[page 89↓]

References

Aizman, O. et al. 2000. Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons. Nat. Neurosci. 3: 226-230.

Alexander, G.E., DeLong, M.R., Strick, P.L. 1986. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann Rev Neurosci: 9: 357-381.

Alexander, G.E. and Crutcher, M.D. 1990. Functional architecture of basal ganglia circuits: Neural substrates of parallel processing. TINS 13: 266-271.

Alexander, G.E., Crutcher, M.D., DeLong, M.R. 1990. Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, ‘prefrontal’ and ‘limbic’ functions. Progr. Brain Res. 85:119-146.

Allen, J.W., Etcheberrigaray, R. 1998. Potassium channels in neuropsychiatric disorders: potential for pharmacological intervention. CNS Drugs 10: 61-82.

Baev, K.V. 1995. Disturbances of learning processes in the basal ganglia in the pathogenesis of Parkinson´s disease: a novel theory. Neurological Research 17: 38-48.

Benatar, M. 2000. Neurological potassium channelopathies. Q. J. Med. 93: 787-797.

Bennett, B.D., Callaway, J.C., and Wilson, C.J. 2000. Intrinsic membrane properties underlying spontaneous tonic firing in neostriatal cholinergic interneurons. The Journal of Neuroscience 20: 8493–8503.

Bergmann, H., Feingold, A., Nini, A., Raz, A., Slovin, H., Abeles, M., and Vaadia, E. 1998. Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. TINS 21, 32-38.

Biggin, P.C., Roosild, T., and Choe, S. 2000. Potassium channel structure: domain by domain. Current Opinion in Structural Biology 10: 456-461.

Bolam, J. et.al. 1988. Cellular substrate of the histochemically defined striosome/matrix system of the caudate nucleus: a combined Golgi and immunocytochemical study in cat and ferret. Neuroscience 24, 853-875.

Bolam, J.P. et.al. 1984. Characterization of cholinergic neurons in the rat neostriatum. A combination of choline acetyltransferase immunocytochemistry, Golgi-impregnation and electron microscopy. Neuroscience 12: 711-718.

Bredt, D.S., Wang, T.-L., Cohen, N.A., Guggino, W.B., and Snyder, S.H. 1995. Cloning and expression of two brain-specific inwardly rectifying potassium channels. Proc. Natl. Acad. Sci. USA 92: 6753-6757.

Caboche, J., Rogard, M., and Besson, M.J. 1991. Comparative development of D1-dopamine and µ-opiate receptors in normal an in 6-hydroxydopamine-lesioned neonatal rat striatum: dopaminergic fibers regulate µ but not D1 receptor distribution. Devl Brain Res. 58: 111-122.


[page 90↓]

Calabresi, P., Pisani, A., Mercuri, N.B., Bernardi, G. 2000. ACh-mediated modulation of striatal function. TINS 23, 120-126.

Cepeda, C., Levine, M.S. 1998. Dopamine and N-methyl-D-aspartate receptor interactions in the neostriatum. Dev Neurosci 20: 1-18.

Chandy, K.G. and Gutman, G.A. 1993. Nomenclature for mammalian potassium channel genes. Trends in Pharmacological Sciences 434.

Chen, H., Kubo, Y., Hoshi, T., Heinemann, S.H. 1998. Cyclosporin A selectively reduces the functional expression of Kir2.1 potassium channels in Xenopus oocytes. FEBS Letters 422: 307-310.

Chuang, H., Jan, Y.N. and Jan, L.Y. 1997. Regulation of IRK3 inward rectifier K+ channel by m1 acetylcholine receptor and intracellular magnesium. Cell 89: 1121–1132.

Cohen, N.A., Brenman, J.E., Snyder, S.H., and Bredt, D.S. 1996a. Binding of the inward rectifier K+ channel Kir2.3 to PSD-95 is regulated by protein kinase A phosphorylation. Neuron 17: 759-67.

Cohen, N.A., Sha, O., Makhina, E.N., Lopatin, A.N., Linder, M.E., Snyder, S.H., Nichols, C.G. 1996b. Inhibition of an inward rectifier potassium channel (Kir2.3) by G-protein bg Subunits. Journal of biological chemistry 271: 32301-32305.

Collins, A., German, M.S., Jan, Y.N., Jan L.Y., and Zhao, B. 1996. A strongly inwardly rectifying K+ channel that is sensitive to ATP. J Neurosci 16: 1-9.

Coulter, K.L., Périer, F., Radeke, C.M., and Vandenberg, C.A. 1995. Identification and molecular localization of a pH-sensing domain for the inward rectifier potassium channel HIR. Neuron 15: 1157-1168.

Dahlstrom, A. and Fuxe, K. 1964. Evidence for the existence of monoamines containing neurons in the central nervous system. 1. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta physiol. scand. 62: 1-55.

Desban, M., Kemel, M.L., Glowinski, J., and Gauchy, C. 1993. Spatial organization of patch and matrix compartments in the rat striatum. Neuroscience 57: 661-671.

Di Chiara, G., Morelli, M., Consolo, S. 1994. Modulatory functions of neurotransmitters in the striatum: ACh/DA/NMDA interactions. TINS 17, 228-233.

Doupnik, C.A., Davidson, N., and Lester, H.A. 1995. The inward rectifier potassium channel family. Current Opinion in Neurobiology 5: 268-277.

Doyle, D.A. et al. 1998. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280: 69-77.

Eblen, F. and Graybiel, A.M. 1995. Highly restricted origin of prefrontal cortical inputs to striosomes in the macaque monkey. J. Neurosci. 15: 5999-6013.

Fakler, B., Brändle, U., Glowatzki, E., Weidemann, S., Zenner, H.-P., and Ruppersberg, J.P. 1995. Strong voltage-dependent inward rectification of inward rectifier K+ channels is caused by intracellular spermine. Cell 80: 149-154.


[page 91↓]

Fakler, B., Ruppersberg, J.P. 1996. Functional and molecular diversity classifies the family of inward-rectifier K+ channels. Cell Physiol Biochem 6: 195-209.

Falk, T., Meyerhof, W., Corrette, B.J., Schäfer, J., Bauer, C.K., Schwarz, J.R., Richter, D. 1995. Cloning, functional expression and mRNA distribution of an inwardly rectifying potassium channel protein. FEBS Letters 367: 127-131.

Felix, R. 2000. Channelopathies: ion channel defects linked to heritable clinical disorders. J. Med. Gen. 37: 729-740.

Flaherty, A.W. and Graybiel, A.M. 1991. Corticostriatal transformations in the primate somatosensory system. Projections from physiologically mapped body-part representations. J. Neurophysiol. 66: 1249-1263.

Gerfen, C.R. 1992. The neostriatal mosaic: multiple levels of compartmental organization. TINS 15, 133-138.

Gerfen, C.R. 1989. The neostriatal mosaic. Striatal patch-matrix organization is related to cortical lamination. Science 246: 385-388.

Glowatzki, E., Fakler, G., Brandle, U., Rexhaausen, U., Zenner, H.P., Ruppersberg, J.P., and Fakler, B. 1995. Subunit-dependent assembly of inward-rectifier K+ channels. Proc R Soc Lond B Biol Sci 261: 251-261.

Graybiel, A. M. 1990. Neurotransmitters and neuromodulators in the basal ganglia. TINS 13, 244-254.

Groenewegen, H.J., Wright, C.I., and Beijer, A.V.J. 1996. The nucleus accumbens: gateway for limbic structures to reach the motor system? Progress in Brain Research 107: 485-511.

Groves, P.M. et al. 1995. In: Models of information processing in the basal ganglia ( Houk, J.C., Davis, J.L., and Beiser, D.G., eds ), pp. 51-96, MIT Press.

Haber, S.N., Fudge, J.L., and McFarland, N.R. 2000. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. The Journal of Neuroscience 20: 2369–2382.

Herkenham, M. and Pert, C.B. 1981. Mosaic distribution of opiate receptors, parafascicular projections and acetylcholinesterase in the rat striatum. Nature 291: 415-418.

Hibino, H., Horio, Y., Inanobe, A., Doi, K., Ito, M., Yamada, M., Gotow, T., Uchiyama, Y., Kawamura, M., Kubo, T., Kurachi, Y. 1997. An ATP-dependent inwardly rectifying potassium channel, KAB-2 (Kir4.1), in cochlear stria vascularis of inner ear: its specific subcellular localization and correlation with the formation of endocochlear potential. J Neurosci 17: 4711-4721.

Hille, B. (Ed.) 1995. Ionic channels of excitable membranes. Sinauer Associates, Sunderland, MA.

Ho, K., Nichols, C.G., Lederer, W.J., Lytton, J., Vassilev, P.M., Kanazirska, M.V., Hebert, S.C. 1993. Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature 362: 31-38.


[page 92↓]

Hodgkin, A.L., Huxley, A.F., and Katz, B. 1952. Measurements of current-voltage relations in the membrane of the giant axon of Laligo. J Physiol (Lond) 116: 424-448.

Horio, Y., Morishige, K.-I., Takahashi, N., and Kurachi, Y. 1996. Differential distribution of classical inwardly rectifying potassium channel mRNAs in the brain: Comparison of IRK2 with IRK1 and IRK3. FEBS Lett. 379: 239-243.

Huang, C.L., Feng, S., and Hilgemann, D.W. 1998. Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbg . Nature 391: 803-806.

Hughes, B.A., Kumar, G., Yuan, Y., Swaminathan, A., Yan, D., Sharma, A., Plumley, L., Yang-Feng, T.L., Swaroop, A. 2000. Cloning and functional expression of human retinal Kir2.4, a pH-sensitive inwardly rectifying K+ channel. Am J Physiol Cell Physiol 279: C771-C784.

Inanobe, A., Fujita, A., Ito, M., Tomoike, H., Inageda, K., Kurachi, Y. 2002. Inward rectifier K+ channel Kir2.3 is localized at the postsynaptic membrane of excitatory synapses. Am. J. Physiol. 282: C1396-C1403.

Ishii, M., Horio, Y., Tada, Y., Hibino, H., Inanobe, A., Ito, M., Yamada, M., Gotow, T., Uchiyama, Y., Kurachi, Y. 1997. Expression and clustered distribution of an inwardly rectifying potassium channel, KAB-2/Kir4.1, on mammalian retinal Müller cell membrane: their regulation by insulin and laminin signals. J Neurosci 17: 7725-7735.

Isomoto, S., Kondo, C., and Kurachi, Y. 1997. Inwardly rectifying potassium channels: their molecular heterogeneity and function. Japanese Journal of Physiology 47: 11-39.

Jan, L.Y. and Jan, Y.N. 1997. Cloned potassium channels from eucaryotes and procaryotes. Annu. Rev. Neurosci. 20: 91–123.

Jin, W. and Lu, Z. 1998. A novel high-affinity inhibitor for inward-rectifier K+ channels. Biochemistry 37: 13291-13299.

Joel, D. and Weiner, I. 2000. The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum. Neuroscience 96: 451–474.

Jongen-Rêlo, A.L., Voorn, P., and Groenewegen, H.J. 1994. Immunohistochemical characterization of the shell and core territories of the nucleus accumbens in the rat. Eur. J. Neurosci. 6: 1255-1264.

Karschin, C., Dissmann, E., Stuhmer, W., and Karschin, A. 1996. IRK(1-3) and GIRK(1-4) inwardly rectifying K+ channel mRNAs are differentially expressed in the adult rat brain. J. Neurosci. 16, 3559-3570.

Karschin, C. and Karschin, A. 1997. Ontogeny of gene expression of Kir channel subunits in the rat. Molecular and Cellular Neuroscience 10: 131–148.

Karschin, C. and Karschin, A. 1999. Distribution of inwardly rectifying potassium channels in the brain. Current Topics in Membranes 46: 273-292.

Katz, B. 1949. Les constantes électriques de la membrane du muscle. Arch. Sci. Physiol. 2: 285-299.


[page 93↓]

Kawaguchi, Y., Wilson, C.J., and Emson, P.C. 1990. Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin. J. Neurosci. 10: 3421-3438.

Kawaguchi, Y., Wilson, C.J., Augood, S.J., and Emson, P.C. 1995. Striatal interneurons: chemical, physiological and morphological characterization. Trends Neurosci. 18: 527-535.

Kita, H. and Kitai, S.T. 1988. Glutamate decarboxylase immunoreactive neurons in rat neostriatum: Their morphological types and populations. Brain Res. 447: 346-352.

Kooy, D. van d., Fishell, G. 1987. Neuronal birthdate underlies the development of striatal compartments. Brain Research 401: 155-161.

Koyama, H., Morishige, K.I., Takahashi, N., Zanelli, J.S., Fass, D.N., Kurachi, Y. 1994. Molecular cloning, functional expression and localization of a novel inward rectifier potassium channel in the rat brain. FEBS Letters 341: 303-307.

Krapivinsky, G., Gordon, E.A., Wickman, K., Velimirovic, B., Krapivinsky, L., Clapham, D.E. 1995. The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K+ channel proteins. Nature 374: 135-141.

Kubo, Y., Baldwin, T.J., Jan, Y.N., and Jan, L.Y. 1993. Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature 362: 127-133.

Kubo, Y. and Murata, Y. 2001. Control of rectification and permeation by two distinct sites after the second transmembrane region in Kir2.1K+ channel. Journal of Physiology 531.3: 645–660.

Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685.

Lee, J.K., John, S.A., Weiss, J.N. 1999. Novel gating mechanism of polyamine block in the strong inward rectifier K+ channel Kir2.1. J. Gen. Physiol. 113: 555-563.

Liao, Y.J., Jan, Y.N., and Jan, L.Y. 1996. Heteromultimerization of G-protein-gated inwardly rectifying K+ channel proteins GIRK1 and GIRK2 and their altered expression in weaver brain. J. Neurosci. 16: 7137-7150.

Liu, G.X., Derst, C., Schlichthörl, G., Heinen, S., Seebohm, G., Brüggemann, A., Kummer, W., Veh, R.W., Daut, J., and Preisig-Müller, R. 2001. Comparison of cloned Kir2 channels with native inward rectifier K+ channels from guinea-pig cardiomyocytes. J. Physiol. 532.1: 115-126.

Lopatin, A.N., Makhina, E.N., and Nichols, C.G. 1994. Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372: 366-369.

Lu, Z. and MacKinnon, R. 1994. Electrostatic tuning of Mg2+ affinity in an inward-rectifier K+ channel. Nature 371: 243-246.

MacKinnon, R., Cohen, S.L., Kuo, A., Lee, A., Chait, B.T. 1998. Structural conservation in prokaryotic and eukaryotic potassium channels. Science 280: 106-109.

Minor, D.L., Masseling, S.J., Jan, Y.N., and Jan, L.Y. 1999. Transmembrane structure of an inwardly rectifying potassium channel. Cell 96: 879–891.


[page 94↓]

Mermelstein, P.G., Song, W.-J., Tkatch, T., Yan, Z., and Surmeier, D.J. 1998. Inwardly rectifying potassium (IRK) currents are correlated with IRK subunit expression in rat nucleus accumbens medium spiny neurons. Journal of Neuroscience 18: 6650-6661.

Miyashita, T., and Kubo, Y. 1997. Localization and developmental changes of the expression of two inward rectifying K+ channel proteins in the rat brain. Brain Res. 750: 251-263.

Morishige, K.-I., Takahashi, N., Findlay, I., Koyama, H., Zanelli, J.S., Peterson, C., Jenkins, N.A., Copeland, N.G., Mori, N., and Kurachi, Y. 1993. Molecular cloning, functional expression and localization of an inward rectifier potassium channel in the mouse brain. FEBS Letters 336: 375-380.

Namba, N., Inagaki, N., Gonoi, T., Seino, Y., Seino, S. 1996. Kir2.2v: a possible negative regulator of the inwardly rectifying K+ channel Kir2.2. FEBS Letters 386: 211-214.

Nicola, S.M., Surmeier, D.J., Malenka, R.C. 2000. Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci 23: 185-215.

Nishida, M., MacKinnon, R. 2002. Structural Basis of Inward Rectification: Cytoplasmic Pore of the G Protein-Gated Inward Rectifier GIRK1 at 1.8 Å Resolution. Cell 111: 957–965.

Nisenbaum, E.S., Wilson, C.J. 1995. Potassium currents responsible for inward and outward rectification in rat neostriatal spiny projection neurons. Journal of Neuroscience 15: 4449-4463.

Parent, A. 1990. Extrinsic connections of the basal ganglia. TINS 13, 254-258.

Parent, A., Sato, F., Wu, Y., Gauthier, J., Lévesque, M., and Parent, M. 2000. Organization of the basal ganglia: the importance of axonal collateralization. TINS 23, S20-S27.

Parent, M., Levesque, M., Parent, A. 2001. Two types of projection neurons in the internal pallidum of primates: single-axon tracing and three-dimensional reconstruction. J. Comp. Neurol. 439: 162-175.

Patil, N., Cox, D.R., Bhat, D., Faham, M., Myers, R.M., Peterson, A.S. 1995. A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nat. Genet. 11: 126-129.

Paxinos, G. and Watson, Ch. 1998. The rat brain in stereotaxic coordinates. 4th edition. Academic press, San Diego.

Penny, G.R. et.al. 1986. The glutamate decarboxylase immunoreactive, met-enkephalin-immunoreactive and substance P-immunoreactive neurons in the neostriatum of the rat and cat. Evidence for partial population overlap. Neuroscience 17: 1011-1045.

Perillán, P.R., Li, X., Potts, E.A., Chen, M., Bredt, D.S., and Simard, J.M. 2000. Inward rectifier K+ channel Kir2.3 in reactive astrocytes from adult rat brain . Glia 31: 181-192.

Pert, C.B., Kuhar, M.J., and Snyder, S.H. 1976. Opiate receptor: autoradiographic localization in rat brain. Proc. Natl. Acad. Sci. USA 73: 3729-3733.


[page 95↓]

Pitt, J.C., Lindemeier, J., Habbes, H.W., Veh, R.W. 1998. Haptenylation of antibodies during affinity purification: a novel and convenient procedure to obtain labeled antibodies for quantification and double labeling. Histochem. Cell Biol. 110: 311-322.

Plaster, N.M., Ptáček, L.J. et al. 2001. Mutations in Kir2.1 Cause the Developmental and Episodic Electrical Phenotypes of Andersen’s Syndrome. Cell 105: 511–519.

Pompéia, C., Ortis, F., Armelin, M.C.S. 1996. Immunopurification of polyclonal antibodies to recombinant proteins of the same family. Biotechniques 21: 986.

Prüss, H., Wenzel, M., Eulitz, D., Thomzig, A., Karschin, A., Veh, R.W. 2003. Kir2 potassium channels in rat striatum are strategically localized to control basal ganglia function. Mol. Brain Res. 110: 203-219.

Qu, Z., Zhu, G., Yang, Z., Cui, N., Li, Y., Chanchevalap, S., Sulaiman, S., Haynie, H., and Jiang, C. 1999. Identification of a critical motif responsible for gating of Kir2.3 channel by intracellular protons. The Journal of Biological Chemistry 274: 13783-13789.

Qu, Z., Yang, Z., Cui, N., Zhu, G., Liu, C., Xu, H., Chanchevalap, S., Shen, W., Wu, J., Li, Y., and Jiang, C. 2000. Gating of inward rectifier K+ channels by proton-mediated interactions of N- and C-terminal domains. Journal of Biological Chemistry 275: 31573-31580.

Raab-Graham, K.F. and Vandenberg, C.A. 1998. Tetrameric subunit structure of the native brain inwardly rectifying potassium channel Kir 2.2. The Journal of Biological Chemistry 273: 19699-19707.

Raz, A., Feingold, A., Zelanskaya, V., Vaadia, E., Bergmann, H. 1996. Neuronal synchronization of tonically active neurons in the striatum of normal and parkinsonian primates. Journal of Neurophysiology 76: 2083-2088.

Reimann, F. and Ashcroft, F.M. 1999. Inwardly rectifying potassium channels. Current Opinion in Cell Biology 11:503–508.

Ruppersberg, J.P. 2000. Intracellular regulation of inward rectifier K+ channels. Pflügers Arch – Eur J Physiol 441: 1-11.

Sakura, H., Ammala, C., Smith, P.A., Gribble, F.M., and Ashcroft, F.M. 1995. Cloning and functional expression of the cDNA encoding a novel ATP-sensitive potassium channel subunit expressed in pancreatic beta-cells, brain, heart and skeletal muscle. FEBS Letters 377: 338-344.

Sanguinetti, M.C. and Spector, P.S. 1997. Potassium Channelopathies . Neuropharmacology 36: 755-762.

Scheinman, S.J., Guay-Woodford, L.M., Thakker, R.V., Warnock, D.G. 1999. Genetic disorders of renal electrolyte transport . New Engl. J. Med. 340: 1177-1187.

Signorini, S., Liao, Y.J., Duncan, S.A., Jan, L.Y., and Stoffel, M. 1997. Normal cerebellar development but susceptibility to seizures in mice lacking G protein-coupled, inwardly rectifying K+ channel GIRK2. Proc. Natl. Acad. Sci. USA 94: 923-927.

Skatchkov, S.N., Thomzig, A., Eaton, M.J., Biedermann, B., Eulitz, D., Bringmann, A., Pannike, T., Veh, R.W., Reichenbach, A. 2001. Kir subfamily in frog retina: specific spatial distribution of Kir6.1 in glial (Müller) cells. NeuroReport 12: 1437-1441.


[page 96↓]

Stanfield, P.R., Nakajima, Y., and Yamaguchi, K. 1985. Substance P raises neuronal membrane excitability by reducing inward rectification. Nature 315: 498-501.

Stanfield, P.R., Davies, N.W., Shelton, P.A., Sutcliffe, M.J., Khan, I.A., Brammer, W.J., and Conley, E.C. 1994. A single aspartate residue is involved in both intrinsic gating and blockage by Mg2+ of the inward rectifier Kir2.1. Journal of Physiology: 478: 1-6.

Stockklausner, C., Ludwig, L., Ruppersberg, J.P., Klöcker, N. 2001. A sequence motif responsible for ER export and surface expression of Kir2.0 inward rectifier K+ channels. FEBS Letters 493: 129-133.

Stonehouse, A.H., Pringle, J.H., Norman, R.I., Stanfield, P.R., Conley, E.C., Brammar, W.J. 1999. Characterisation of Kir2.0 proteins in the rat cerebellum and hippocampus by polyclonal antibodies. Histochem. Cell. Biol. 112: 457-465.

Surmeier, D.J. et.al. 1996. Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J. Neurosci. 16: 6579-6591.

Taglialatela, M., Wible, B.A., Caporaso, R., Brown, A.M. 1994. Specification or pore properties by the carboxyl terminus of inwardly rectifying K+ channels. Science 264: 844-847.

Thomzig, A., Wenzel, M., Karschin, C., Eaton, M.J., Skatchkov, S.N., Karschin, A., Veh, R.W. 2001. Kir6.1 is the principal pore-forming subunit of astrocyte but not neuronal plasma membrane K-ATP channels. Mol. Cell. Neurosci. 18: 671-690.

Thomzig, A., Prüss, H., Veh, R.W. 2003. The Kir6.1-protein, a pore-forming subunit of ATP-sensitive potassium channels, is prominently expressed by giant cholinergic interneurons in the striatum of the rat brain. Brain Res. 986: 132-138.

Töpert, C., Döring, F., Wischmeyer, E., Karschin, C., Brockhaus, J., Ballanyi, K., Derst, C., and Karschin, A. 1998. Kir2.4: A novel K+ inward rectifier channel associated with motoneurons of cranial nerve nuclei. The Journal of Neuroscience 18: 4096–4105.

Töpert, C., Döring, F., Derst, C., Daut, J., Grzeschik, K.H., and Karschin, A. 2000. Cloning, structure and assignment to Chromosome 19q13 of the human Kir2.4 inwardly rectifying potassium channel gene (KCNJ14). Mammalian Genome 11: 247-249.

Trytek, E.S., White, I.M., Schroeder, D.M., Heidenreich, B.A., Rebec, G.V. 1996. Localization of motor- and nonmotor-related neurons within the matrix-striosome organization of rat striatum. Brain Research 707: 221-227.

Veh, R.W., Lichtinghagen, R., Sewing, S., Wunder, F., Grumbach, I.M., Pongs, O. 1995. Immunohistochemical localization of five members of the Kv1 channel subunits: Contrasting subcellular locations and neuron-specific co-localizations in rat brain. Eur. J. Neurosci. 7: 2189-2205.

Voorn, P., Brady, L.S., Berendse, H.W., and Richfield, E.K. 1996. Densitometrical analysis of opioid receptor ligand binding in the human striatum –I. Distribution of µ opioid receptor defines shell and core of the ventral striatum. Neuroscience 75: 777-792.

Vulpen, E.H.S. van, van der Kooy, D. 1998. Striatal cholinergic interneurons: birthdates predict compartmental localization. Developmental Brain Research 109: 51–58.


[page 97↓]

Watanabe, K., Kimura, M. 1998. Dopamine receptor-mediated mechanisms involved in the expression of learned activity of primate striatal neurons. J Neurophysiol 79: 2568-2580.

White, N. and Hiroi, N. 1998, Preferential localization of self-stimulation sites in striosomes/patches in the rat striatum. Neurobiology 95, 6486-6491.

Wilson, C.J. 1993. The generation of natural firing patterns in neostriatal neurons. Prog. Brain Res. 99:277–97.

Wilson, C. in Shepherd, G. 1998. The synaptic organization of the brain, Oxford University Press.

Wilson, C.J., Chang, H.T., and Kitai, S.T. 1990. Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum . J. Neurosci. 10: 508-519.

Wilson, C.J. and Kawaguchi, Y. 1996. The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons . J. Neurosci. 16:2397–410.

Wischmeyer, E., Döring, F., and Karschin, A. 1998. Acute suppression of inwardly rectifying Kir2.1 channels by direct tyrosine kinase phosphorylation. The Journal of biological chemistry 273: 34063-34068.

Yamashita, T., Horio, Y., Yamada, M., Takahashi, N., Kondo, C., and Kurachi, Y. 1996. Competition between Mg2+ and spermine for a cloned IRK2 channel expressed in a human cell line. J Physiol (Lond) 493: 143-156.

Yang, J., Jan, Y.N., and Jan, L.Y. 1995. Control of rectification and permeation by residues in two distinct domains in an inward rectifier K+ channel. Neuron 14: 1047-1054.

Zhu, G., Chanchevalap, S., Cui, N., and Jiang, C. 1999a. Effects of intra- and extracellular acidifications on single channel Kir2.3 currents. Journal of Physiology 516.3: 699-710.

Zhu, G., Qu, Z., Cui, N, and Jiang, C. 1999b. Suppression of Kir2.3 activity by protein kinase C phosphorylation of the channel protein at threonine 53. The Journal of biological chemistry 274: 11643-11646.


© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 3.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML generated:
15.06.2004