and epoxomicin can be used to either up- or down-regulate antigen presentation at nontoxic doses, J Immunol 164 [12], pp.6147-57. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10843664

Segal, M. R.; Cummings, M. P. and Hubbard, A. E. (2001): Relating amino acid sequence to phenotype: analysis of peptide-binding data, Biometrics 57 [2], pp.632-42..

Serwold, T.; Gonzalez, F.; Kim, J.; Jacob, R. and Shastri, N. (2002): ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum, Nature 419 [6906], pp.480-3..

Shastri, N.; Schwab, S. and Serwold, T. (2002): Producing nature's gene-chips: the generation of peptides for display by MHC class I molecules, Annu Rev Immunol 20, pp.463-93.

Toes, R. E.; Nussbaum, A. K.; Degermann, S.; Schirle, M.; Emmerich, N. P.; Kraft, M.; Laplace, C.; Zwinderman, A.; Dick, T. P.; Muller, J.; Schonfisch, B.; Schmid, C.; Fehling, H. J.; Stevanovic, S.; Rammensee, H. G. and Schild, H. (2001): Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products, J Exp Med 194 [1], pp.1-12.. http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/referer?http://www.jem.org/cgi/content/abstract/194/1/1

Udaka, K.; Wiesmuller, K. H.; Kienle, S.; Jung, G.; Tamamura, H.; Yamagishi, H.; Okumura, K.; Walden, P.; Suto, T. and Kawasaki, T. (2000): An automated prediction of MHC class I-binding peptides based on positional scanning with peptide libraries, Immunogenetics 51 [10], pp.816-28..

[page 106↓]

Uebel, S.; Kraas, W.; Kienle, S.; Wiesmuller, K. H.; Jung, G. and Tampe, R. (1997): Recognition principle of the TAP transporter disclosed by combinatorial peptide libraries, Proc Natl Acad Sci U S A 94 [17], pp.8976-81..

Uebel, S.; Meyer, T. H.; Kraas, W.; Kienle, S.; Jung, G.; Wiesmuller, K. H. and Tampe, R. (1995): Requirements for peptide binding to the human transporter associated with antigen processing revealed by peptide scans and complex peptide libraries, J Biol Chem 270 [31], pp.18512-6. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7543103

Uebel, S. and Tampe, R. (1999): Specificity of the proteasome and the TAP transporter, Curr Opin Immunol 11 [2], pp.203-8..

Valero, M.-L.; Giralt, E. and Andreu, D. (1998): An Evaluation of Some Structural Determinants for Peptide Desorption in MALDI-TOF Mass Spectrometry, Ramage, R. and Roger, E., Eds, Peptides 1996, pp. 855-856, Mayflower Scientific Ltd., Kingswinford, UK.

van Endert, P. M.; Riganelli, D.; Greco, G.; Fleischhauer, K.; Sidney, J.; Sette, A. and Bach, J. F. (1995): The peptide-binding motif for the human transporter associated with antigen processing, J Exp Med 182 [6], pp.1883-95..

van Endert, P. M.; Tampe, R.; Meyer, T. H.; Tisch, R.; Bach, J. F. and McDevitt, H. O. (1994): A sequential model for peptide binding and transport by the transporters associated with antigen processing, Immunity 1 [6], pp.491-500..

Wang, Y.; Guttoh, D. S. and Androlewicz, M. J. (1998): Peptide transport assay for TAP function, Methods Enzymol 292, pp.745-53..

York, I. A.; Chang, S. C.; Saric, T.; Keys, J. A.; Favreau, J. M.; Goldberg, A. L. and Rock, K. L. (2002): The ER aminopeptidase ERAP1 enhances or limits antigen presentation by trimming epitopes to 8-9 residues, Nat Immunol 3 [12], pp.1177-84.

Yu, K.; Petrovsky, N.; Schonbach, C.; Koh, J. Y. and Brusic, V. (2002): Methods for prediction of peptide binding to MHC molecules: a comparative study, Mol Med 8 [3], pp.137-48. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12142545

© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 3.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML generated: