[Seite 80↓]

Literaturverzeichnis

1: Greenlee, R.T. et al. (2001): Cancer statistics CA Cancer J.Clin. 51(1), Seite 15-36

2: Blohmer, J.U. und Diel, I. J. (2003): Gynäkologische Malignome Harrisons Innere Medizin, 15. Auflage, Seite 685-691, ABW Wissenschaftsverlag, Berlin

3: Deutsche Krebsgesellschaft e.V. (2003): Maligne Ovarialtumoren Qualitätssicherung in der Onkologie: Diagnose und Therapie maligner Erkrankungen 2002, Seite 284-297

4: Virchow, R. (1863): Vorlesungen über Pathologie Hirschwald , Berlin

5: Balkwill, F. und Mantovani, A. (2001): Inflammation and cancer: back to Virchow ? Lancet 357(9255), Seite 539-545

6: Hauptmann, S. (2000): The role of inflammation in tumor invasion Verh.Dtsch.Ges.Pathol. 84, Seite 77-86

7: Dvorak, H.F. (1986): Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing N.Engl.J.Med. 315(26), Seite 1650-1659

8: Ness, R.B. und Cottreau, C. (1999): Possible role of ovarian epithelial inflammation in ovarian cancer J.Natl.Cancer Inst. 91(17), Seite 1459-1467

9: Berger, S. et al. (2000): Ovarian carcinoma cell lines do not respond to IL-10: sign of an autonomous cytokine production Pathology - Research and Practice 196, Seite 450

10: Seger, R. und Krebs, E.G. (1995): The MAPK signaling cascade FASEB J. 9(9), Seite 726-735

11: Arbabi, S. und Maier, R.V. (2002): Mitogen-activated protein kinases Crit.Care Med. 30(1. Supp), Seite S74-S79

12: Chang, L. und Karin, M. (2001): Mammalian MAP kinase signalling cascades Nature 410(6824), Seite 37-40

13: Tibbles, L.A. und Woodgett, J.R. (1999): The stress-activated protein kinase pathways Cell Mol.Life Sci. 55(10), Seite 1230-1254

14: Xiao, Y.Q. et al. (2002): Cross-talk between ERK and p38 MAPK mediates selective suppression of pro-inflammatory cytokines by transforming growth factor-beta J.Biol.Chem. 277(17), Seite 14884-14893

15: Biocarta (2003) Webpage http://www.biocarta.com/genes


[Seite innerhalb Literaturhinweis 81↓]

16: Garrington, T.P. und Johnson, G.L. (1999): Organization and regulation of mitogen-activated protein kinase signaling pathways Curr.Opin.Cell Biol. 11(2), Seite 211-218

17: Johnson, G.L. und Lapadat, R. (2002): Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases Science 298(5600), Seite 1911-1912

18: Lasa, M. et al. (2001): Dexamethasone destabilizes cyclooxygenase 2 mRNA by inhibiting mitogen-activated protein kinase p38 Mol.Cell Biol. 21(3), Seite 771-780

19: Chen, W. et al. (2002): Stimulus-specific requirements for MAP3 kinases in activating the JNK pathway J.Biol.Chem. 277(51), Seite 49105-49110

20: Chen, G. et al. (2000): The p38 pathway provides negative feedback to Ras proliferative signaling J.Biol.Chem. 275:(50), Seite 38973-38980

21: Govindarajan, B. et al. (2003): Malignant Transformation of Melanocytes to Melanoma by Constitutive Activation of Mitogen-activated Protein Kinase Kinase (MAPKK) Signaling J.Biol.Chem. 278(11), Seite 9790-9795

22: Cohen, C. et al. (2002): Mitogen-actived protein kinase activation is an early event in melanoma progression Clin.Cancer Res. 8(12), Seite 3728-3733

23: Uzgare, A.R. et al. (2003): Differential expression and/or activation of P38MAPK, erk1/2, and jnk during the initiation and progression of prostate cancer Prostate 55(2), Seite 128-139

24: Choi, K.C. et al. (2003): Adenosine triphosphate activates mitogen-activated protein kinase in pre-neoplastic and neoplastic ovarian surface epithelial cells Biol.Reprod. 68(1), Seite 309-315

25: Hoshino, R. et al. (1999): Constitutive activation of the 41-/43-kDa mitogen-activated protein kinase signaling pathway in human tumors Oncogene 18(3), Seite 813-822

26: Keyse, S.M. und Emslie, E.A. (1992): Oxidative stress and heat shock induce a human gene encoding a protein-tyrosine phosphatase Nature 359(6396), Seite 644-647

27: Charles, C.H. et al. (1993): The growth factor-inducible immediate-early gene 3CH134 encodes a protein-tyrosine-phosphatase Proc.Natl.Acad.Sci.U.S.A. 90(11), Seite 5292-5296

28: Keyse, S.M. (1998): Protein phosphatases and the regulation of MAP kinase activity Semin.Cell Dev.Biol. 9(2), Seite 143-152

29: Cook, S.J. et al. (1997): Regulation of mitogen-activated protein kinase phosphatase-1 expression by extracellular signal-related kinase-dependent and Ca2+-dependent signal pathways in Rat-1 cells J.Biol.Chem. 272(20), Seite 13309-13319


[Seite innerhalb Literaturhinweis 82↓]

30: Brondello, J.M. et al. (1997): The dual specificity mitogen-activated protein kinase phosphatase-1 and -2 are induced by the p42/p44MAPK cascade J.Biol.Chem. 272(2), Seite 1368-1376

31: Bhalla, U.S. und Iyengar, R. (1999): Emergent properties of networks of biological signaling pathways Science 283(5400), Seite 381-387

32: Sun, H. et al. (1993): MKP-1 (3CH134), an immediate early gene product, is a dual specificity phosphatase that dephosphorylates MAP kinase in vivo Cell 75(3), Seite 487-493

33: Franklin, C.C. und Kraft, A.S. (1997): Conditional expression of the mitogen-activated protein kinase (MAPK) phosphatase MKP-1 preferentially inhibits p38 MAPK and stress-activated protein kinase in U937 cells J.Biol.Chem. 272(27), Seite 16917-16923

34: Kwak, S.P. et al. (1994): Isolation and characterization of a human dual specificity protein-tyrosine phosphatase gene J.Biol.Chem. 269(5), Seite 3596-3604

35: Emslie, E.A. et al. (1994): The CL100 gene, which encodes a dual specificity (Tyr/Thr) MAP kinase phosphatase, is highly conserved and maps to human chromosome 5q34 Hum.Genet. 93(5), Seite 513-516

36: Rohan, P.J. et al. (1993): PAC-1: a mitogen-induced nuclear protein tyrosine phosphatase Science 259(5102), Seite 1763-1766

37: Martell, K.J. et al. (1994): Chromosomal localization of four human VH1-like protein-tyrosine phosphatases Genomics 22(2), Seite 462-464

38: Ishibashi, T. et al. (1992): Expression cloning of a human dual-specificity phosphatase Proc.Natl.Acad.Sci.U.S.A. 89(24), Seite 12170-12174

39: Kamb, A. et al. (1994): Localization of the VHR phosphatase gene and its analysis as a candidate for BRCA1 Genomics 23(1), Seite 163-167

40: Misra-Press, A. et al. (1995): A novel mitogen-activated protein kinase phosphatase. Structure, expression, and regulation J.Biol.Chem. 270(24), Seite 14587-14596

41: Guan, K.L. und Butch, E. (1995): Isolation and characterization of a novel dual specific phosphatase, HVH2, which selectively dephosphorylates the mitogen-activated protein kinase J.Biol.Chem. 270(13), Seite 7197-7203

42: King, A.G. et al. (1995): Isolation and characterisation of a uniquely regulated threonine, tyrosine phosphatase (TYP 1) which inactivates ERK2 and p54jnk Oncogene 11(12), Seite 2553-2563

43: Smith, A. et al. (1997): Chromosomal localization of three human dual specificity phosphatase genes (DUSP4, DUSP6, and DUSP7) Genomics 42(3), Seite 524-527


[Seite innerhalb Literaturhinweis 83↓]

44: Ishibashi, T. et al. (1994): A novel dual specificity phosphatase induced by serum stimulation and heat shock J.Biol.Chem. 269(47), Seite 29897-29902

45: Muda, M. et al. (1996): MKP-3, a novel cytosolic protein-tyrosine phosphatase that exemplifies a new class of mitogen-activated protein kinase phosphatase J.Biol.Chem. 271(8), Seite 4319-4326

46: Muda, M. et al. (1996): The dual specificity phosphatases M3/6 and MKP-3 are highly selective for inactivation of distinct mitogen-activated protein kinases J.Biol.Chem. 271(44), Seite 27205-27208

47: Groom, L.A. et al. (1996): Differential regulation of the MAP, SAP and RK/p38 kinases by Pyst1, a novel cytosolic dual-specificity phosphatase EMBO J. 15(14), Seite 3621-3632

48: Furukawa, T. et al. (1998): Genomic analysis of DUSP6, a dual specificity MAP kinase phosphatase, in pancreatic cancer Cytogenet.Cell Genet. 82(3-4), Seite 156-159

49: Martell, K.J. et al. (1995): hVH-5: a protein tyrosine phosphatase abundant in brain that inactivates mitogen-activated protein kinase J.Neurochem. 65(4), Seite 1823-1833

50: Nesbit, M.A. et al. (1997): Genomic organization and chromosomal localization of a member of the MAP kinase phosphatase gene family to human chromosome 11p15.5 and a pseudogene to 10q11.2 Genomics 42(2), Seite 284-294

51: Muda, M. et al. (1997): Molecular cloning and functional characterization of a novel mitogen-activated protein kinase phosphatase, MKP-4 J.Biol.Chem. 272(8), Seite 5141-5151

52: Tanoue, T. et al. (1999): Molecular cloning and characterization of a novel dual specificity phosphatase, MKP-5 J.Biol.Chem. 274(28), Seite 19949-19956

53: Masuda, K. et al. (2000): Expression and comparative chromosomal mapping of MKP-5 genes DUSP10/Dusp10 Cytogenet.Cell Genet. 90(1-2), Seite 71-74

54: Li, J. et al. (2001): Transcriptional induction of MKP-1 in response to stress is associated with histone H3 phosphorylation-acetylation Mol.Cell Biol. 21(23), Seite 8213-8224

55: Lasa, M. et al. (2002): Dexamethasone causes sustained expression of mitogen-activated protein kinase (MAPK) phosphatase 1 and phosphatase-mediated inhibition of MAPK p38 Mol.Cell Biol. 22(22), Seite 7802-7811

56: Imasato, A. et al. (2002): Inhibition of p38 MAPK by glucocorticoids via induction of MAPK phosphatase-1 enhances nontypeable Haemophilus influenzae-induced expression of toll-like receptor 2 J.Biol.Chem. 277(49), Seite 47444-47450


[Seite innerhalb Literaturhinweis 84↓]

57: Laderoute, K.R. et al. (1999): Mitogen-activated protein kinase phosphatase-1 (MKP-1) expression is induced by low oxygen conditions found in solid tumor microenvironments. A candidate MKP for the inactivation of hypoxia-inducible stress-activated protein kinase/c-Jun N-terminal protein kinase activity J.Biol.Chem. 274(18), Seite 12890-12897

58: Chu, Y. et al. (1996): The mitogen-activated protein kinase phosphatases PAC1, MKP-1, and MKP-2 have unique substrate specificities and reduced activity in vivo toward the ERK2 sevenmaker mutation J.Biol.Chem. 271(11), Seite 6497-6501

59: Haneda, M. et al. (1999): Mitogen-activated protein kinase phosphatase: a negative regulator of the mitogen-activated protein kinase cascade Eur.J.Pharmacol. 365(1), Seite 1-7

60: Charles, C.H. et al. (1992): cDNA sequence of a growth factor-inducible immediate early gene and characterization of its encoded protein Oncogene 7(1), Seite 187-190

61: Brondello, J.M. et al. (1999): Reduced MAP kinase phosphatase-1 degradation after p42/p44MAPK-dependent phosphorylation Science 286(5449), Seite 2514-2517

62: Lin, Y.W. et al. (2003): ERK1/2 Achieves Sustained Activation by Stimulating MAPK Phosphatase-1 Degradation via the Ubiquitin-proteasome Pathway J.Biol.Chem. 278(24), Seite 21534-21541

63: Engelbrecht, Y. et al. (2003): Glucocorticoids induce rapid up-regulation of mitogen-activated protein kinase phosphatase-1 and dephosphorylation of extracellular signal-regulated kinase and impair proliferation in human and mouse osteoblast cell lines Endocrinology 144(2), Seite 412-422

64: Chen, P. et al. (2001): Discordance between the binding affinity of mitogen-activated protein kinase subfamily members for MKP-2 and their ability to catalytically activate the phosphatase J.Biol.Chem. 276.(31), Seite 29440-29449

65: Wellbrock, C. et al. (2002): Activation of p59(Fyn) leads to melanocyte dedifferentiation by influencing MKP-1-regulated mitogen-activated protein kinase signaling J.Biol.Chem. 277(8), Seite 6443-6454

66: Magi-Galluzzi, C. et al. (1997): Mitogen-activated protein kinase phosphatase 1 is overexpressed in prostate cancers and is inversely related to apoptosis Lab.Invest. 76(1), Seite 37-51

67: Tsao, S.W. et al. (1995): Characterization of human ovarian surface epithelial cells immortalized by human papilloma viral oncogenes (HPV-E6E7 ORFs) Exp.Cell Res. 218(2), Seite 499-507

68: Lennon, G. et al. (1996): The I.M.A.G.E. Consortium: an integrated molecular analysis of genomes and their expression Genomics 33(1), Seite 151-152

69: Magi-Galluzzi, C. et al. (1998): Mitogen-activated protein kinases and apoptosis in PIN Virchows Arch. 432(5), Seite 407-413


[Seite innerhalb Literaturhinweis 85↓]

70: Sun, H. und Tonks, N.K. (1994): The coordinated action of protein tyrosine phosphatases and kinases in cell signaling Trends.Biochem.Sci. 19(11), Seite 480-485

71: Kazama, H. und Yonehara, S. (2000): Oncogenic K-Ras and basic fibroblast growth factor prevent Fas-mediated apoptosis in fibroblasts through activation of mitogen-activated protein kinase J.Cell Biol. 148(3), Seite 557-566

72: Loda, M. et al. (1996): Expression of mitogen-activated protein kinase phosphatase-1 in the early phases of human epithelial carcinogenesis Am.J.Pathol. 149(5), Seite 1553-1564

73: Davies, S.P. et al. (2000): Specificity and mechanism of action of some commonly used protein kinase inhibitors Biochem.J. 351(Pt 1), Seite 95-105

74: Bokemeyer, D. et al. (1996): Induction of mitogen-activated protein kinase phosphatase 1 by the stress-activated protein kinase signaling pathway but not by extracellular signal-regulated kinase in fibroblasts J.Biol.Chem. 271(2), Seite 639-642

75: Scimeca, J.C. et al. (1997): Essential role of calcium in the regulation of MAP kinase phosphatase-1 expression Oncogene 15(6), Seite 717-725

76: Mourey, R.J. et al. (1996): A novel cytoplasmic dual specificity protein tyrosine phosphatase implicated in muscle and neuronal differentiation J.Biol.Chem. 271(7), Seite 3795-3802

77: Schonwasser, D.C. et al. (1998): Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by conventional, novel, and atypical protein kinase C isotypes Mol.Cell Biol. 18(2), Seite 790-798

78: Moscat, J. und Diaz-Meco, M.T. (2000): The atypical protein kinase Cs. Functional specificity mediated by specific protein adapters EMBO Rep. 1(5), Seite 399-403

79: Mao, M. et al. (2000): Inhibition of growth-factor-induced phosphorylation and activation of protein kinase B/Akt by atypical protein kinase C in breast cancer cells Biochem.J. 352(Pt 2), Seite 475-482

80: Beltman, J. et al. (1996): The selective protein kinase C inhibitor, Ro-31-8220, inhibits mitogen-activated protein kinase phosphatase-1 (MKP-1) expression, induces c-Jun expression, and activates Jun N-terminal kinase J.Biol.Chem. 271(43), Seite 27018-27024

81: Valledor, A.F. et al. (2000): Protein kinase C epsilon is required for the induction of mitogen-activated protein kinase phosphatase-1 in lipopolysaccharide-stimulated macrophages J.Immunol. 164(1), Seite 29-37

82: Bhalla, U.S. et al. (2002): MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network Science 297(5583), Seite 1018-1023


[Seite innerhalb Literaturhinweis 86↓]

83: Unoki, M. und Nakamura, Y. (2001): Growth-suppressive effects of BPOZ and EGR2, two genes involved in the PTEN signaling pathway Oncogene 20(33), Seite 4457-4465

84: Ono, K. et al. (2000): Identification by cDNA microarray of genes involved in ovarian carcinogenesis Cancer Res. 60(18), Seite 5007-5011

85: Bang, Y.J. et al. (1998): Increased MAPK activity and MKP-1 overexpression in human gastric adenocarcinoma Biochem.Biophys.Res.Commun. 250(1), Seite 43-47

86: Xia, Z. et al. (1995): Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis Science 270(5240), Seite 1326-1331

87: Wang, H. et al. (2003): Overexpression of mitogen-activated protein kinase phosphatases MKP1, MKP2 in human breast cancer Cancer Lett. 191(2), Seite 229-237

88: Low, W. et al. (1999): JNK activation is not required for Fas-mediated apoptosis Oncogene 18(25), Seite 3737-3741

89: Valladares, A. et al. (2000): p38 mitogen-activated protein kinase mediates tumor necrosis factor-alpha-induced apoptosis in rat fetal brown adipocytes Endocrinology 141(12), Seite 4383-4395

90: Tran, S.E. et al. (2001): MAPK/ERK overrides the apoptotic signaling from Fas, TNF, and TRAIL receptors J.Biol.Chem. 276(19), Seite 16484-16490

91: Park, H.J. et al. (2002): Role of MAP kinases and their cross-talk in TGF-beta1-induced apoptosis in FaO rat hepatoma cell line Hepatology 35(6), Seite 1360-1371

92: Antlsperger, D.S. et al. (2003): Ajoene-induced cell death in human promyeloleukemic cells does not require JNK but is amplified by the inhibition of ERK Oncogene 22(4), Seite 582-589

93: Boldt, S. et al. (2003): The kinase domain of MEKK1 induces apoptosis by dysregulation of MAP kinase pathways Exp.Cell Res. 283(1), Seite 80-90

94: Chen, Y.R. et al. (1996): The role of c-Jun N-terminal kinase (JNK) in apoptosis induced by ultraviolet C and gamma radiation. Duration of JNK activation may determine cell death and proliferation J.Biol.Chem. 271(50), Seite 31929-31936

95: Franklin, C.C. et al. (1998): Conditional expression of mitogen-activated protein kinase phosphatase-1, MKP-1, is cytoprotective against UV-induced apoptosis Proc.Natl.Acad.Sci.U.S.A. 95(6), Seite 3014-3019

96: Guo, Y.L. et al. (1998): Inhibition of the expression of mitogen-activated protein phosphatase-1 potentiates apoptosis induced by tumor necrosis factor-alpha in rat mesangial cells J.Biol.Chem. 273(17), Seite 10362-10366


[Seite innerhalb Literaturhinweis 87↓]

97: Jamieson, L. et al. (1999): Protein kinase Ciota activity is necessary for Bcr-Abl-mediated resistance to drug-induced apoptosis J.Biol.Chem. 274(7), Seite 3927-3930

98: Losa, J.H. et al. (2003): Role of the p38 MAPK pathway in cisplatin-based therapy Oncogene 22(26), Seite 3998-4006

99: Persons, D.L. et al. (1999): Cisplatin-induced activation of mitogen-activated protein kinases in ovarian carcinoma cells: inhibition of extracellular signal-regulated kinase activity increases sensitivity to cisplatin Clin.Cancer Res. 5(5), Seite 1007-1014

100: Sanchez-Perez, I. et al. (1998): Cisplatin induces a persistent activation of JNK that is related to cell death Oncogene 16(4), Seite 533-540

101: Mansouri, A. et al. (2003): Sustained Activation of JNK/p38 MAPK Pathways in Response to Cisplatin Leads to Fas Ligand Induction and Cell Death in Ovarian Carcinoma Cells J.Biol.Chem. 278(21), Seite 19245-19256

102: Sanchez-Perez, I. et al. (2000): CL100/MKP-1 modulates JNK activation and apoptosis in response to cisplatin Oncogene 19(45), Seite 5142-5152

103: Pfahl, M. (2003): Anti-Cancer Activities of MKP-1 and Cdc25 Phosphatase Inhibitors Albany Molecular Research: Technical Reports 8(17), Seite 3-4


© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
XDiML DTD Version 4.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am:
10.05.2005