Prescott, Hillary A.: The Crystal Structures and Thermal Behavior of Hydrogen Monofluorophosphates and Basic Monofluorophosphates with Alkali Metal and N-containing Cations

Institut für Chemie


Dissertation
The Crystal Structures and Thermal Behavior of Hydrogen Monofluorophosphates and Basic Monofluorophosphates with Alkali Metal and N-containing Cations

zur Erlangung des akademischen Grades
doctor rerum naturalium
(Dr. rer. nat.)

Mathematisch-Naturwissenschaftlichen Fakultät I
der Humboldt-Universität zu Berlin

Diplom-Chemikerin Hillary A. Prescott,
geboren am 07.09.1971 in San Francisco, California, USA

Dekan der Mathematisch-Naturwissenschaftlichen Fakultät I
Prof. Dr. Bernhard Ronacher

Gutachter:
1. Prof. Dr. E. Kemnitz
2. Prof. Dr. H. Hartl
3. Prof. Dr. J. Pickardt

eingereicht: 11. Septmenber 2001

Datum der Promotion: 30. November 2001

Abstract

In this thesis, the crystal structures and thermal behavior of hydrogen monofluorophosphates and basic monofluorophosphates with alkali metal and N-containing cations were studied. A comparison to the analogous hydrogen sulfates showed interesting structural variations and differences in thermal behavior.

Synthesis of the studied monofluorophosphates involved cation exchange and freeze drying. Freeze drying enabled the isolation of raw products by avoiding the escape of HF and consequent phosphate condensation. This method of preparation led to the synthesis of the hydrogen monofluorophosphates with the following cations:

- the alkali metals: Na+, K+, Rb+, and Cs+,

- N-containing cations: NH4+, [NMe4]+, [NH2Et2]+, [NHEt3]+, [C(NH2)3]+, {HOC[NH(CH3)]2}+, and [H2N(CH2CH2)NH2]2+,

and the basic monofluorophoshates, Na2PO3F·10H2O and [C(NH2)3]2PO3F. The following mixed salts were also obtained with partial cation exchange:

- Cs3(NH4)2(HPO3F)3(PO3F)2

- Na5[NMe4](PO3F)3·18H2O.

In the crystal structures, the HPO3F tetrahedra were hydrogen-bonded to chains, dimers, and tetramers in the structures of the hydrogen monofluorophosphates. Extensive hydrogen bonding in the basic monofluorophosphates due to high amounts of crystal water led to more complicated structural motifs.

Limitations on the bonding of fluorine were observed in each of the structures, whether it be metal coordination or hydrogen bonding. The valency of fluorine is filled by its bond to phosphorus and thus, generally, the fluorine atom does not participate in additional bonds. This explains why, for the most part, the hydrogen monofluorophosphates are not isostructural with the hydrogen sulfates. Only three atoms of the tetrahedron instead of four atoms are available for hydrogen bonding, which influences the crystal structure. This was further confirmed by the comparison of the decahydrates, Na2PO3F×10H2O and Na2SO4×10H2O, which are consequently isostructural based on two O-H×××F bonds formed in Na2PO3F·10H2O. These were the only hydrogen bonds found that involved fluorine as an hydrogen acceptor or donor.

The investigations on the thermal behavior of NaHPO3F, NaHPO3F·2.5H2O, CsHPO3F, and [NHEt3]HPO3F found no first-order phase transitions. Stepwise decompositions were observed for the sodium salts, which was attributed to the formation of stable intermediates identified with simulated experiments. The Cs and [NHEt3] compounds demonstrated a direct decomposition postmelting. In general, the release of H2O from the melt occured at lower temperatures, while HF escaped at higher temperatures. The temperatures, at which this initially occured, and the first maximum observed were dependent on the cation and the presence of crystal water.

The immediate decomposition of CsHPO3F after melting differs from that of the hydrogen sulfate, CsHSO4, which undergoes several phase transitions before decompositon. This suggests that the sulfate has more structural flexibility on the basis of the four oxygen corners of the tetrahedra. In comparison, the monofluorophosphate is limited in its bonding mobility due to the presence of fluorine on one of the tetrahedral vertices. Therefore, phase transitions are not observed prior to decomposition.

It was concluded that fluorine functions differently in the crystal structures on the basis of its lower valency. Thus, the difference in valency between fluorine and oxygen affects the hydrogen bonding of the hydrogen monofluorophosphates and thus pervents the expected isotypy of the isoelectronic hydrogen monofluorophosphates and hydrogen sulfates.

Keywords:
alkali metal cation, organic cation, hydrogen monofluorophosphate, crystal structure, thermal property, hydrogen bonding

Zusammenfassung

In vorliegender Arbeit wurden Synthese, Kristallstruktur und thermisches Verhalten von sauren und basischen Monofluorophosphate untersucht. Es wurden Salze mit Alkalimetall- und N-haltigen Kationen dargestellt und kristallographisch charakterisiert. Die Strukturen dieser Verbindungen wurden dann mit denen der isoelektronischen Hydrogensulfate verglichen.

Mit Hilfe des Kationenaustausches und der Gefriertrocknung konnte ein erfolgreicher Syntheseweg fuer diese Verbindungen entwickelt werden. Die Gefriertrocknung hinderte die Abspaltung von HF und Kondensation des Phosphats und ermöglichte die Isolierung der Rohprodukte. Auf diesem Weg gelang die Darstellung der reinen Verbindungen in höherer Ausbeute, so daß es möglich wurde, die Substanzen mit unterschiedlichen Methoden zu untersuchen.

Hergestellt und kristallographisch untersucht wurden folgende Verbindungen:

- Hydrogenmonofluorophosphate mit

× Alkalimetallkationen: Na, K, Rb, Cs

× N-haltigen Kationen: NH4, NMe4, NH2Et2, NHEt3, [C(NH2)3], {HOC[NH(CH3)]2}, [H2N(CH2CH2)NH2],

- basische Monofluorophosphate: Na2PO3F·10H2O und [C(NH2)3]2PO3F

- gemischte Salze: Cs3(NH4)2(HPO3F)3(PO3F)2 und Na5[NMe4](PO3F)3·18H2O.

Die Kristallstrukturen zeigen eine Vielzahl an Strukturtypen, definiert durch die Verknüpfung der verzerrten HPO3F Tetraeder über kurze O-H···O Wasserstoffbrückenbindungen zu Ketten, Dimere oder Tetramere. Diese sind ihrerseits über längere N-H···O und Ow-H···O Wasserstoffbrückenbindungen verknüpft. Kompliziertere Strukturmotive sind in den Strukturen der basischen Monofluorophosphate und der gemischten Salze zu finden.

Allgemein werden nur Wasserstoffbrückenbindungen des Typs N-H...O und O-H...O gefunden, dagegen werden keine N-H···F Bindungen in den Strukturen beobachtet. Auch ist mehrheitlich keine Isotypie zwischen sauren und basischen Monofluorophosphaten einerseits und den entsprechenden Sulfaten andererseits zu finden. Isotyp sind nur die Strukturen [NMe4]HPO3F·H2O mit [NMe4]HSO4·H2O und Na2PO3F·10H2O mit Na2SO4·10H2O. Interessanterweise wurden genau in einer dieser isotypen Strukturen, nämlich der des Na2PO3F×10H2O, als Ausnahme zwei O-H···F Bindungen gefunden. Die O···F Abstände liegen im Bereich der Abstände der Ow···O Bindungen in der Struktur.

Eine Erklärung für das seltene Auftreten von H-Brücken mit Fluor als Akzeptor ist eine fast vollständige Valenz des Fluors durch seine Bindung zum Phosphor. Mehrere Strukturen widerspiegeln diese Tatsache mit der Orientierung der P-F Bindung. Die Bindung wird nach inerten Stellen, wo kein Metall- oder Wasserstoffatom in der Struktur vorhanden ist, ausgerichtet, um ein weiteres Binden des Fluors (Metallkoordination, Wasserstoffbrückenbindung) zu vermeiden.

Weiterhin wurde das thermische Verhalten der Verbindungen NaHPO3F, NaHPO3F·2.5H2O, CsHPO3F und [NHEt3]HPO3F untersucht. Dies erfolgte mit dem Ziel, Information über mögliche Phasenübergänge und die unterschiedlichen Zersetzungstypen zu bekommen. Sowohl der Kation wie auch die Anwesenheit von Kristallwasser haben Einfluß auf den thermischen Abbau. Die Na-Verbindungen zeigen eine Zersetzung über mehrere Schritte, die zu unterschiedlichen Endprodukten führt (Na3P3O9 für NaHPO3F und (NaPO3)n für das Hydrat). Im Vergleich dazu zersetzt sich CsHPO3F nach dem Schmelzen direkt zum Endprodukt, ohne stabile Zwischenprodukte zu bilden. Ähnlich verläuft der thermische Abbau der [NHEt3] Verbindung, die sich allerdings mit einem Masseverlust von 92,27%, also ohne Bildung eines signifikanten Endproduktes, vollständig zersetzt. Während des thermischen Abbaus wurde die Freisetzung von HF und H2O bei allen Verbindungen beobachtet, die sich aber bezüglich der Zersetzungstemperatur und -menge zwischen den Substanzen unterscheiden.

Es wurden keine Phasenübergänge erster Ordnung beobachtet. Dies war insbesondere für CsHPO3F überraschend, da das isoelektronische Hydrogensulfat mehrere Phasenübergänge aufweist [2]. Das Ausbleiben von Phasenübergängen allgemein und auch für CsHPO3F wird folgendermassen erklärt. Während das Sulfat Bindungsmöglichkeiten an allen vier Ecken des SO4-Tetraeders hat, besitzt der (H)PO3F-Tetraeder nur eine begrenzte Flexibilität wegen der Anwesenheit von Fluor an einer Ecke. Fluor bevorzugt eine "isolierte" Position am Phosphor.

Anhand der vorliegenden Ergebnisse kann die Schlußfolgerung gezogen werden, daß Fluor auf Grund seiner niedrigeren Valenz im Vergleich zu Sauerstoff andere strukturelle und funktionelle Charakteristika aufweist. Die Valenzunterschiede zwischen Sauerstoff und Fluor haben einen starken Einfluß auf das Wasserstoffbrückenbindungssystem in den Kristallstrukturen der Hydrogenmonofluorophosphate und folglich auf die "Nicht-Isotypie" zu den Hydrogensulfaten.

Schlagwörter:
Alkalimetalkation, organisches Kation, Hydrogenmonofluorophosphat, Kristallstruktur, thermische Eigenschaft, Wasserstoffbrueckenbindung


Seiten: [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132]

Inhaltsverzeichnis

TitelseiteThe Crystal Structures and Thermal Behavior of Hydrogen Monofluorophosphates and Basic Monofluorophosphates with Alkali Metal and N-containing Cations
Abkürzungsverzeichnis Table of Abbreviations, Acronyms, and Symbols
1 Introduction
1.1Literature Survey
2 Experimental Section
2.1Methods
2.2Chemicals
2.3Preparation
3 Synthesis
4 The Crystal Structures and their Hydrogen Bonding
4.1The Structures with Infinite Chains
4.1.1NaHPO3F·2.5H2O
4.1.2[NH2(CH2CH3)2]HPO3F
4.1.3[NH2(CH2CH2)2NH2][HPO3F]2
4.2The Structure with Branched Chains
4.2.1KHPO3F
4.3The Structure with Isolated Dimers
4.3.1K3[H(PO3F)2]
4.4The Structures with Cyclic Dimers
4.4.1CsHPO3F
4.4.2[NH(CH2CH3)3]HPO3F
4.4.3[C(NH2)3]HPO3F
4.4.4{HOC[NH(CH3)]2}HPO3F
4.5The Structures with Cyclic Tetramers
4.5.1alpha-NH4HPO3F
4.5.2beta-NH4HPO3F
4.5.3alpha-RbHPO3F
4.6The Complex Structures and Hydrates
4.6.1Cs3(NH4)2(HPO3F)3(PO3F)
4.6.2[N(CH3)4]HPO3F·H2O
4.6.3Na2PO3F·10H2O
4.6.4Na5[N(CH3)4](PO3F)3·18H2O
4.6.5[C(NH2)3]2PO3F
4.7The Structure of beta-RbHPO3F
4.8Summary
5 Thermal Analysis
5.1The Sodium Salts: NaHPO3F and NaHPO3F·2.5H2O
5.1.1The Thermal Behavior of NaHPO3F
5.1.2The Thermal Behavior of NaHPO3F·2.5H2O
5.1.3Comparison
5.2The Thermal Behavior of CsHPO3F
5.3The Thermal Behavior of [NH(CH2CH3)3]HPO3F
5.4Summary
6 Discussion
6.1A Structural Comparison to the Hydrogen Chalcogenates and Other Oxoacid Salts
6.2Structural Features
6.3Fluorine
6.4The Tetrahedral Bonding
6.5The Hydrogen Bonding
7 Summary and Conclusions
Anhang A Appendix
A.1Selected Experimental Data of the Single Crystal Analysis
A.2Atomic Coordinates and Equivalent Isotropic Displacement Parameters (Å2)
A.3Selected Bond Lengths
A.419F, 31P, and 1H MAS NMR Data and Spectra
Bibliographie References
Lebenslauf
Selbständigkeitserklärung

Tabellenverzeichnis

Tab. 1 Selected crystallographic data
Tab. 2 Bond lengths in NaHPO3F·2.5H2O (Å)
Tab. 3 Hydrogen bonding in NaHPO3F·2.5H2O (Å, °)
Tab. 4 Bond lengths in [NH2Et2]HPO3F (Å)
Tab. 5 Hydrogen bonding in [NH2Et2]HPO3F (Å, °)
Tab. 6 Bond lengths in [PipzH2][HPO3F]2 (Å)
Tab. 7 Hydrogen bonding in [PipzH2][HPO3F]2 (Å, °)
Tab. 8 Selected crystallographic data
Tab. 9 P-O and P-F bond lengths in KHPO3F (Å)
Tab. 10 Hydrogen bonding in KHPO3F (Å, °)
Tab. 11 Selected crystallographic data
Tab. 12 Bond lengths in K3[H(PO3F)2] (Å)
Tab. 13 Hydrogen bonding in K3[H(PO3F)2] (Å, °)
Tab. 14 Selected crystallographic data
Tab. 15 Bond lengths in CsHPO3F (Å)
Tab. 16 Hydrogen bonding in CsHPO3F (Å, °)
Tab. 17 P-X, N-C, and C-C bond lengths in [NHEt3]HPO3F (Å)
Tab. 18 Hydrogen bonding in [NHEt3]HPO3F (Å, °)
Tab. 19 Bond lengths in [C(NH2)3]HPO3F (Å)
Tab. 20 Hydrogen bonding in [C(NH2)3]HPO3F (Å, °)
Tab. 21 Bond lengths in [N,N´-dmuH]HPO3F (Å)
Tab. 22 Hydrogen bonding in [N,N´-dmuH]HPO3F (Å, °)
Tab. 23 Selected crystallographic data
Tab. 24 Bond lengths in alpha-NH4HPO3F and beta-NH4HPO3F (310 K) (Å)
Tab. 25 Hydrogen bonding in á-NH4HPO3F (Å, º)
Tab. 26 Hydrogen bonding in beta-NH4HPO3F at 310 K (Å, º)
Tab. 27 P-O and P-F bond lengths in alpha-RbHPO3F (Å)
Tab. 28 Hydrogen bonding in alpha-RbHPO3F (Å, °)
Tab. 29 Selected crystallographic data
Tab. 30 Selected crystallographic data
Tab. 31 P-O and P-F bond lengths in Cs3(NH4)2(HPO3F)3PO3F (Å) for the PO3F tetrahedra
Tab. 32 P-O and P-F bond lengths in Cs3(NH4)2(HPO3F)3PO3F (Å) for the HPO3F tetrahedra
Tab. 33 O-H···O hydrogen bonding in Cs3(NH4)2(HPO3F)3PO3F (Å, °)
Tab. 34 Bond lengths in [N(CH3)4]HPO3F·H2O (Å)
Tab. 35 Hydrogen bonding in [N(CH3)4]HPO3F·H2O (Å, °)
Tab. 36 Bond lengths in Na2PO3F10H2O (Å)
Tab. 37 Hydrogen bonding in Na2PO3F·10H2O (Å, °)
Tab. 38 Avg. Na-O bond lengths in Na5[N(CH3)4](PO3F)3·18H2O (Å)
Tab. 39 P-O and P-F bond lengths in Na5[N(CH3)4](PO3F)3·18H2O (Å)
Tab. 40 Bond lengths in [C(NH2)3]2PO3F (Å)
Tab. 41 Hydrogen bonding in [C(NH2)3)]2PO3F (Å, °)
Tab. 42 Selected crystallographic data
Tab. 43 Bond lengths in beta-RbHPO3F (Å)
Tab. 44 Hydrogen bonding in beta-RbHPO3F (Å, °)
Tab. 45 Quantitative interpretation of the IC curves, m/z 18 and 19, for NaHPO3F postcalibration
Tab. 46 Elemental analysis of NaHPO3F at RT and after being heated to the indicated temperature
Tab. 47 31P NMR data (delta) for the products obtained after heating NaHPO3F to the indicated temperature; J is given in parenthesis with the product ratios in %
Tab. 48 Behavior of NaHPO3F·2.5H2O at RT
Tab. 49 Quantitative interpretation of the IC curves, m/z 18, postcalibration for NaHPO3F·2.5H2O
Tab. 50 Elemental analysis of NaHPO3F·2.5H2O at RT and after being heated to the indicated temperature
Tab. 51 31P NMR data (delta) for NaHPO3F·2.5H2O and the products obtained after heating to the indicated temperature; JPF is given in parenthesis with the product ratios in %
Tab. 52 19F NMR data (delta) for NaHPO3F·2.5H2O and the products obtained after heating to the indicated temperature; JPF is given in parenthesis
Tab. 53 Quantitative interpretation of the TG graph and IC curves, m/z 18 and 19
Tab. 54 Observed temperatures for the escape of HF and H2O (K)
Tab. 55 Cation radii [111, 112], number of metal-fluorine bonds per fluorine atoms, avg. M-F distance, avg. P-F distances, and VF in the alkali metal hydrogen monofluorophosphates (Å)
Tab. 56 Structures with N-containing cations and the total fluorine bond valency
Tab. 57 Avg. bond distances and VF for the given structures /Å
(Values were averaged for structures with several bonds.)
Tab. 58 Hydrogen bond distance (XY) for the structure sorted by bond type and strength; the structures are listed by type of structural pattern (Å)
he bonds with disordered hydrogen positons are indicated with (di).
Tab. 59 Functions of the (H)PO3F oxygen and fluorine atoms in the structures
Tab. A1 The Structures with Infinite Chains
Tab. A2 The Structures with Branched Chains or Isolated Dimers
Tab. A3 The Structures with Cyclic Dimers
Tab. A4 The Structures with Cyclic Dimers
Tab. A5 The Structures with Cyclic Tetramers
Tab. A6 The Complex Structures and Hydrates
Tab. A7 The Complex Structures and Hydrates
Tab. A8 The Structure of beta-RbHPO3F
Tab. A9 NaHPO3F·2.5H2O
Tab. A10 [NH2Et2]HPO3F
Tab. A11 [PipzH2][HPO3F]2
Tab. A12 KHPO3F
Tab. A13 K3[H(PO3F)2]
Tab. A14 CsHPO3F
Tab. A15 [NHEt3]HPO3F
Tab. A16 [C(NH2)3]HPO3F
Tab. A17 {HOC[NH(CH3)2]2}HPO3F
Tab. A18 alpha-NH4HPO3F
Tab. A19 beta-NH4HPO3F bei 180 K
Tab. A20 beta-NH4HPO3F bei 310 K
Tab. A21 alpha-RbHPO3F
Tab. A22 Non-hydrogen atoms in Cs3(NH4)2(HPO3F)3(PO3F)
Tab. A23 Hydrogen atoms in Cs3(NH4)2(HPO3F)3(PO3F)
Tab. A24 [N(CH3)4]HPO3F·H2O
Tab. A25 Na2PO3F·10H2O
Tab. A26 Non-hydrogen atoms in Na5[N(CH3)4](PO3F)3·18H2O
Tab. A27 Hydrogen atoms in Na5[N(CH3)4](PO3F)3·18H2O
Tab. A28 [C(NH2)3]2PO3F
Tab. A29 beta-RbHPO3F
Tab. A30 K-X bond lengths in KHPO3F (Å)
Tab. A31 C-H bond lengths in [NHEt3]HPO3F (Å)
Tab. A32 Rb-X bond lengths in alpha-RbHPO3F (Å)
Tab. A33 Cs-X bond lengths in Cs3(NH4)2(HPO3F)3PO3F (Å)
Tab. A34 N-H···O hydrogen bonding in Cs3(NH4)2(HPO3F)3PO3F (Å, °)
Tab. A35 Na-O, N-C, and C-H bond lengths in Na5[N(CH3)4](PO3F)3·18H2O (Å)
Tab. A36 Hydrogen bonding in Na5[N(CH3)4](PO3F)3 (Å, °)
Tab. A37 19F MAS NMR data
Tab. A38 31P MAS NMR data
Tab. A39 1H MAS NMR data

Abbildungsverzeichnis

Fig. 1 Structure of NaHPO3F·2.5H2O looking down the b-axis. The chains of [NaO6] units running in the c-direction at x = 0 and ½ are represented by gray octahedra. H···O bonds are indicated by dashed lines. The P atoms are blue; F atoms are red; H atoms are small open cirles; O atoms are larger open circles.
Fig. 2 Structure of [NH2Et2]HPO3F (a) Ball-and-stick representation looking down the c-axis. The N atoms are green; C atoms are black. The zigzag chains of HPO3F tetrahedra run parallel to b at x = ¼ and ¾. Dashed lines indicate the H···O bonds. The hydrogen atoms on carbon have been omitted for clarity. (b) Perspective view down the b-axis showing the orientation of HPO3F tetrahedra relative to the P-F bond and their linkage to each other via the [NH2Et2]+ ions. (c) Perspective view of the [NH2Et2]+ layers parallel to the ac-plane at y = ¼ and ¾ with the P-F axis between them.
Fig. 3 Structure of [PipzH2][HPO3F]2 (a) View along the a-axis with the zigzag HPO3F chains parallel to the c-direction. (b) Polyhedral representation of the HPO3F tetrahedra looking down the b-axis. The layer of [PipzH22+] ions is shown at x = ½ with the P-F axis of tetrahedron pointed in the opposite direction.
Fig. 4 Structure of KHPO3F viewed along the c-axis showing a branched chain of HPO3F tetrahedra, which runs parallel to b around the crystallographic 21 axis at x = ½. Dashed lines indicate the H···O bonds. The K atoms are green.
Fig. 5 View of the K3[H(PO3F)2] structure looking down the a-axis. The HO3´ bond is indicated with dashed lines. The isolated dimers of [H(PO3F)2] are shown positioned around centers of symmetry at {½, ½, ½} with the O1-O2 edges of the PO3F tetrahedra overlapping each other.
Fig. 6 Structure of CsHPO3F viewed along the c-axis showing the cyclic dimers of HPO3F tetrahedra. The Cs atoms are green. Dashed lines indicate the H···O2´ bond.
Fig. 7 Structure of [NHEt3]HPO3F (a) Ball-and-stick representation viewed along the b-axis. The hydrogen atoms on carbon have been omitted for clarity. Dashed lines indicate the H···O bonds. (b) Another view of the structure down the c-axis showing the O-H···O bonds with the disordered hydrogen position. (c) Polyhedral representation of the HPO3F tetrahedra along the a-axis showing the direction of the P-F axis relative to the layers of [NHEt3]+ ions at z = ¼ and ¾.
Fig. 8 Ball-and-stick representation of the [C(NH2)3]HPO3F structure viewed along the a-axis. The cyclic dimers of HPO3F tetrahedra are shown linked by the short hydrogen bond, O3-H1···O2. The N-H···O hydrogen bonds are not shown for clarity.
Fig. 9 Cyclic dimers of HPO3F tetrahedra in the structure of [N,N´-dmuH]HPO3F viewed down the a-axis. Dashed lines indicate the H···O bonds. Hydrogen atoms on carbon are not shown for clarity.
Fig. 10 Structure of á-NH4HPO3F viewed along the c-axis with the NH4+ ions and the cyclic tetramers of HPO3F tetrahedra. Dashed lines indicate the H···O bonds. N-HO bonds are not shown for clarity.
Fig. 11 View of â-NH4HPO3F looking down the b-axis with the tetramerically hydrogen-bonded phosphorus tetrahedra and the NH4+ ions. The H···O bonds are indicated by dashed lines. N-HO bonds are not shown for clarity.
Fig. 12 Structure of alpha-RbHPO3F looking down the c-axis with the Rb+ ions and the cyclic tetramers of hydrogen-bonded HPO3F tetrahedra. Dashed lines indicate the H···O bonds. The Rb atoms are green.
Fig. 13 Projection of the Cs3(NH4)2(HPO3F)3(PO3F) structure along the c-axis. Only one orientation (major component) of the disordered P8 tetrahedron is shown. (a) The Cs atoms are large green circles; smaller green circles represent the N atoms. The hydrogen bonds are not shown for clarity. (b) The hydrogen-bonded layers of (NH4)2PO3F and HPO3F-tetrahedra are shown in and around the ac-plane. The Cs atoms, H atoms, and N-H···O bonds are not shown for clarity. Dashed lines indicate the H···O bonds between the PO3F and HPO3F tetrahedra.
Fig. 14 Structure of [N(CH3)4]HPO3F·H2O (a) Ball-and-stick representation of the HPO3F tetrahedra with the molecule of crystal water and [NMe4]+ ions viewed along the a-axis. The minor component of the oxygen positions of the PO3F tetrahedron and crystal water is not shown. The HO bonds are indicated by dashed lines. (b) View looking down the crystallographic C3 axis. The molecule of crystal water, [NMe4]+ cation, and HPO3F- anion are centered on this axis.
Fig. 15 Structure of Na2PO3F·10H2O (a) View of one layer along the b-axis. The chains of NaO6 and connected PO3F tetrahedra run along the c-axis. Only the hydrogen bonds, Ow-H···F, and the Ow-HO bonds between the PO3F tetrahedra and the Ow12/Ow13 molecules are shown. (b) Projection of the two tetramers along the b-axis. The hydrogen bonds and anchoring bonds to the Na and O1 - O3 atoms are shown with the indicated centers of symmetry.
Fig. 16 Structure of Na5[N(CH3)4](PO3F)3·18H2O (a) Ball-and-stick representation along the a-axis. The infinite chains of [Na3O13] are shown running in the b-direction with the isolated dimers [Na2O8]. The hydrogen atoms were omitted and hydrogen bonds are not shown for clarity. The Na atoms are gray. (b) OwO(w) hydrogen bonding indicated by dashed lines. The organic cations are seen in the channels at (x, ¼, ¾) and (x, ¾, ¼). The hydrogen atoms have been omitted for clarity.
Fig. 17 Structure of [C(NH2)3]2PO3F (a) Ball-and-stick representation looking down the b-axis. Dashed lines indicate the H···O hydrogen bonds. The hydrogen atoms have been omitted for clarity. (b) Polyhedral representation of the HPO3F tetrahedra along the a-axis showing the P-F bond orientation relative to the hydrogen bonds.
Fig. 18 View of the structure of beta-RbHPO3F looking down the a-axis. The black dashed lines indicate the symmetrically-disordered HO bond between H and O2´. The implied hydrogen bond between the O3/FA and the F/O3A positions (indicated by the red-outlined open circles) is shown with red dashed lines. The Rb atoms are green.
Fig. 19 STA curves for (a) NaHPO3F and (b) NaHPO3F·2.5H2O both in N2 showing the respective three and four step decompositions.
Fig. 20 Measured IC and TG curves of NaHPO3F. (a) Maxima are observed for the IC curves, m/z 17 (OH+), 18 (H2O+), 19 (F+), and 20 (HF+) for each of the endothermic processes. (b) The IC curves of m/z 50 (PF+) and 47 (PO+) showing a maximum for the first step of decomposition.
Fig. 21 Measured IC curves with the TG and DTG graphs of NaHPO3F2.5H2O (a) for m/z 19 (F+) and 20 (HF+) and (b) for m/z 17 (OH+) and 18 (H2O+)
Fig. 22 IR spectra for the tempered (a) NaHPO3F, (b) NaHPO3F·2.5H2O, and (c) NaH2PO4 (673 K).
Fig. 23 STA graphs measured for CsHPO3F showing a total loss of mass at 6.97%.
Fig. 24 IC graphs for (a) m/z 18 (H2O+), 19 (F+), and 20 (HF+) and (b) m/z 47 (PO+) and 88 (PF3+) shown with the DTA and TG data of CsHPO3F.
Fig. 25 STA graphs of [NHEt3]HPO3F showing the progression (course) of decomposition.
Fig. 26 IC curves of [NHEt3]HPO3F for (a) m/z 18 (H2O+), 19 (F+), 20 (HF+), 26 (C2H2+) and (b) m/z 88 (PF3+), 104 (POF3+), and 85 (POF2+)
Fig. A1 19F MAS NMR spectra
Fig. A2 31P MAS NMR spectra
Fig. A3 1H MAS NMR spectra

© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.

DiML DTD Version 2.0
Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML - Version erstellt am:
Fri Sep 27 11:07:29 2002