Literaturverzeichnis

1  Lee, Y.-C., Simamora, P., Yalkowsky, S.H., Effect of Brij-78 on systemic delivery of insulin from an ocular device, J. Pharm. Sci. (1997) 86; 430-433

2  Dondeti, P., Zia, H., Needham, T.E., In vivo evaluation of spray formulations of human insulin for nasal delivery, Int. J. Pharm. (1995) 122; 91-105

3  Hussain, A.A., Al-Bayatti, A.A., Dakkuri, A., Okochi, K., Hussain, M.A., Testosterone 17 β N,N Dimethylglycinate Hydrochloride: a prodrug with a potential for nasal delivery of testosterone, J. Pharm. Sci. (2002) 91; 785-789

4  Illum, L., Watts, P., Fisher, A.N., Hinchcliffe, M., Norbury, H., Jabbal-Gill, I., Nankervis, R., Davis, S.S., Intranasal delivery of morphine, J. Pharmacol. Exp. Ther. (2002) 301; 391-400

5  Verhoef, J.C., Merkus, F.W.H.M., Nasal absorption enhancement: Relevance to nasal drug delivery, in: deBoer, A. G. (Hrsg.), Drug Absorption Enhancement, Harwood Academic Publisher, Chur, 1994, pp. 119-153

6  Thadikonda, K.P., Lau-Cam, C.A., Thadikonda, V.L., Theofanopoulos, V., Nasal delivery of atenolol and timolol in the rat and the effect of absorption enhancers, Drug Devel. Ind. Pharm. (1995) 21; 349-360

7  Furrer, P., Mayer, J.M., Plazonnet, B., Gurny, R., Ocular tolerance of absorption enhancers in ophthalmic preparations, AAPS Pharm. Sci. (2002) 4; 1-5

8  Sullivan, D.A., Wickham, L.A., Rocha, E.M., Krenzer, K.L., Sullivan, B.D., Steagull, R., Cermak, J.M., Dana, M.R., Ullman, M.D., Sato, E.H., Gao, J., Rocha, F.J., Ono, M., Silveira, L.A., Lambert, R.W., Kelleher, R.S., Tolls, D.B., Toda, I., Androgens and dry eye in Sjogrens’s syndrome, Ann. N. Y. Acad. Sci. (1999) 22; 312-324

9  Sullivan, D.A., Sullivan, B.D., Evans, J.E., Schirra, F., Yamagami, H., Liu, M., Richards, S.M., Suzuki, T., Schaumberg, D.A., Sullivan, R.M., Dana, M.R., Androgen deficiency, meibomian gland dysfunction and evaporative dry eye, Ann. N. Y. Acad. Sci. (2002) 966; 211-222

10  Haecker, R., Kämpfe, E., Mattern, C., Androgenic substitution for the ageing male by nasal administration of a precursor of testosterone, Symp. Healthy ageing of male, Genf, 1998

11  Siefert, B., Einfluss von Cyclodextrin auf die Löslichkeit und okulare Verfügbarkeit von Pilocarpin-HCl bzw. Thalidomid, Dissertation, Humboldt-Universität zu Berlin, 1998

12  Hockwin, O., Biochemie des Auges, Ferdinand Enke Verlag, Stuttgart, 1985

13  Sarkar, M.A., Drug metabolism in the nasal mucosa, Pharm. Res. (1992) 9; 1-9

14  Mitra, A.K. (Ed.), Ophthalmic Drug Delivery Systems, Marcel Dekker, Inc., New York 1993

15  Loftssona, T., Järvinen, T., Cyclodextrins in ophthalmic drug delivery, Adv. Drug Del. Rev. (1999) 36; 59-79

16  Doane, M.G., Jensen, A.D., Dohlman, C.H., Penetration routes of topically applied eye medications, Am. J. Ophthalmol. (1978) 85; 383-386

17  Ahmed, I., Gokhale, R.D., Shah, M.V., Patton, T.F., Physicochemical determinants of drug diffusion across the conjunctiva, sclera and cornea, J. Pharm. Sci. (1987) 76; 583-586

18  Hämäläinen, K.M., Kananen, K., Auriola, S., Kontturi, K., Urtti, A., Characterization of paracellular and aqueous penetration routes in cornea, conjunctiva and sclera, Invest. Ophthalmol. Vis. Sci. (1997) 38; 627-634

19  Huang, A.J.W., Tseng, S.C.G., Kenyon, K.R., Paracellular permeability of corneal and conjunctival epithelia, Invest. Ophthalmol. Vis. Sci. (1989) 30; 684-689

20  Dilly, P.N., Guillon, M., McGrogan, L., Video Biomicroscopy of the tear film, Adv. Exp. Med. Biol. (1998) 438; 737-743

21  Sharma, A., Breakup and dewetting of the corneal mucus layer, Adv. Exp. Med. Biol. (1998) 438; 273-280

22  Tiffany, J.M., The Lipid Secretion of the Meibomian Glands, Adv. Lipid. Res. (1987) 22; 1-62

23  Mishima, S., Nagataki, S., Conrad Berens memorial lecture: Pharmacology of ophthalmic solutions, Contact Lens (1978) 4; 22-46

24  Mishima, S., Gasset, A., Klyce, S.D.Jr., Baum, J.L., Determination of tear volume and tear flow, Invest. Ophthalmol. (1966) 5; 264-276

25  Nagyova, B., Tiffany, J.M., Components responsible for the surface tension of human tears, Current Eye. Res. (1999) 19; 4-11

26  Kumar, G.N., Drug metabolizing enzyme systems in the eye, in: Reddy, I.K., (Ed.), Ocular Therapeutics and Drug Delivery, Technomic Pub. Comp. Inc., Lancaster/ Basel, 1996, pp. 149-167

27  Illum, L., Nasal Delivery. The use of animal models to predict performance in man, J. Drug Target. (1996) 3; 427-442

28  Cornaz, A.-L., Buri, P., Nasal mucosa as an absorption barrier, Eur. J. Phar. Biopharm. (1994) 40; 261-270

29  Gizurarson, S., Animal models for intranasal drug delivery studies, Acta Pharm. Nord. (1990) 2; 105-122

30  Narawane, L., Lee, V.H.L., Absorption barriers, in: deBoer, A.G. (Ed.), Drug Absorption Enhancement, Harwood Academic Publisher, Chur, 1994, pp. 3-5

31  Behl, C.R., Pimplaskar, H.K., Sileno, A.P., deMeireles, J., Romeo, V.D., Effects of physicochemical properties and other factors on systemic nasal drug delivery, Adv. Drug Del. Rev. (1998) 29; 89-116

32  Sakane, T., Akizuki, M., Yoshida, M., Yamashita, S., Nadai, T., Hashida, M., Sezaki, H., Transport of cephalexin to the cerebrospinal fluid directly from the nasal cavity, J. Pharm. Pharmacol. (1991) 43; 449-451

33  Sakane, T., Akizuki, M., Taki, Y., Yamashita, S., Sezaki, H., Nadai, T., Direct drug transport from the rat nasal cavity to the cerebrospinal fluid: the relation to the molecular weight of drugs, J. Pharm. Pharmacol. (1995) 47; 379-381

34  Muchtar, S., Abdulrazik, M., Frucht-Pery, J., Benita, S., Ex-vivo study of indomethacin from a submicron emulsion through albino rabbit cornea, J. Control. Rel. (1997) 44; 55-64

35  Waga, J., Ehinger, B., Passage of drugs through different intraocular microdialysis membranes, Arch. Clin. Exp. Ophthalmol. (1995) 233; 31-37

36  Keipert, S., Ophthalmika, etablierte Arzneiformen und neue Konzepte, in: Müller, R.H., Hildebrand, G.E., (Hrsg.), Pharmazeutische Technologie - Moderne Arzneiformen, Wissenschaftl. Verlagsgesellschaft mbH, Stuttgart, 1998; pp. 77-98

37  Williams, A.C., Barry, B.W., Skin absorption enhancers, Crit. Rev. Ther. Drug Carrier Sys. (1992) 9; 305-353

38  Agarwal, V., Mishra, B., Recent trends in drug delivery systems: intranasal drug delivery, Ind. J. Exp. Biol. (1999) 37; 6-16

39  Maitani, Y., Ishigaki, K., Takayama, K., Nagai, T., In vitro nasal transport across rabbit mucosa: effect of oxygen bubbling, pH and hypertonic pressure on permeability of lucifer yellow, diazepam and 17 β -estradiol, Int. J. Pharm. (1997) 146; 11-19

40  Grass, G.M., Robinson, J.R., Mechanism of corneal drug penetration I: In vivo and in vitro kinetics, J. Pharm. Sci. (1988) 77; 3-14

41  Dua, R., Zia, H., Needham, T., The influence of tonicity and viscosity on the intranasal absorption of salmon calcitonin in rabbits, Int. J. Pharm. (1997) 147; 233-242

42  Ohwaki, T., Ando, H., Watanabe, S., Miyake, Y., Effects of dose, pH and osmolarity on nasal absorption of secretin in rats, J. Pharm. Sci. (1985) 74; 550-552

43  Schoenwald, R.D., Ward, R.L., Relationship between steroid permeability across excised rabbit cornea and octanol-water partition coefficients, J. Pharm. Sci. (1978) 67; 786-788

44  Corbo, D.C., Liu, J.-C., Chien, Y.W., Characterization of the barrier properties of mucosal membranes, J. Pharm. Sci. (1990) 79; 202-206

45  Merck & Co Inc., Whitehouse Station, 1996

46  Forth, W., Henschler, D., Rummel, W., Starke, K., Allgemeine und spezielle Pharmakologie und Toxikologie, 7. Auflage, Spektrum akademischer Verlag, Heidelberg/ Berlin/ Oxford, 1996, pp. 596-598

47  Wolf, E., Adam hat PADAM, Pharmazeutische Zeitung (2000) 145; 11-17

48  Tukker, J.J., Ussing chamber to study active transport, Kurz-Vortrag, 3rd International intensive course and workshop on cell culture and other alternative methods for drug delivery research, Feb./März 2000, Saarbrücken

49  Hosoya, K.-I., Kubo, H., Natsume, H., Sugibayashi, K., Morimoto, Y., Yamashita, S., The structural barrier of absorptive mucosae: site difference of the permeability of fluorescein isothiocyanate-labelled dextran in rabbits, Biopharm. Drug Dispo. (1993) 14; 685-696

50  Miyamoto, M., Natsume, H., Iwata, S., Ohtake, K., Yamaguchi, M., Kobayashi, D., Sugibayashi, K., Yamashina, M., Morimoto, Y., Improved nasal absorption of drugs using poly-L-arginine: effects of concentration and molecular weight of poly-L-arginine on the nasal absorption of fluorescein isothiocyanate-dextran in rats, Eur. J. Phar. Biopharm. (2001) 52; 21-30

51  Cremophor® EL, Technisches Merkblatt, BASF, 1987

52  Brewster, M.E., Anderson, W.R., Loftsson, T., Huang, M.-J., Bodor, N., Pop, E., Preparation, characterization and anesthetic properties of 2 hydroxypropyl- β -cyclo dextrin complexes of pregnanolone and pregnenolone in rat and mouse, J. Pharm. Sci. (1995) 84;1154-1159

53  Rajewski, R.A., Stella, V.J., Pharmaceutical application of cyclodextrins. 2. In vivo drug delivery, J. Pharm. Sci. (1996) 85; 1142-1169

54  Merkus, F.W.H.M., Verhoef, J.C., Marttin, E., Romeijn, S.G., van der Kuy, P.H.M., Hermens, W.A.J.J., Schipper, N.G.M., Cyclodextrins in nasal drug delivery, Adv. Drug Del. (1999) 36; 41-57

55  Irie, T., Uekama, K., Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation, J. Pharm. Sci. (1997) 86; 147-162

56  Loftsson, T., Brewster, M.E., Pharmaceutical application of cyclodextrins: 1. Drug solubilization and stabilization, J. Pharm. Sci. (1996) 85; 1017-1025

57  Aktas, Y., Unlu, N., Orhan, M., Irkec, M., Hincal, A.A., Influence of hydroxypropyl beta-cyclodextrin on the corneal permeation of pilocarpine, Drug Dev. Ind. Pharm. (2003) 29; 223-230

58  Vollmer, U., Müller, B.W., Peeters, J., Mesens, J., Wilffert, B., Peters, T., A study of the percutaneous absorption-enhancing effects of cyclodextrin derivatives in rats, J. Pharm. Pharmacol. (1994) 46; 19-22

59  Shaker, D.S., Ghanem, A.-H., Li, S.K., Warner, K.S., Hashem, F.M., Higuchi, W.I., Mechanistic studies of the effect of hydroxypropyl- β -cyclodextrin on in vitro transdermal permeation of corticosterone through hairless mouse skin, Int. J. Pharm. (2003) 253; 1-11

60  Constantinides, P.P., Scalart, J.-P., Formulation and physical characterization of water-in-oil microemulsions containing long- versus medium-chain glycerides, Int. J. Pharm. (1997) 158; 57-68

61  Keipert, S., Siebenbrodt, I., Lüders, F., Bornschein, M., Mikroemulsionen und ihre potentielle pharmazeutische Nutzung, Pharmazie (1989) 44; 433-444

62  Müller, B.W., Topische Mikroemulsionen als neue Wirkstoff-Trägersysteme, in: Müller, R.H., Hildebrand, G.E., (Hrsg.), Pharmazeutische Technologie–Moderne Arzneiformen, Wissenschaftl. Verlagsgesellschaft mbH, Stuttgart, 1998; pp. 109-116

63  Zimmer, A., Attwood, D., Mikroemulsionen in: Herzfeldt, C.-D., Kreuter, J. (Hrsg.), Grundlagen der Arzneiformenlehre – Galenik 2, Springer Verlag, Berlin/ Heidelberg, 1999; pp. 190-203

64  Gasco, M.R., Gallarate M., Trotta M., Bauchiero L., Gremmo E., Chiappero O., Microemulsions as topical delivery vehicles: ocular administration of timolol, J. Pharm. Biomed. Anal. (1989) 7; 433-439

65  Bauchiero, L., Gremmo, E., Chiappero, O., Gasco, M.R., Gallarate, M., Trotta, M., Microemulsions as ophthalmic vehicles: studies on the release of timoptol, New Trends Ophthalmol. (1987) II; 377-379

66  Radomska, A., Dobrucki, R., The use of some ingredients for microemulsion preparation containing retinol and its esters, Int. J. Pharm. (2000) 196; 131-134

67  Vandamme, Th. F., Microemulsions as ocular drug delivery systems: recent developments and futur challenges, Prog. Retin. Eye Res. (2002) 21; 15-34

68  Li, L., Nandi, I., Kim, K.H., Development of an ethyl laurate-based microemulsion for rapid-onset intranasal delivery of diazepam, Int. J. Pharm. (2002) 237; 77-85

69  Haße, A., Entwicklung, Charakterisierung und Strukturuntersuchungen von tensidhaltigen Mehrkomponentensystemen zur okularen Anwendung, Dissertation, Humboldt-Universität zu Berlin, 1996

70  Berndt, S., Entwicklung und Charakterisierung galenischer Formulierungen zur potentiellen nasalen Anwendung von Androstendion und Levodopa, Dissertation Humboldt-Universität zu Berlin, 2000

71  Dalmora, M.E.A., Oliveira, A.G., Inclusion complex of piroxicam with β -cyclodextrin and incorporation in hexadecyltrimethylammonium bromide based microemulsion, Int. J. Pharm. (1999) 184; 157-164

72  Dalmora, M.E., Dalmora, S.L., Oliveira, A.G., Inclusion complex of piroxicam with β -cyclodextrin and incorporation in cationic microemulsion. In vitro drug release and in vivo topical anti-inflammatory effect, Int. J. Pharm. (2001) 222; 45-55

73  Maldonado, M.B., Lawrence, M.J., The incorporation of salicylic acid-dimethyl- β -cyclodextrin complex into water-in-oil microemulsions, J. Pharm. Pharmacol. (1998) 50, Suppl.; 177

74  Singh, A.K., Kasinath, B.S., Lewis, E.J., Interaction of polycations with cell-surface negative charges of epithelial cells, Biochim. Biophys. Acta (1992) 1120; 337-342

75  McEwan, G.T.A., Jepson, M.A., Hirst, B.H., Simmons, N.L., Polycation-induced enhancement of epithelial paracellular permeability is independent of tight junctional characteristics, Biochim. Biophys. Acta (1993) 1148; 51-60

76  Benita, S., Prevention of topical and ocular oxidative stress by positively charged submicron emulsion, Biomed. Pharmacother. (1999) 53; 193-206

77  Klang, S., Abdulrazik, M., Benita, S., Influence of emulsion droplet surface charge on indomethacin ocular tissue distribution, Pharm. Dev. Technol. (2000) 5; 521-32

78  Müller, B.W., Kleinebudde, P., Untersuchungen an sogenannten Mikroemulsions-systemen, Pharm. Ind. (1988) 50; 370-375

79  Trotta, M., Gasco, M.R., Pattarino, F., Effect of alcohol cosurfactants on the diffusion coefficients of microemulsions by light scattering, J. Disp. Sci. Tech. (1989) 10; 15-32

80  Caputo, F.E., Burghardt, W.R., Krishnan, K., Bates, F.S., Lodge, T.P., Time-resolved small-angle x-ray scattering measurements of a polymer bicontinuous microemulsion structure factor under shear, Phys. Rev. (2002) 66; 1-17

81  Müller, B.W., Müller, R.H., Particle size distributions and particle size alterations in microemulsions, J. Pharm. Sci. (1984) 73; 919-922

82  Keipert, S., Schulz, G., Mikroemulsionen auf Saccharoseesterbasis, Pharmazie (1994) 49; 195-197

83  Moreno, M.A., Frutos, P., Ballesteros, M.P., Lyophilized lecithin based oil-water microemulsions as a new and low toxic delivery system for amphotericin B, Pharm. Res. (2001) 18; 344-351

84  Paul, B.K., Moulik, S.P., Microemulsions: an overview, J. Disp. Sci. Tech. (1997) 18; 301-367

85  Kielhorn, E., Bestimmung von Mischungswärmen tensidhaltiger Mehr komponenten systeme mittels der Dynamischen Differenz-Kalorimetrie, Diplomarbeit, Humboldt-Universität zu Berlin, 1997

86  Alami, E., Abrahmsen-Alami, S., Eastoe, J., Grillo, I., Heenan, R.K., Interactions between a nonionic surfactant and cyclodextrins investigated by small-angle neutron scattering, J. Colloid. Interface Sci. (2002) 255; 403-409

87  Leuenberger, H. (Hrsg.), Martin, Physikalische Pharmazie, Wissenschaftliche Verlags gesellschaft mbH, Stuttgart, 2002

88  Rosano, H.L., Lyons, G.B., Free energy, enthalpy and entropy changes during the formation of a n-hexadecane/ potassium stearate/ water/ 1-pentanol microemulsion system, J. Chem. Phys. (1985) 89; 363-365

89  Kaler, E.W., Bennett, K.E., Davis, H.T., Scriven, L.E., Toward understanding microemulsion microstructure: a small-angle X-ray scattering study, J. Chem. Phys. (1983) 79; 5673

90  Teubner, M., Strey, R., Origin of the scattering peak in microemulsions, J. Chem. Phys. (1987) 87; 3195-3200

91  Würz, U., Small angle X-ray scattering of microemulsions, Progr. Colloid. Polym. Sci. (1988) 76; 153-158

92  Ezrahi, S., Wachtel, E., Aserin, A., Garti, N., Structural polymorphism in a four-component nonionic microemulsion, J. Colloid. Inter. Sci. (1997) 191; 277-290

93  Seto, H., Okuhara, D., Kawabata, Y., Takeda, T., Nagao, M., Suzuki, J., Kamikubo, H., Amemiya, Y., Pressure and temperature effects on the phase transition from a dense droplet to a lamellar structure in a ternary microemulsion, J. Chem. Phys. (2000) 112; 10608-10614

94  Peltola, S., Saarinen-Savolainen, P., Kiesvaara, J., Suhonen, T.M., Urtti, A., Microemulsions for topical delivery of estradiol, Int. J. Pharm. (2003) 254; 99-107

95  Sullivan, D.A., Sullivan, B.D., Ullman, M.D., Rocha, E.M., Krenzer, K.L., Cermak, J.M., Toda, I., Doane, M.G., Evans, J.E., Wickham, L.A., Androgen influence on the meibomian gland, Invest. Ophthalmol. Vis. Sci. (2000) 41; 3732-3742

96  Szejtli, J., Davies, J.E.D., Cyclodextrin technology, Kluver Academic Publishers, Dordrecht-Boston-London, 1988

97  Keipert, S., Fedder, J., Böhm, A., Hanke, B., Interactions between cyclodextrins and pilocarpin – as an example of a hydrophilic drug, Int. J. Pharm. (1996) 46; 355-360

98  Higuchi, T., Connors, K.A., Advances in analytical chemistry and instrumentation, New York Interscience, New York, 1965, pp. 128-131

99  Albers, E., Müller, B.W., Complexation of steroid hormones with cyclodextrin derivatives: substituent effects of the guest molecule on solubility and stability in aqueous solution, J. Pharm. Sci. (1992) 81; 756-761

100  Andersen, F.M., Bundgaard, H., The influence of β -cyclodextrin on the stability of hydrocortison in aqueous solution, Arch. Pharm. Chem. (1983) 11; 61-66

101  Masson, M., Loftsson, T., Masson, G., Stefansson, E., Cyclodextrins as permeation enhancers, J. Control. Rel. (1999) 59; 107-118

102  Bary, A.R., Tucker, I.G., Davies, N.M., Considerations in the use of hydroxypropyl- β -cyclodextrin in the formulation of aqueous ophthalmic solutions of hydrocortison, Eur. J. Phar. Biopharm. (2000) 50; 237-244

103  Uekama, K., Hirayama, F., Irie, T., Application of cyclodextrins, in: deBoer, A.G. (Ed.), Drug Absorption Enhancement, Harwood Academic Publisher, Chur, 1994, pp. 411-456

104  Grass, G.M., Robinson, J.R., Relationship of chemical structure to corneal penetration and influence of low-viscosity solution on ocular bioavailability, J. Pharm. Sci. (1984) 73; 1021-1027

105  Sasaki, H., Ichikawa, M., Yamamura, K., Nishida, K., Nakamura, J., Ocular membrane permeability of hydrophilic drugs for ocular peptide delivery, J. Pharm. Pharmacol. (1997) 49; 135-139

106  Chang, S.-C., Lee, V.H.L., Nasal and conjunctival contributions to the systemic absorption of topical timolol in the pigmented rabbit: implications in the design of strategies to maximize the ratio of ocular to systemic absorption, J. Ocul. Pharm. (1987) 3; 159-169

107  Camber, O., An in vitro model for determination of drug permeability through the cornea, Acta Pharm. Suec. (1985) 22; 335-342

108  Camber, O., Edman, P., Influence of some preservatives on the corneal permeability of pilocarpine and dexamethasone, in vitro, Int. J. Pharm. (1987) 39; 229-234

109  Dittgen, M., Oestereich, S., Eckhardt, D., Influence of bioadhesion on the elimination of drugs from the eye and on their penetration ability across the pig cornea, S.T.P. Pharma Sciences (1992) 2; 93-97

110  Babiole, M., Wilhelm, F., Schoch, C., In vitro corneal permeation of unoprostone isopropyl (UI) and its metabolism in the isolated pig eye, J. Ocul. Pharmacol. Ther. (2001) 17; 159-172

111  Scholz, M., Lin, J.E., Lee, V.H., Keipert, S., Pilocarpine permeability across ocular tissues and cell cultures: influence of formulation parameters, J. Ocul. Pharmacol. Ther. (2002) 18; 455-468

112  Lang, S.R., Staudenmann, W., James, P., Manz, H.-J., Kessler, R., Galli, B., Moser, H.-P., Rummelt, A., Merkle, H.P., Proteolysis of human calcitonin in excised bovine nasal mucosa: Elucidation of the metabolic pathway by liquid secondary ionization mass spectrometry (LSIMS) and matrix assisted laser desorption ionization mass spectrometry (MALDI), Pharm. Res. (1996) 13; 1679-1685

113  Schmidt, M.C., Peter, H., Lang, S.R., Ditzinger, G., Merkle, H.P., In vitro cell models to study nasal mucosal permeability and metabolism, Adv. Drug Del. Rev. (1998) 29; 51-79

114  Schmidt, M.C., Simmen, D., Hilbe, M., Boderke, P., Ditzinger, G., Sandow, J., Lang, S., Rubas, W., Merkle, H.P., Validation of excised bovine nasal mucosa as in vitro model to study drug transport and metabolic pathways in nasal epithelium, J. Pharm. Sci. (2000) 89; 396-407

115  Schmidt, M.C., Rubas, W., Merkle, H.P., Nasal epithelial permeation of thymotrinan (TP3) versus thymocartin (TP4): competitive metabolism and self-enhancement, Pharm. Res. (2000) 17; 222-228

116  Östh, K., Grasjö, J., Björk, E., A new method for drug transport studies on pig nasal mucosa using a horizontal ussing chamber, J. Pharm. Sci. (2002) 91; 1256-1273

117  Östh, K., Paulsson, M., Björk, E., Edsman, K., Evaluation of drug release from gels on pig nasal mucosa in a horizontal Ussing chamber, J. Control. Rel. (2002) 83; 377

118  Wadell, C., Björk, E., Camber, O., Permeability of porcine nasal mucosa correlated with human nasal absorption, Eur. J. Pharm. Sci. (2003) 18; 47-53

119  Benson, H., Permeability of the cornea to topically applied drugs, Arch. Ophthalmol. (1974) 91; 313-327

120  Hull, D.S., Hine, J.E., Edelhauser, H.F., Hyndiuk, R.A., Permeability of the isolated rabbit cornea to corticosteroids, Invest. Ophthalmol. (1974) 13; 457-459

121  Saettone, M.F., Chetoni, P., Cerbai, R., Mazzanti, G., Braghiroli, L., Evaluation of ocular permeation enhancers: in vitro effects on corneal transport of four β -blockers, and in vitro/in vivo toxic activity, Int. J. Pharm. (1996) 142; 103-113

122  Frederiksen, O., Röpke, M., Hansen, M., Carstens, S., Holm, M., Christensen, P., Colding-Jorgensen, M., Danielsen, G., Phospholipid-induced changes in ion transport pathways of the rabbit nasal mucosa in vitro, European Symposium APGI/FIP, Paris, 1993

123  Bechgaard, E., Gizurarson, S., Jørgensen, L., Larsen, R., The viability of isolated rabbit nasal mucosa in the Ussing chamber, and permeability of insulin across the membrane, Int. J. Pharm. (1992) 87; 125-132

124  Siefert, B., Keipert, S ., Influence of α -cyclodextrin and hydroxyalkylated β -cyclodextrin derivatives on the in vitro corneal uptake and permeation of aqueous pilocarpine-HCl solutions, J. Pharm. Sci. (1997) 86, 716-720

125  Ammar, H.O., El-Nahhas, S.A., Khalil, R.M., Cyclodextrins in acetazolamide eye drop formulations, Pharmazie (1998) 53; 559-562

126  Rajewski, R.A., Stella, V.J., Pharmaceutical applications of cyclodextrins. 2. In vivo drug delivery, J. Pharm. Sci. (1996) 85; 1142-1169

127  Hosoya, K.-I., Kubo, H., Natsume, H., Sugibayashi, K., Morimoto, Y., Evaluation of enhancers to increase nasal absorption using Ussing chamber technique, Biol. Pharm. Bull. (1994) 17; 316-322

128  Shao, Z., Krishnamoorthy, R., Mitra, A.K., Cyclodextrins as nasal absorption promotors of insulin: mechanistic evaluations, Pharm. Res. (1992) 9; 1157-1163

129  Marttin, E., Verhoef, J.C., Romeijn, S.G., Merkus, F.W.H.M., Effects of absorption enhancers on rat nasal epithelium in vivo: release of marker compounds in the nasal cavity, Pharm. Res. (1995) 12; 1151-1157

130  Marttin, E., Verhoef, J.C., Romeijn, S.G., Zwart, P., Merkus, F.W.H.M., Acute histopathological effects of benzalkonium chloride and absorption enhancers on rat nasal epithelium in vivo, Int. J. Pharm. (1996) 141; 151-160

131  Kristinsson, J.K., Fridriksdottir, H., Thorisdottir, S., Sigurdardottir, A.M., Stefansson, E., Loftsson, T., Dexamethasone-cyclodextrin-polymer co-complexes in aqueous eye drops, Invest. Ophthalmol. Vis. Sci. (1996) 37; 1199-1203

132  Hochman, J., Artursson, P., Mechanism of absorption enhancement and tight junction regulation, J. Control. Rel. (1994) 29; 256-267

133  Leszczynski, D.E., Schafer, R.M., Characterization of steroid hormone association with human plasma lipoproteins, Steroids (1989) 54; 37-53

134  Prausnitz, M.R., Noonan, J.S., Permeability of cornea, sclera and conjunctiva: a literature analysis for drug delivery to the eye, J. Pharm. Sci. (1998) 87; 1479-1488

135  Brittebo, E.B., Rafter, J.J., Steroid metabolism by rat nasal mucosa: studies on progesterone and testosterone, J. Steroid. Biochem. (1984) 20; 1147-1151

136  Southren, A.L., Altman, K., Vittek, J., Boniuk, V., Gordon, G.G., Steroid metabolism in ocular tissues of the rabbit, Invest. Ophthalmol. (1976) 15; 222-228

137  Starka, L., Obenberger, J., Testosterone metabolism in various tissues of the intact and inflamed rabbit eye, Ophthal. Res. (1976) 8; 374-378

138  Ploc, I., Sulcova, J., Starka, L., Androgen metabolism in the epithelium of the bovine cornea, Endokrinol. (1978) 72; 237-333

139  Donovan, M.D., Flynn, G.L., Amidon, G.L., Absorption of polyethylene glycols 600 through 2000: The molecular weight dependence of gastrointestinal and nasal absorption, Pharm. Res. (1990) 7; 863-868

140  Hirai, S., Yashiki, T., Matsuzawa, T., Mima, H., Absorption of drugs from the nasal mucosa of rat, Int. J. Pharm. (1981) 7; 317-325

141  Grass, G.M., Wood, R.W., Robinson, J.R., Effects of calcium chelating agents on corneal permeability, Invest. Ophthalmol. Vis. Sci. (1985) 26; 110-113

142  Grass, G.M., Robinson, J.R., Mechanisms of corneal drug penetration II: Ultrastructural analysis of potential pathways for drug movement, J. Pharm. Sci. (1988) 77; 15-23

143  Schoenwald, R.D., Huang, H.-S., Corneal penetration behaviour of β -blocking agents I: Physicochemical factors, J. Pharm. Sci. (1983) 72; 1266-1271

144  Hornof, M.D., Bernkop-Schnürch, A., In vitro evaluation of the permeation enhancing effect of polycarbophil-cystein conjugates on the cornea of rabbits, J. Pharm. Sci. (2002) 91; 2588-2592

145  Nishijo, J., Tsuchitani, M., Interaction of L-tryptophan with α -cyclodextrin: studies with calorimetry and proton nuclear magnetic resonance spectroscopy, J. Pharm. Sci. (2001) 90; 134-140

146  []Marttin, E., Verhoef, J.C., Spies, F., van der Meulen, J., Nagelkerke, J.F., Koerten, H.K., Merkus, F.W.H.M., The effect of methylated β -cyclodextrins on the tight junctions of the rat nasal respiratory epithelium: electron microscopic and confocal laser scanning microscopic visualization studies, J. Pharm. Sci. (1999) 57; 205-213

147  Gaskonda, V.R., Khan, M.A., Hutak, C.M., Reddy, I.K., Permeability characteristics of novel mydriatic agents using an in vitro cell culture model that utilizes sirc rabbit corneal cells, J. Pharm. Sci. (1999) 88; 180-184

148  Bach, M., Lippold, B.C., Percutaneous penetration enhancement and its quantification, Eur. J. Phar. Biopharm. (1998) 46; 1-13

149  Hussain, A.A., Intranasal drug delivery, Adv. Drug Del. Rev. (1998) 29; 39-49

150  Stratford jr., R.E. and Lee, V.H.L., Aminopeptidase activity in homogenates of various absorptive mucosae in the albino rabbit: implications in peptide delivery, Int. J. Pharm. (1986) 30; 73-82

151  Koolman, J., Röhm, K.-H., Taschenatlas der Biochemie, Georg Thieme Verlag, Stuttgart/ New York, 1994

152  Ko, K.-T., Needham, T.E., Zia, H., Emulsion formulations of testosterone for nasal administration, J. Microencapsulation (1998) 15; 197-205

153  Shackleton, C.H.L., Whitney, J.O., Use of Sep-pak ® cartridges for urinary steroid extraction: evaluation of the method for use prior to gas chromatographic analysis, Clin. Chim. Acta (1980) 107; 231-243

154  Andersson, S.H.G., Cronholm, T., Sjövall, J., Effects of ethanol on the levels of unconjugated and conjugated androgens and estrogens in plasma of men, J. Steroid. Biochem. (1986) 24; 1193-1198

155  Stuenkel, C.A., Dudley, R.E., Yen, S.S.C., Sublingual administration of testosterone-hydroxypropyl- β -cyclodextrin inclusion complex simulates episodic androgen release in hypogonadal men, J. Clin. Endocrin. Metabol. (1991) 72; 1054-1059

156  Hussain, A.A., Kimura, R., Huang, C.H., Nasal absorption of testosterone in rats, J. Pharm. Sci. (1984) 73; 1300-1301

157  Bron, A.J., Tiffany, J.M., The meibomian glands and tear film lipids, Adv. Exp. Med. Biol. (1998) 438; 281-295

158  Kaercher, T., Möbius, D., Jaeger, W., Schichtdickenbestimmung des Sekrets Meibom scher Drüsen unter in vitro-Bedingungen, Fortschr. Ophthalmol. (1986) 83; 90-94

159  Hart, W.M. (Ed.), Adler’s Physiology of the Eye, Mosby Year Book, Inc., St. Louis, 1992

160  Shimazaki, J., Sakata, M., Tsubota, K., Ocular surface changes and discomfort in patients with meibomian gland dysfunction, Arch. Ophthalmol. (1995) 113; 1266-1270

161  Krenzer, K.L., Dana, M.R., Ullman, M.D., Cermak, J.M., Tolls, D.B., Evans, J.E., Sullivan, D.A., Effect of Androgen Deficiency on the Human Meibomian Gland and Ocular Surface, J. Clin. Endocrin. Metabol. (2000) 85; 4874-4882

162  McCulley, J.P., Shine, W., A compositional based model for the tear film lipid layer, Trans. Am. Ophthalmol. Soc. (1997) 95; 79-88

163  McCulley, J.P., Shine, W.E., The lipid layer: the outer surface of the ocular surface tear film, Biosci. Rep. (2001) 21; 407-418

164  Kawaguchi, S., Studies on the precorneal film with measurement of monomolecular surface pressure, Fol. Ophthalmol. Jpn. (1967) 18; 283-289

165  Jaeger, W., Möbius, D., Kaercher, T., In: Holly, F.J., (Ed.), The Preocular Tear Film in Health, Disease and Contact Lens Wear. Lubbock, TX: Dry Eye Institute, 1986, pp. 609-621

166  Jaeger, W., Möbius, D., Kaercher, T., Biophysikalische experimentelle Unter suchungen über die Stabilität und Flexibilität der Lipidschicht des Tränenfilms unter Bedingungen der Kompression und Spreitung, Fortschr. Ophthalmol. (1986) 83; 86-89

167  Kaercher, T., Möbius, D., Stabilität und Flexibilität der Lipidschicht des Tränenfilms sowie deren pathologischer Veränderungen im biophysikalischen Experiment, Fortschr. Ophthalmol. (1989) 86; 245-248

168  Kaercher, T., Möbius, D., Welt, R., Biophysical characteristics of the Meibomian lipid layer under in vitro conditions, Int. Ophthalmol. (1992) 16; 167-176

169  Kaercher, T., Möbius, D., Welt, R., Biophysical behaviour of the infant Meibomian lipid layer, Int. Ophthalmol. (1994) 18; 15-19

170  Kaercher, T., Hönig, D., Möbius, D., Brewster angle microscopy, A new method of visualizing the spreading of Meibomian lipids, Int. Ophthalmol. (1993) 17; 341-348

171  Kaercher, T., Hönig, D., Möbius, D., Meibomian lipid layers seen through BAM, Orbit (1995) 14; 17-24

172  Kaercher, T., Hönig, D., Möbius, D., Welt, R., Morphologie des Meibom-Lipidfilms, Ophthalmologe (1995) 92; 12-16

173  Kim, J., Levitsky, I.A., McQuade, D.T., Swager, T.M., Structural control in thin layers of poly(p-phenyleneethynylene)s: photophysical studies of Langmuir and Langmuir-Blodgett films, J. Am. Chem. Soc. (2002) 124; 7710-7718

174  Glasgow, B.J., Marshall, G., Gasymov, O.K., Abduragimov, A.R., Yusifov, T.N., Knobler, C.M., Tear lipocalins: potential lipid scavengers for the corneal surface, Invest. Ophthalmol. Vis. Sci. (1999) 40; 3100-3107

175  Vollhardt, D., Fainermann, V.B., Penetration of dissolved amphiphiles into two-dimensional aggregating lipid monolayers, Adv. Colloid. Interface Sci. (2000) 86; 103-151

176  Stella, V.J., Rajewski, R.A., Cyclodextrins: Their future in drug formulation and delivery, Pharm. Res. (1997) 14; 556-567

177  Müller, B.W., Brauns, U., Hydroxypropyl- β -cyclodextrin derivatives: influence of average degree of substitution on complexing ability and surface activity, J. Pharm. Sci. (1986) 75; 571-572

178  Zia, V., Rajewski, R.A., Bornancini, E.R., Luna, E.A., Stella, V.J., Effect of alkyl chain length and degree of substitution on the complexation of sulfoalkyl ether β -cyclodextrins with steroids, J. Pharm. Sci. (1997) 86; 220-224

179  DeGrip, W.J., VanOostrum, J., Bovee-Geurts, P.H.M., Selective detergent-extraction from mixed detergent/lipid/protein micelles, using cyclodextrin inclusion compounds: a novel approach for the preparation of proteoliposomes, Biochem. J. (1998) 330; 667-674

180  Topchieva, I.I., Karezin, K., Self-assembled supramolecular micellar structures based on non-ionic surfactants and cyclodextrins, J. Colloid. Interface Sci. (1999) 213; 29-35

181  Jabbal Gill, I., Fisher, A.N., Hinchcliffe, M., Whetstone, J., Farraj, N., DePonti, R., Illum, L., Cyclodextrins as protection agents against enhancer damage in nasal delivery systems II. Effect on in vivo absorption of insulin and histopathology of nasal membrane, Eur. J. Pharm. Sci. (1994) 1; 237-248

182  Goto, E., Shimazaki, J., Monden, Y., Takano, Y., Yagi, Y., Shimmura, S., Tsubota, K., Low-concentration homogenized castor oil eye drops for noninflamed obstructive meibomian gland dysfunction, Ophthalmology (2002) 109; 2030-2035

183  Francoeur, M., Ahmed, I., Sitek, S., Patton, T.F., Age-related differences in ophthalmic drug disposition III. Corneal permeability of pilocarpin in rabbits, Int. J. Pharm. (1983) 16; 203-213

184  Boltri, L., Morel, S., Trotta, M., Gasco, M.R., In vitro transdermal permeation of nifedipin from thickened microemulsions, J. Pharm. Belg. (1994) 49; 315-320

185  Bhatnagar, S., Vyas, S.P., Organogel-based system for transdermal delivery of propranolol, J. Microencapsulation (1994) 11; 431-438

186  Schmalfuß, U., Neubert, R., Wohlrab, W., Modification of drug penetration into human skin using microemulsions, J. Controlled Rel. (1997) 46; 279-285

187  Scholz, M., In vitro Permeationsstudien von hydrophilen und lipophilen Arzneistoffen an okularen Geweben und Zellkulturen, Dissertation, Humboldt-Universität zu Berlin, 2003

188  Deutscher Apothekerverlag, Stuttgart, Govi-Verlag, Pharm. Verlag GmbH, Eschborn


© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 4.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am:
08.11.2005