[Seite 77↓]

Literaturverzeichnis

1. Jacob F, Monod J. Genetic regulatory mechanism in the synthesis of proteins. J Mol Biol. 1961;3:318-356.

2. Avery O, MacLeod C, McCarty M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. J Exp Med. 1944;79:137-158.

3. Liang P, Pardee A. Differential display of eukaryotic messenger RNA by means of the Polymerase Chain Reaction. Science. 1992;257:967-971.

4. Abbott A. A post-genomic challenge: learning to read patterns of protein synthesis. Nature. 1999;402:715-720.

5. Nover. Molekulare Grundlagen der Zelldifferenzierung. In: Zelldifferenzierung, molekulare Grundlagen und Probleme. Nover, Luckner, Parthier, Ed. 1973. Gustav Fischer Verlag , Jena.

6. Jacob F, Monod J. Genetic repression, allosteric inhibitation and cellular differentiation. In: Cytodifferentiation and Macromolecular synthesis. Locke M, Ed. 1963. Academic press, New York.

7. Löffler G. Nucleotide und Nucleinsäuren. In: Biochemie und Pathobiochemie. Löffler, Petrides, Ed. 1997. Springer-Verlag, Berlin-Heidelberg-New York.

8. Knippers R. RNA-Polymerasen und die Voraussetzungen für die Transkription von Eukaryotengenen. In: Molekulare Genetik. Knippers R, Ed. 2001. Georg Thieme Verlag, Stuttgart-New York.

9. Dynan W, Tjian R. Control of eukaryotic messenger RNA synthesis by sequence-specific DNA-binding proteins. Nature. 1985;316:774-778.

10. Maniatis T, Goodbourn S, Fischer J. Regulation of inducible and tissue-specific gene expression. Science. 1987;236:1237-1245.

11. Smale S, Baltimore D. The "initiator" as a transcription control element. Cell. 1989;57:103-113.

12. Eick D, Wedel A, Heumann H. From initiation to elongation: comparison of transcription by prokaryotic and eukaryotic RNA polymerases. Trends Genet. 1994;10:292-296.

13. Dreyfuss G, Matunis M, Pinol-Roma S, Burd C. hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem. 1993;62:289-321.

14. Lamond A. Nuclear RNA processing. Curr Opin Cell Biol. 1991;3:493-501.

15. Löffler G. Transkription und posttranskriptionale Prozessierung der RNA. In: Biochemie und Pathobiochemie. Löffler, Petrides, Ed. 1997. Springer Verlag, Berlin- Heidelberg-New York.

16. Löffler G. Proteinbiosynthese, Proteinmodifizierung und Proteinabbau. In: Biochemie und Pathobiochemie. Löffler, Petrides, Ed. 1997. Springer Verlag, Berlin-Heidelberg-New York.

17. Felsenfeld G. Chromatin as an essential part of the transcriptional mechanism. Nature. 1992;355:219-224.

18. Croston G, Kadonaga J. Role of chromatin structure in the regulation of transcription by RNA polymerase II. Curr Opin Cell Biol. 1993;5:417-423.

19. Varani G. A cap for all occasions. Structure. 1997;5:855-858.

20. Proudfoot N. Ending the message is not so simple. Cell. 1996;87:779-781.

21. Krug R. The regulation of export of mRNA from nucleus to cytoplasm. Curr Opin Cell Biol. 1993;5:944-949.

22. Kozak M. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem. 1991;266:19867-19870.

23. Proud C. Guanine nucleotides, protein phosphorylation and the control of translation. Trends Biochem Sci. 1986;11:73-77.

24. Darnell J. Variety in the level of gene control in eukaryotic cells. Nature. 1982;297:365-371.

25. Krajewska W. Regulation of transcription in eukaryotes by DNA-binding proteins. Int J Biochem. 1992;24:1885-1898.

26. Muller M, Gerster T, Schaffner W. Enhancer sequences and the regulation of gene transcription. Eur J Biochem. 1988;176:485-495.

27. Wenzel, Amann. Lexikon der Gentechnologie. 1991.

28. Pabo C, Sauer R. Transcription factors: structural families and principles of DNA recognition. Annu Rev Biochem. 1992;61:1053-1095.

29. Cowell I. Repression versus activation in the control of gene transcription. Trends Biochem Sci. 1994;19:38-42.

30. Levine M, Manley J. Transcriptional repression of eukaryotic promotors. Cell. 1989;59:405-408.

31. Grimm S, Baeuerle P. The inducible transcription factor NF-kB: structure-function relationship of its protein subunits. Biochem J. 1993;290:297-308.

32. Razin A, Cedar H. DNA methylation and gene expression. Microbiol Rev. 1991;55:451-458.

33. Eden S, Cedar H. Role of DNA methylation in the regulation of transcription. Curr Opin Genet Dev. 1994;4:255-259.

34. Huck-Hui Ng, Bird A. DNA methylation and chromatin modification. Curr Opin Genet Dev. 1999;9:158-163.

35. Doerfler W. DNA methylation and gene activity. Annu Rev Biochem. 1983;52:93-124.

36. Cedar H. DNA methylation and gene activity. Cell. 1988;53:3-4.

37. Dynan W. Understanding the molecular mechanism by which methylation influences gene expression. Trends Genet. 1989;5:35-36.

38. Holler M, Westin G, Jiricny J, Schaffner W. Sp1 transcription factor binds DNA and activates transcription even when the binding site is CpG methylated. Genes Dev. 1988;2:1127-1135.

39. Jones P. The DNA methylation paradox. TIG. 1999;15:34-37.

40. Mitchell P, Tjian R. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science. 1989;245:371-378.

41. Knippers R. Regulation genetischer Aktivität. In: Molekulare Genetik. Knippers R, Ed. 2001. Georg Thieme Verlag, Stuttgart-New York.

42. Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes. J Mol Biol. 1987;196:261-282.

43. Antequera F, Bird A. CpG islands as genomic footprints of promotors that are associated with replication origins. Curr Biol. 1999;9:R661-R667.

44. Stryer L. Eukaryotic Chromosomes and Gene Expression. In: Biochemistry. Stryer L, Ed.1995. W. H. Freeman and Company, New York.

45. Lercher M, Urrutia A, Hurst L. Clustering of housekeeping genes provides a unified model of gene order in the human genome. Nature genetics, Advance online publication. 2002;DOI:10.1038/ng 887:35-36.

46. Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, Grisar T, Igout A, Heinen E. Housekeeping genes as internal standards: use and limits. J Biotechnol. 1999;75:291-295.

47. Zhong H, Simons J. Direct comparison of GAPDH, actin, cyclophilin and 28S rRNA as internal standards for quantifying RNA levels under hypoxia. Biochem Biophys Res. 1999;259:523-526.

48. Andreeva L, Motterlini R, Green C. Cyclophilins are induced by hypoxia and heat stress in myogenic cells. Biochem Biophys Res Commun. 1997;237:6-9.

49. Gong Y, Cui L, Minuk Y. Comparison of glyceraldehyde-3-phosphate dehydrogenase and 28S-ribosomal RNA gene expression in human hepatocellular carcinoma. Hepatology. 1996;23:734-737.

50. Escoubet B, Planès C, Clerici C. Hypoxia increases glyceraldehyde-3-phosphate dehydrogenase transcription in rat alveolar epithelial cells. Biochem Biophys Res Commun. and Biophysical Research Communications. 1999;266:156-161.

51. Goldsworthy S, Goldsworthy T, Sprankle C, Butterworth B. Variation in expression of genes used for normalization of Northern blots after induction of cell proliferation. Cell Prolif. 1993;26:511-518.

52. de Leeuw W, Slagbloom P, Vijg J. Quantitative comparison of messenger RNA levels in mammalian tissues-28S ribosomal RNA level as an accurate internal control. Nucleic Acids Research. 1989;17:10137-10138.

53. Weisinger G, Gavish M, Mazurika C, Zinder O. Transcription of actin, cyclophilin and glyceraldehyde-3-phosphate dehydrogenase genes: tissue- and treatment-specifity. Biochimica et Biophysica Acta. 1999;1446:225-232.

54. Sirover M. New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochimica et Biophysica Acta. 1999;1432:159-184.

55. Sirover M. Role of the glycolytic protein glyceraldehyde-3-phosphate dehydrogenase in normal cell function and in cell pathology. J Cell Biochem. 1997;66:133-140.

56. Berry M, Boulton A. Glyceraldehyde-3-phosphate-dehydrogenase and apoptosis. Journal of Neuroscience Research. 2000;60:150-154.

57. Zhang J, Snyder S. Nitric oxide stimulates auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci USA. 1992;89:9382-9385.

58. Tokunaga K, Nakamura Y, Sakata K, Fujimori K, Ohkubo M, Sawada K, Sakiyama S. Enhanced expression of a glyceraldehyde-3-phosphate dehydrogenase in human lung cancers. Cancer Res. 1987;47:5616-5619.

59. Bereta J, Bereta M. Stimulation of glyceraldehyde-3-phosphate dehydrogenase mRNA levels by endogenous nitric oxide in cytokine-activated endothelium. Biochem Biophys Res Commun. 1995;217:363-369.

60. Yamada H, Chen D, Monstein H, Håkanson R. Effects of fasting on the expression of gastrin, cholecystokinin, and somatostatin genes and of various housekeeping genes in the pancreas and upper digestive tract of rats. Biochem Biophys Res Commun. 1997;231:835-838.

61. Danielson P, Forss-Petter S, Brow M, Calavetta L, Douglass J, Milner R, Sutcliffe J. p1B15: A cDNA clone of the rat mRNA encoding cyclophilin. DNA. 1988;7:261-267.

62. Savonet V, Maenhaut F, Miot F, Pirson I. Pitfalls in the use of several "housekeeping" genes as standards for quantitation of mRNA: The example of thyroid cells. Anal Biochem. 1997;247:165-167.

63. Handschumacher R, Harding M, Rice J, Drugge R, Speicher D. Cyclophilin: A specific cytosolic binding protein for cyclosporin A. Science. 1984;226:544-547.

64. Feroze-Merzoug F, Berquin I, Dey J, Chen Y. Peptidylprolyl isomerase A (PPIA) as a preferred internal control over GAPDH and beta-actin in quantitative RNA analyses. BioTechniques. 2002;32:776-782.

65. Andreeva L, Heads R, Green C. Cyclophilins and their possible role in the stress response. Int J Exp Pathol. 1999;80:305-315.

66. Cardalda C, Batlle A, Juknat A. Sequence and structure of the rat housekeeping PBG-D isoform. Biochem Biophys Res Commun. 1998;249:438-443.

67. Fink L, Stahl U, Ermert L, Kummer W, Seeger W, Bohle R. Rat Porphobilinogen deaminase gene: A pseudogene-free internal standard for laser-assisted cell picking. BioTechniques. 1999;26:510-516.

68. Sun D, Seki G, Uwatoko S, Nakao A, Goto A, Fujita T, Kimura S, Taniguchi S. Quantifying porphobilinogen deaminase mRNA in microdissected nephron segments by a modified RT-PCR. Kidney Int. 2002;61:336-341.

69. Kwon H, Green M. The RNA polymerase I transcription factor, upstream binding factor interacts directly with the TATA box-binding protein. J Biol Chem. 1994;269:30140-30146.

70. Oliveira J, Prados R, Guedes A, Ferreira P, Kroon E. The housekeeping gene glyceraldehyde-3-phosphate dehydrogenase is inappropriate as internal control in comparative studies between skin tissue and cultured skin fibroblasts using Northern blot analysis. Arch Dermatol Res. 1999;291:659-661.

71. Hyman G, Fingerhut B, Tiburcio A. Possible defect in RNA metabolism in leukemic cells. Cancer. 1968;21:357-367.

72. Torelli U, Torelli G, Andreoli A, Mauri C. Partial failure of methylation and cleavage of 45S RNA in the blast cells of acute leukaemia. Nature. 1970;226:1163-1165.

73. Raaijmakers M, van Emst L, de Witte T, Mensink E, Raymakers A. Quantitative assessment of gene expression in highly purified hematopoietic cells using real-time reverse transcriptase polymerase chain reaction. Exp Hematol. 2002;30:481-487.

74. Hansen M, Nielsen A, Molin S, Hammer K, Kilstrup M. Changes in rRNA levels during stress invalidates results from mRNA blotting: Fluorescence in situ rRNA hybridization permits renormalization for estimation of cellular mRNA levels. J Bacteriol. 2001;183:4747-4751.

75. Pschyrembel Klinisches Wörterbuch. 1994. Walter de Gruyter, Berlin-New York.

76. Kurowski V. Herzinsuffizienz. In: Basislehrbuch Innere Medizin. Renz-Polster D, Braun J, Ed. 2001. Urban & Fischer Verlag, München-Jena.

77. Ho K, Pinski J, Kannel W, Levy D. The epidemiology of heart failure: the Framingham Study. J Am Coll Cardiol. 1993;22:6A-13A.

78. Katz AM. The heart in congestive failure. Cardioscience. 1990;1:3-6.

79. Braunwald E. Heart Disease. A Textbook of Cardiovascular Medicine. 1996. W.B.Saunders Company, Philadelphia.

80. Smith S, Fuchs F. Effect of ionic strength on length-dependent Ca(2+) activation in skinned cardiac muscle. J Mol Cell Cardiol. 1999;31:2115-2125.

81. Fuchs F, Wang Y. Sarcomere length versus interfilament spacing as determinants of cardiac myofilament Ca(2+) sensitivity and Ca(2+) binding. J Mol Cell Cardiol. 1996;28:1375-1383.

82. Fuchs F, Wang Y. Force length, and Ca(2+)-troponin C affinity in skeletal muscle. Am J Physiol. 1991;261:C787-C792.

83. Horio T, Nishikimi T, Yoshihara F, Matsuo H, Takishita S, Kangawa K. Inhibitory regulation of hypertrophy by endogenous atrial natriuretic peptide in cultured cardiac myocytes. Hypertension. 2000;35:19-24.

84. Razeghi P, Young M, Alcorn J, Moravec C, Frazier O, Taegtmeyer H. Metabolic gene expression in fetal and failing human heart. Circulation. 2001;104:2923-2936.

85. Samuel J, Dubus I, Contard F, Schwartz K, Rappaport L. Biological signals of cardiac hypertrophy. Eur Heart J. 1990;11:1-7.

86. Serneri G, Modesti P, Boddi M, Cecioni I, Paniccia R, Coppo M, Galanti G, Simonetti I, Vanni S, Papa L, Bandinelli A, Migliorini A, Modesti A, Maccerini M, Sani G, Toscano M. Cardiac growth factors in human hypertrophy. Circ Res. 1999;85:57-67.

87. Hefti M, Harder B, Eppenberger H, Schaub M. Signaling pathways in cardiac myocyte hypertrophy. J Mol Cell Cardiol. 1997;29:2873-2892.

88. Nakao K, Itoh H, Suga S, Ogawa H, Imura H. The natriuretic peptide family. Curr Opin Nephrol Hypertens. 1993;2:45-50.

89. Schweitz H, Vigne P, Moinier D, Frelin C, Lazdunski M. A new member of the natriuretic peptide family is present in the venom of the green mamba (Dendroaspis angusticeps). J Biol Chem. 1992;267:13928-13932.

90. Langenickel T, Pagel I, Höhnel K, Dietz R, Willenbrock R. Differential regulation of cardiac ANP and BNP mRNA in different stages of experimental heart failure. Am J Physiol Heart Circ Physiol. 2000;278:H1500-H1506.

91. Cowie M, Struthers A, Wood D, Coats A, Thompson S, Poole-Wilson P. Value of natriuretic peptides in assessment of patients with possible new heart failure in primary care. Lancet. 1997;350:1347-1351.

92. de Bold A, Borenstein H, Veress A, Sonnenberg H. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sciences. 1981;28:89-94.

93. Maki M, Takayanagi R, Misono K, Pandey K, Tibbetts C, Inagami T. Structure of rat atrial natriuretic factor precursor deduced from cDNA sequence. Nature. 1984;309:722-724.

94. Seidman C, Duby A, Choi E, Graham R, Haber E, Homcy C, Smith J, Seidman J. The structure of preproatrial natriuretic factor as defined by a complementary DNA clone. Science. 1984;225:324-326.

95. Yamanaka M, Greenberg B, Johnson L, Seilhamer J, Brewer M, Friedemann T, Miller J, Atlas S, Laragh J, Lewicki J, Fiddes J. Cloning and sequence analysis of the cDNA for the rat atrial natriuretic factor precursor. Nature. 1984;309:719-722.

96. Zivin R, Condra J, Dixon R, Seidah N, Chretien M, Nemer M, Chamberland M, Drouin J. Molecular cloning and characterization of DNA sequences encoding rat and human atrial natriuretic factors. Proc Natl Acad Sci USA. 1984;81:6325-6329.

97. Oikawa S, Imai M, Ueno A, Tanaka S, Noguchi T, Nakazato H, Kangawa K, Fukuda A, Matsuo H. Cloning and sequence analysis of cDNA encoding a precursor for human atrial natriuretic polypeptide. Nature. 1984;309:724-726.

98. Koller K, Goeddel D. Molecular biology of the natriuretic peptides and their receptors. Circulation. 1992;86:1081-1087.

99. Baxter J, Lewicki J, Gardner D. Atrial natriuretic peptide. Bio-Technology. 1988;6:529-546.

100. de Bold A. Atrial natriuretic factor: A hormone produced by the heart. Science. 1985;230:767-770.

101. Bloch K, Scott J, Zisfein J, Fallon J, Margolies M, Seidman C, Matsueda G, Homcy C, Graham R, Seidman J. Biosynthesis and secretion of proatrial natriuretic factor by cultured rat cardiocytes. Science. 1985;230:1168-1171.

102. Abe T, Nishiyama K, Snajdar R, He X, Misono K. Aortic smooth muscle contains guanylate-cyclase-coupled 130-kDa atrial natriuretic factor receptor as predominant receptor form. Spontaneous switching to 60-kDa C-receptor upon cell culturing. Eur J Biochem. 1993;217:295-304.

103. Davidson N, Struthers A. Brain natriuretic peptide. J Hypertens. 1994;12:329-336.

104. Yasue H, Yoshimura M, Sumida H, Kikuta K, Kugiyama K, Jougasaki M, Ogawa H, Okumara K, Mukoyama M, Nakao K. Localization and mechanism of secretion of B-type natriuretic peptide in comparison with those of A-type natriuretic peptide in normal subjects and patients with heart failure. Circulation. 1994;90:195-203.

105. Yan W, Wu F, Morser J, Wu Q. Corin, a transmembrane cardiac serin protease, acts as a pro-atrial natriuretic peptide-converting enzyme. PNAS. 2000;97:8525-8529.

106. de Bold A, Kuroski-de Bold M, Boer P, Dube G, Mangat H, Johnson F. A decade of atrial natriuretic factor research. Can J Physiol Pharmacol. 1991;69:1480-1485.

107. Skvorak J, Nazian S, Dietz J. Endothelin acts as a paracrine regulator of stretch-induced atrial natriuretic peptide release. Am J Physiol. 1995;269:R1093-R1098.

108. Leskinen H, Vuolteenaho O, Ruskoaho H. Combined inhibition of endothelin and angiotensin II receptors blocks volume load-induced cardiac hormone release. Circ Res. 1997;80:114-123.

109. Skvorak J, Dietz J. Endothelin and nitric oxide interact to regulate stretch-induced ANP secretion. Am J Physiol. 1997;273:R301-R306.

110. Mercadier J, Zongazo M, Wisnewsky C, Butler-Brown G, Gros D, Carayon A, Schwartz K. Atrial natriuretic factor messenger ribonucleic acid and peptide in the heart during ontogenetic development. Biochem Biophys Res Commun. 1989;159:777-782.

111. Michel J, Arnal J, Corvol P. Atrial natriuretic factor as a marker in congestive heart failure. Horm Res. 1990;34:166-168.

112. Garcia R, Diebold S. Simple, rapid, and effective method of producing aortocaval shunts in the rat. Cardiovascul Res. 1990;24:430-432.

113. Pfeffer M, Pfeffer J, Fishbein M, Fletcher P, Spadaro J, Kloner R, Braunwald E. Myocardial infarct size and ventricular function in rats. Circ Res. 1979;44:503-512.

114. Schild T. Einführung in die Real-Time TaqManTM-PCR-Technologie. 1997. PE Applied Biosystems GmbH, Weiterstadt.

115. Sambrook J, Fritsch E, Maniatis T. Extraction and Purification of RNA. In: Molecular Cloning - A Laboratory Manual. 1989.

116. Chomczynski P, Sacchi N. Single-Step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156-159.

117. Sambrook J, Fritsch E, Maniatis T. Electrophoresis of RNA through gels containing formaldehyde. In: Molecular Cloning - A Laboratory Manual. 1989.

118. Sanger F, Nicklen S, Coulsen A. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA. 1977;74:5463-5467.

119. Leutenegger C, Higgins J, Matthews T, Rarantal A, Lucie P, Pedersen N, North T. Real-Time TaqMan PCR as a specific and more sensitive alternative to the branched-chain DNA assay for quantitation of simian immunodeficiency virus RNA. Hum Retroviruses. 2001;17:243-251.

120. Loeb K, Jerome K, Goddard J, Huang M, Cent A, Corey L. High-throughput quantitative analysis of hepatitis B virus DNA in serum using the TaqMan fluorogenic detection system. Hepatology. 2000;32:626-629.

121. Willenbrock R, Haass M, Osterziel K, Fischer T, Dietz R. Induktion der atrialen und ventrikulären ANF-Synthese bei experimenteller Herzinsuffizienz nach aortokavalem Shunt. Z Kardiol. 1993;82:648-653.

122. Saito Y, Nakao K, Arai H, Nishimura K, Okumara K, Obata K, Takemura G, Fujiwara H, Sugawara A, Yamada T, et al. Augmented expression of atrial natriuretic polypeptide gene in ventricle of human failing heart. J Clin Invest. 1989;83:298-305.

123. Takahashi T, Allen P, Izumo S. Expression of A-, B-, and C-type natriuretic peptides genes in failing and developing human ventricles. Correlation with expression of the Ca(2+)-ATPase gene. Circ Res. 1992;71:9-17.

124. Takeishi Y, Walsh R. Cardiac hypertrophy and failure: lessons learned from genetically engineered mice. Acta Physiol Scand. 2001;173:103-111.

125. Lee R, Gay R, Moffett C, Johnson D, Goldman S. Atrial natriuretic peptide levels during development of chronic heart failure after myocardial infarction in rats. Life Sci. 1987;40:2025-2030.

126. Lattion A, Michel J, Arnauld E, Corvol P, Soubrier F. Myocardial recruitment during ANF mRNA increase with volume overload in the rat. Am J Physiol. 1986;251:H890-H896.

127. Arbustini E, Pucci A, Grasso M, Diegoli M, Pozzi R, Gavazzi A, Graziano G, Campana C, Goggi C, Martinelli L, et al. Expression of natriuretic peptide in ventricular myocardium of failing human hearts and its correlation with the severity of clinical and hemodynamic impairment. Am J Cardiol. 1990;66:973-980.

128. Saito Y, Nakao K, Arai H, Nishimura K, Takemura G, Fujiwara H, Sugawara A, Yamada T, Itoh H, Makoyama M, et al. Relationship between ventricular expression of atrial natriuretic polypeptide gene hemodynamic parameter in old myocardial infarction. J Cardiovasc Pharmacol. 1989;13:S1-S4.

129. Takemura G, Fujiwara H, Horike K, Mukoyama M, Saito Y, Nakao K, Matsuda M, Kawamura A, Ishida M, Kida M, et al. Ventricular expression of atrial natriuretic polypeptide and its relations with hemodynamics and histology in dilated human hearts. Immunohistochemical study of the endomyocardial biopsy specimens. Circulation. 1989;80:1137-1147.

130. Révillion F, Pawlowski V, Hornez L, Peyrat J-P. Glyceraldehyde-3-phosphate dehydrogenase gene expression in human breast cancer. Eur J Cancer. 2000;36:1038-1042.

131. Schek N, Hall B, Finn O. Increased glyceraldehyde-3-phosphate dehydrogenase gene expression in human pancreatic adenocarcinoma. Cancer Res. 1988;48:6354-6359.

132. Vila M, Nicolas A, Morote J, Meseguer A. Increases glyceraldehyde-3-phosphate dehydrogenase expression in renal cell carcinoma identified by RNA-based arbitrarily primed polymerase chain reaction. Cancer. 2000;89:152-164.

133. Calvo E, Boucher C, Coulombe Z, Morisset J. Pancreatic GAPDH gene expression during ontogeny and acute pancreatitis induced by caerulein. Biochem Biophys Res Commun. 1997;235:636-640.

134. Gorzelniak K, Janke J, Engeli S, Sharma A. Validation of endogenous controls for gene expression studies in human adipocytes and preadipocytes. Horm Metab Res. 2001;33:625-627.

135. Steele B, Meyers C, Ozbun M. Variable expression of some "housekeeping" genes during human keratinocyte differentiation. Anal Biochem. 2002;307:341-347.

136. Cipkala D, Livingston W, Cody R. Influence of pressure overload and ACE inhibitor therapy on constitutive protein mRNA expression in the spontaneously hypertensive rat. Am J Hypertens. 1996;9:393-396.

137. Tomaro M, Frydman R, Gutnisky A, Sburlati A. Induction of porphobilinogen oxygenase and porphobilinogen deaminase in rat blood under conditions of erythropoietic stress. Biochim Biophys Acta. 1981;676:31-42.

138. Chenais B, Molle I, Trentesaux C, Jeannesson P. Time-course of butyric acid-induced differentiation in human K562 leukemic cell line: Rapid increase in gamma-globulin, porphobilinogen deaminase and NF-E2 mRNA levels. Leukemia. 2002;1997:9-1575.

139. Greenbaum L, Gozlan Y, Schwartz D, Katcoff D, Malik Z. Nuclear distribution of porphobilinogen deaminase (PBGD) in glioma cells: a regulatory role in cancer transformation ? Br J Cancer. 2002;86:1006-1011.

140. Perfetti V, Manenti G, Gragani TA. Expression of housekeeping genes in Hodgkin´s disease lymph nodes. Leukemia. 1991;5:1110-1112.

141. Finnegan M, Goepel J, Hancock B, Goyns M. Investigation of the expression of housekeeping genes in Non-Hodgkin´s lymphoma. Leuk Lymphoma. 1993;10:387-393.


© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 3.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am:
10.03.2005