[1] Abu-Amarah, I.; Ajikobi, D. O.; Bachelard, H.; Cupples, W. A. und Salevsky, F. C. (1998): Responses of mesenteric and renal blood flow dynamics to acute denervation in anesthetized rats, Am.J.Physiol. 275, Seite R1543-R1552.

[2] Aizawa, C. und Waugh, W. H. (1977): Absence of renal circulatory autoregulation during perfusion with paraffin oil, Blood Vessels 14, Seite 175-188.

[3] Arend, L. J.; Haramati, A.; Thompson, C. I. und Spielman, W. S. (1984): Adenosine-induced decrease in renin release: dissociation from hemodynamic effects, Am.J.Physiol. 247 [3 Pt 2], Seite F447-F452.

[4] Arendshorst, W. J.; Brannstrom, K. und Ruan, X. (1999): Actions of angiotensin II on the renal microvasculature, J.Am.Soc.Nephrol. 10 Suppl 11, Seite S149-S161.

[5] Barber, J. D. und Moss, N. G. (1990): Reduced renal perfusion pressure causes prostaglandin-dependent excitation of R2 chemoreceptors in rats, Am.J.Physiol. 259 , Seite R1243-R1249.

[6] Beierwaltes, W. H.; Sigmon, D. H. und Carretero, O. A. (1992): Endothelium modulates renal blood flow but not autoregulation, Am.J.Physiol. 262, Seite F943-F949.

[7] Berger, C. S. und Malpas, S. C. (1998): Modelling of the dynamic relationship between arterial pressure, renal sympathetic nerve activity and renal blood flow in conscious rabbits , J.Exp.Biol. 201, Seite 3425-3430.

[8] Berthold, H.; Just, A.; Kirchheim, H. R.; Osswald, H. und Ehmke, H. (1998): Renal haemodynamic responses to exogenous and endogenous adenosine in conscious dogs, J.Physiol.(Lond) 510, Seite 321-330.

[9] Busse, R.; Hecker, M. und Fleming, I. (1994): Control of nitric oxide and prostacyclin synthesis in endothelial cells , Arzneimittelforschung 44 [3A], Seite 392-396.

[Seite 79↓]

[10] Butler, P. J.; Weinbaum, S.; Chien, S. und Lemons, D. E. (2000): Endothelium-dependent, shear-induced vasodilation is rate-sensitive, Microcirculation 7 [1], Seite 53-65.

[11] Cai, Z.; Xin, J.; Pollock, D. M. und Pollock, J. S. (2000): Shear stress-mediated NO production in inner medullary collecting duct cells, Am.J.Physiol. Renal Physiol. 279 [2], Seite F270-F274.

[12] Carmines, P. K.; Bell, P. D.; Roman, R. J.; Work, J. und Navar, L. G. (1985): Prostaglandins in the sodium excretory response to altered renal arterial pressure in dogs, Am.J.Physiol. 248, Seite F8-F14.

[13] Casellas, D. und Moore, L. C. (1990): Autoregulation and tubuloglomerular feedback in juxtamedullary glomerular arterioles, Am.J.Physiol. 258 [3 Pt 2], Seite F660-F669.

[14] Celler, B. G.; Stella, A.; Golin, R. und Zanchetti, A. (1996): Analysis of the dynamics of renal vascular resistance and urine flow rate in the cat following electrical stimulation of the renal nerves, Physiol. Meas. 17 [3], Seite 213-228.

[15] Chevalier, R. L. und Kaiser, D. L. (1983): Autoregulation of renal blood flow in the rat: effects of growth and uninephrectomy, Am.J.Physiol. 244 [5], Seite F483-F487.

[16] Chevalier, R. L. und Kaiser, D. L. (1985): Effects of acute uninephrectomy and age on renal blood flow autoregulation in the rat, Am.J.Physiol. 249 [5 Pt 2], Seite F672-F679.

[17] Chilton, L. und Loutzenhiser, R. (2001): Functional Evidence for an Inward Rectifier Potassium Current in Rat Renal Afferent Arterioles, Circ. Res. 88, Seite 152-158.

[18] Chon, K. H.; Chen, Y. M.; Holstein-Rathlou, N. H. und Marmarelis, V. Z. (1998): Nonlinear system analysis of renal autoregulation in normotensive and hypertensive rats, IEEE Trans.Biomed.Eng. 45, Seite 342-353.

[19] Cupples, W. A. (1993): Angiotensin II conditions the slow component of autoregulation of renal blood flow, Am.J.Physiol. 264 [3 Pt 2], Seite F515-F522.

[Seite 80↓]

[20] Cupples, W. A. und Loutzenhiser, R. D. (1998): Dynamic autoregulation in the in vitro perfused hydronephrotic rat kidney , Am.J.Physiol. 275 [1 Pt 2], Seite F126-F130.

[21] Cupples, W. A.; Novak, P.; Novak, V. und Salevsky, F. C. (1996): Spontaneous blood pressure fluctuations and renal blood flow dynamics, Am.J.Physiol. 270 [1 Pt 2], Seite F82-F89.

[22] Cupples, W. A.; Wexler, A. S. und Marsh, D. J. (1990): Model of TGF-proximal tubule interactions in renal autoregulation , Am.J.Physiol. 259 [4 Pt 2], Seite F715-F726.

[23] Daniels, F. H.; Arendshorst, W. J. und Roberds, R. G. (1990): Tubuloglomerular feedback and autoregulation in spontaneously hypertensive rats, Am.J.Physiol. 258, Seite F1479-F1489.

[24] Davis, J. M. (1991): Role of the efferent arteriole in tubuloglomerular feedback, Kidney Int.Suppl. 32, Seite S71-S73.

[25] Delp, M. D. und Laughlin, M. H. (1998): Regulation of skeletal muscle perfusion during exercise, Acta Physiol.Scand. 162, Seite 411-419.

[26] Edwards, A.; Silldforff, E. P. und Pallone, T. L. (2000): The renal medullary microcirculation, Front.Biosci. 5, Seite E36-E52.

[27] Edwards, R. M. (1983): Segmental effects of norepinephrine and angiotensin II on isolated renal microvessels, Am.J.Physiol. 244, Seite F526-F534.

[28] Endlich, K.; Muller, C.; Barthelmebs, M. und Helwig, J. J. (1999): Role of shear stress in nitric oxide-dependent modulation of renal angiotensin II vasoconstriction, Br.J.Pharmacol. 127, Seite 1929-1935.

[29] Finke, R.; Gross, R.; Hackenthal, E.; Huber, J. und Kirchheim, H. R. (1983): Threshold pressure for the pressure-dependent renin release in the autoregulating kidney of conscious dogs, Pflügers Archiv 399 [2], Seite 102-110.

[30] Flemming, B.; Arenz, N.; Persson, P. B.; Steer, K. und Wronski, T. (1999): The time and oxygen dependency of the pressure-flow relations in the conscious rat kidney, Pflügers Archiv 437 [5], Seite R69.

[Seite 81↓]

[31] Flemming, B.; Arenz, N.; Steer, K.; Wronski, T. und Persson, P. B. (2001): Time dependent autoregulation of renal blood flow in conscious rats, J.Am.Soc.Nephrol. 12 [1], Seite 2253-2262.

[32] Flemming, B.; Seeliger, E.; Wronski, T.; Steer, K.; Arenz, N. und Persson, P. B. (2000): Oxygen and renal hemodynamics in the conscious rat, J.Am.Soc.Nephrol. 11, Seite 18-24.

[33] Frangos, J. A.; Huang, T. Y. und Clark, C. B. (1996): Steady shear and step changes in shear stimulate endothelium via independent mechanisms-superposition of transient and sustained nitric oxide production, Biochem.Biophys.Res.Commun. 224, Seite 660-665.

[34] Gardiner, S. M.; Kemp, P. A.; March, J. E. und Bennett, T. (1993): Regional haemodynamic effects of angiotensin II (3-8) in conscious rats, Br.J.Pharmacol. 110, Seite 159-162.

[35] Given, M. B.; Lowe, R. F.; Lippton, H.; Hyman, A. L.; Sander, G. E. und Giles, T. D. (1989): Hemodynamic actions of endothelin in conscious and anesthetized dogs, Peptides 10 [1], Seite 41-44.

[36] Golin, R.; Genovesi, S.; Castoldi, G.; Wijnmaalen, P.; Protasoni, G.; Zanchetti, A. und Stella, A. (1999): Role of the renal nerves and angiotensin II in the renal function curve, Arch.Ital.Biol. 137 [4], Seite 289-297.

[37] Grabowski, E. F.; Jaffe, E. A. und Weksler, B. B. (1985): Prostacyclin production by cultured endothelial cell monolayers exposed to step increases in shear stress, J.Lab Clin.Med. 105 [1], Seite 36-43.

[38] Gross, V.; Lippoldt, A.; Schneider, W. und Luft, F. C. (1995): Effect of captopril and angiotensin II receptor blockade on pressure natriuresis in transgenic TGR(mRen-2)27 rats, Hypertension 26 [3], Seite 471-479.

[39] Haidekker, M. A.; L'Heureux, N. und Frangos, J. A. (2000): Fluid shear stress increases membrane fluidity in endothelial cells: a study with DCVJ fluorescence, Am.J.Physiol. Heart Circ.Physiol. 278 [4], Seite H1401-H1406.

[Seite 82↓]

[40] Harrison-Bernard, L. M. und Navar, L. G. (1996): Renal cortical and medullary microvascular blood flow autoregulation in rat, Kidney Int.Suppl. 57, Seite S23-S29.

[41] Hellebrekers, L. J.; Liard, J. F.; Laborde, A. L.; Greene, A. S. und Cowley, A. W., Jr. (1990): Regional autoregulatory responses during infusion of vasoconstrictor agents in conscious dogs, Am.J.Physiol. 259 [4 Pt 2], Seite H1270-H1277.

[42] Heller, J. und Horacek, V. (1979): Autoregulation of superficial nephron function in the alloperfused dog kidney, Pflügers Archiv 382 [1], Seite 99-104.

[43] Henrion, D.; Iglarz, M. und Levy, B. I. (1999): Chronic endothelin-1 improves nitric oxide-dependent flow-induced dilation in resistance arteries from normotensive and hypertensive rats, Arterioscler.Thromb.Vasc.Biol. 19 [9], Seite 2148-2153.

[44] Heyman, S. N.; Goldfarb, M.; Carmeli, F.; Shina, A.; Rahmilewitz, D. und Brezis, M. (1998): Effect of radiocontrast agents on intrarenal nitric oxide (NO) and NO synthase activity, Exp.Nephrol. 6, Seite 557-562.

[45] Holstein-Rathlou, N. H. und Marsh, D. J. (1990): A dynamic model of the tubuloglomerular feedback mechanism, Am.J.Physiol. 258, Seite F1448-F1459.

[46] Holstein-Rathlou, N. H. und Marsh, D. J. (1994): A dynamic model of renal blood flow autoregulation, Bull.Math.Biol. 56, Seite 411-429.

[47] Holstein-Rathlou, N. H.; Wagner, A. J. und Marsh, D. J. (1991): Tubuloglomerular feedback dynamics and renal blood flow autoregulation in rats, Am.J.Physiol. 260, Seite F53-F68.

[48] Hutcheson, I. R. und Griffith, T. M. (1994): Heterogeneous populations of K+ channels mediate EDRF release to flow but not agonists in rabbit aorta, Am.J.Physiol. 266 [2 Pt 2], Seite H590-H596.

[49] Ichihara, A.; Imig, J. D. und Navar, L. G. (1999): Cyclooxygenase-2 modulates afferent arteriolar responses to increases in pressure, Hypertension 34 [4II], Seite 843-847.

[Seite 83↓]

[50] Imig, J. D.; Navar, L. G.; Roman, R. J.; Reddy, K. K. und Falck, J. R. (1996): Actions of epoxygenase metabolites on the preglomerular vasculature, J.Am.Soc.Nephrol. 7, Seite 2364-2370.

[51] Imig, J. D. und Roman, R. J. (1992): Nitric oxide modulates vascular tone in preglomerular arterioles, Hypertension 19, Seite 770-774.

[52] Ito, B. R.; Libraty, D. H. und Engler, R. L. (1991): Effect of transient coronary occlusion on coronary blood flow autoregulation, vasodilator reserve and response to adenosine in the dog, J.Am.Coll.Cardiol. 18 [3], Seite 858-867.

[53] Ito, S. (1998): Characteristics of isolated perfused juxtaglomerular apparatus, Kidney Int.Suppl. 67, Seite S46-S48.

[54] Iversen, B. M.; Sekse, I. und Ofstad, J. (1987): Resetting of renal blood flow autoregulation in spontaneously hypertensive rats, Am.J.Physiol. 252 [3 Pt 2], Seite F480-F486.

[55] Jackson, T. E.; Guyton, A. C. und Hall, J. E. (1977): Transient response of glomerular filtration rate and renal blood flow to step changes in arterial pressure, Am.J.Physiol. 233 [5], Seite F396-F402.

[56] Just, A.; Ehmke, H. ; Toktomambetova, L. und Kirchheim, H. R. (2001): Dynamic characteristics and underlying mechanisms of renal blood flow autoregulation in the conscious dog, Am.J.Physiol Renal Physiol. 280 [6], Seite F1062-F1071.

[57] Just, A.; Ehmke, H. ; Wittmann, U. und Kirchheim, H. R. (1999): Tonic and phasic influences of nitric oxide on renal blood flow autoregulation in conscious dogs, Am.J.Physiol. 276 [3 Pt 2], Seite F442-F449.

[58] Just, A.; Wittmann, U.; Ehmke, H. und Kirchheim, H. R. (1998): Autoregulation of renal blood flow in the conscious dog and the contribution of the tubuloglomerular feedback, J.Physiol.(Lond) 506, Seite 275-290.

[59] Karlsen, F. M.; Andersen, C. B.; Leyssac, P. P. und Holstein-Rathlou, N. H. (1997): Dynamic autoregulation and renal injury in Dahl rats, Hypertension 30, Seite 975-983.

[Seite 84↓]

[60] Kernick, D. P.; Tooke, J. E. und Shore, A. C. (1999): The biological zero signal in laser Doppler fluximetry - origins and practical implications, Pflügers Archiv 437 [4], Seite 624-631.

[61] Kirton, C. A. und Loutzenhiser, R. (1998): Alterations in basal protein kinase C activity modulate renal afferent arteriolar myogenic reactivity, Am.J.Physiol. 275 [2 Pt 2], Seite H467-H475.

[62] Kramp, R. A.; Genard, J.; Fourmanoir, P; Caron, N; Laekeman, G. und Herman, A. (1995): Renal hemodynamics and blood flow autoregulation during acute cyclooxygenase inhibition in male rats, Am.J.Physiol. 268, Seite F468-F479.

[63] Liu, J. L.; Murakami, H. und Zucker, I. H. (1998): Angiotensin II-nitric oxide interaction on sympathetic outflow in conscious rabbits, Circ.Res. 82 [4], Seite 496-502.

[64] Loutzenhiser, R.; Bidani, A. und Chilton, L. (2002): Renal myogenic response: kinetic attributes and physiological role, Circ.Res. 90 [12], Seite 1316-1324.

[65] Loutzenhiser, R.; Hayashi, K. und Epstein, M. (1989): Divergent effects of KCl-induced depolarization on afferent and efferent arterioles, Am.J.Physiol. 257 [4 Pt 2], Seite F561-F564.

[66] Majid, D. S.; Said, K. E.; Omoro, S. A. und Navar, L. G. (2001): Nitric oxide dependency of arterial pressure-induced changes in renal interstitial hydrostatic pressure in dogs, Circ.Res. 88 [3], Seite 347-351.

[67] Malek, A. und Izumo, S. (1992): Physiological fluid shear stress causes downregulation of endothelin-1 mRNA in bovine aortic endothelium, Am.J.Physiol. 263 [2 Pt 1], Seite C389-C396.

[68] Marshall, J. M. (2000): Adenosine and muscle vasodilatation in acute systemic hypoxia, Acta Physiol. Scand. 168 [4], Seite 561-573.

[Seite 85↓]

[69] Matrougui, K.; Levy, B. I. und Henrion, D. (2000): Tissue angiotensin II and endothelin-1 modulate differently the response to flow in mesenteric resistance arteries of normotensive and spontaneously hypertensive rats, Br.J.Pharmacol. 130 [3], Seite 521-526.

[70] Miura, K.; Yukimura, T.; Yamashita, Y.; Shimmen, T.; Okumura, M.; Yamanaka, S. ; Imanishi, M. und Yamamoto, K. (1991): Renal and femoral vascular responses to endothelin-1 in dogs: role of prostaglandins, J.Pharmacol.Exp.Ther. 256 [1], Seite 11-17.

[71] Morawietz, H.; Talanow, R.; Szibor, M.; Rueckschloss, U.; Schubert, A.; Bartling, B.; Darmer, D. und Holtz, J. (2000): Regulation of the endothelin system by shear stress in human endothelial cells, J.Physiol. 525 Pt 3, Seite 761-770.

[72] Nafz, B.; Ehmke, H. ; Wagner, C. D.; Kirchheim, H. R. und Persson, P. B. (1998): Blood pressure variability and urine flow in the conscious dog, Am.J.Physiol. 274 [4 Pt 2], Seite F680-F686.

[73] Nafz, B.; Stegemann, J.; Bestle, M. H.; Richter, N.; Seeliger, E.; Schimke, I. ; Reinhardt, H. W. und Persson, P. B. (2000): Antihypertensive effect of 0.1-Hz blood pressure oscillations to the kidney, Circulation 101, Seite 553-557.

[74] Nakata, M.; Tatsumi, E.; Tsukiya, T.; Taenaka, Y.; Nishimura, T.; Nishinaka, T.; Takano, H.; Masuzawa, T. und Ohba, K. (1999): Augmentative effect of pulsatility on the wall shear stress in tube flow, Artif.Organs 23, Seite 727-731.

[75] Navar, L. G.; Bell, P. D. und Burke, T. J. (1982): Role of a macula densa feedback mechanism as a mediator of renal autoregulation, Kidney Int.Suppl. 12 [1], Seite S157-S164.

[76] Navar, L. G.; Inscho, E. W.; Imig, J. D. und Mitchell, K. D. (1998): Heterogeneous activation mechanisms in the renal microvasculature, Kidney Int.Suppl. 67, Seite S17-S21.

[77] Nishiyama, A.; Majid, D. S.; Taher, K. A.; Miyatake, A. und Navar, L. G. (2000): Relation between renal interstitial ATP concentrations and autoregulation-mediated changes in renal vascular resistance, Circ.Res. 86 [6], Seite 656-662.

[Seite 86↓]

[78] Nishiyama, A.; Majid, D. S.; Walker, M., III; Miyatake, A. und Navar, L. G. (2001): Renal interstitial ATP responses to changes in arterial pressure during alterations in tubuloglomerular feedback activity, Hypertension 37 [2], Seite 753-759.

[79] Parekh, N. und Zou, A. P. (1996): Role of prostaglandins in renal medullary circulation: response to different vasoconstrictors, Am.J.Physiol. 271 [3 Pt 2], Seite F653-F658.

[80] Persson, P.; Ehmke, H. und Kirchheim, H. (1988): Influence of the renin-angiotensin system on the autoregulation of renal blood flow and glomerular filtration rate in conscious dogs, Acta Physiol. Scand. 134 [1], Seite 1-7.

[81] Persson, P. B.; Ehmke, H.; Kirchheim, H. R.; Janssen, B.; Baumann, J. E.; Just, A. und Nafz, B. (1993): Autoregulation and non-homeostatic behaviour of renal blood flow in conscious dogs, J.Physiol. 462, Seite 261-273.

[82] Pohl, U.; Herlan, K.; Huang, A. und Bassenge, E. (1991): EDRF-mediated shear-induced dilation opposes myogenic vasoconstriction in small rabbit arteries, Am.J.Physiol. 261 [6 Pt 2], Seite H2016-H2023.

[83] Popp, R.; Fleming, I. und Busse, R. (1998): Pulsatile stretch in coronary arteries elicits release of endothelium-derived hyperpolarizing factor: a modulator of arterial compliance, Circ.Res. 82 [6], Seite 696-703.

[84] Qiu, Y. und Tarbell, J. M. (2000): Interaction between wall shear stress and circumferential strain affects endothelial cell biochemical production, J.Vasc.Res. 37 [3], Seite 147-157.

[85] Raczka, E. und Quintana, A. (1999): Effects of intravenous administration of prostacyclin on regional blood circulation in awake rats, Br.J.Pharmacol. 126 [6], Seite 1325-1332.

[86] Ren, Y.; Garvin, J. L. und Carretero, O. A. (2001): Efferent arteriole tubuloglomerular feedback in the renal nephron, Kidney Int. 59 [1], Seite 222-229.

[87] Roman, R. J. und Smits, C. (1986): Laser-Doppler determination of papillary blood flow in young and adult rats, Am.J.Physiol. 251, Seite F115-F124.

[Seite 87↓]

[88] Schnermann, J. und Levine, D. Z. (2003): Paracrine factors in tubuloglomerular feedback: adenosine, ATP, and nitric oxide, Annu.Rev.Physiol. 65, Seite 501-529.

[89] Schreiner, W.; Neumann, F.; Karch, R.; Neumann, M.; Roedler, S. M. und End, A. (1999): Shear stress distribution in arterial tree models, generated by constrained constructive optimization, J.Theor.Biol. 198, Seite 27-45.

[90] Schubert, R. und Mulvany, M. J. (1999): The myogenic response: established facts and attractive hypotheses, Clin.Sci.(Colch.) 96 [4], Seite 313-326.

[91] Shearer, J. R.; Norman, J. N.; MacIntyre, J. und Smith, G. (1970): The effects of hypoxia and hyperoxia on renal blood-flow, Br.J.Surg. 57, Seite 851.

[92] Siegel, G.; Malmsten, M. und Schmidt, A. (1996): Flow sensing at the endothelial cell membrane-blood interface, J.Membrane Sci. 113, Seite 101-113.

[93] Sorensen, C. M.; Leyssac, P. P.; Skott, O. und Holstein-Rathlou, N. H. (2000): Role of the renin-angiotensin system in regulation and autoregulation of renal blood flow, Am.J.Physiol. Regul.Integr.Comp.Physiol. 279 [3], Seite R1017-R1024.

[94] Stella, A.; Calaresu, F. und Zanchetti, A. (1976): Neural factors contributing to renin release during reduction in renal perfusion pressure and blood flow in cats, Clin.Sci.Mol.Med. 51 [5], Seite 453-461.

[95] Strick, D. M.; Fiksen-Olsen, M. J.; Lockhart, J. C.; Roman, R. J. und Romero, J. C. (1994): Direct measurement of renal medullary blood flow in the dog , Am.J.Physiol. 267, Seite R253-R259.

[96] Taguchi, Y.; Kaminogo, M. und Austin, G. M. (1984): Autoregulation of cortical blood flow and oxygen tension in the rabbit, Neurol.Res. 6 [4], Seite 159-162.

[97] Takeuchi, T.; Horiuchi, J.; Terada, N.; Nagao, M. und Terajima, H. (1992): Effects of hypoxia, hyperoxia and hypercapnia on graded cerebral ischemic responses in rabbits, Am.J.Physiol. 263, Seite H1839-H1846.

[Seite 88↓]

[98] Turkstra, E.; Braam, B. und Koomans, H. A. (2000): Impaired renal blood flow autoregulation in two-kidney, one-clip hypertensive rats is caused by enhanced activity of nitric oxide, J.Am.Soc.Nephrol. 11 [5], Seite 847-855.

[99] Ulfendahl, H. R.; Ericson, A. C.; Goransson, A.; Kallskog, O. und Sjoquist, M. (1982): The tubulo-glomerular feedback mechanism-a determinant for the autoregulation of the glomerular filtration rate in superficial and juxtamedullary nephrons , Klin.Wochenschr. 60 [18], Seite 1071-1076.

[100] Walker, M., III; Harrison-Bernard, L. M.; Cook, A. K. und Navar, L. G. (2000): Dynamic interaction between myogenic and TGF mechanisms in afferent arteriolar blood flow autoregulation [In Process Citation], Am.J.Physiol. Renal Physiol. 279 [5], Seite F858-F865.

[101] Wang, C. T.; Chin, S. Y. und Navar, L. G. (2000): Impairment of pressure-natriuresis and renal autoregulation in ANG II-infused hypertensive rats, Am.J.Physiol. Renal Physiol. 279 [2], Seite F319-F325.

[102] Wang, D. H.; Prewitt, R. L. und Reilly, C. K. (1993): Altered local regulation of blood flow and shear rate in renal hypertension, Am.J.Hypertens. 6 [10], Seite 851-856.

[103] Wang, X.; Ajikobi, D. O.; Salevsky, F. C. und Cupples, W. A. (2000): Impaired myogenic autoregulation in kidneys of Brown Norway rats, Am.J.Physiol. Renal Physiol. 278 [6], Seite F962-F969.

[104] Wang, X.; Aukland, K.; Ofstad, J. und Iversen, B. M. (1995): Autoregulation of zonal glomerular filtration rate and renal blood flow in spontaneously hypertensive rats, Am.J.Physiol. 269 [4 Pt 2], Seite F515-F521.

[105] Wang, X. und Loutzenhiser, R. (2002): Determinants of renal microvascular response to ACh: afferent and efferent arteriolar actions of EDHF, Am.J.Physiol. Renal Physiol. 282 [1], Seite F124-F132.

[106] Welch, W. J. (2002): Adenosine A1 receptor antagonists in the kidney: effects in fluid-retaining disorders, Curr.Opin.Pharmacol. 2, Seite 165-170.

[Seite 89↓]

[107] Wende, P.; Strauch, M.; Unger, T.; Gretz, N. und Rohmeiss, P. (1993): [Autoregulation of kidney circulation, glomerular filtration rate and plasma renin activity in spontaneously hypertensive rats and normotensive Wistar rats]Autoregulation der Nierendurchblutung, der glomerularen Filtrationsrate und der Plasmareninaktivitat in spontan hypertensiven Ratten und normotensiven Wistar-Ratten, Med.Klin. 88 [4], Seite 207-211.

[108] Winton, F. R. (1956): The pressure and flows of blood and urine within the kidney, J.&A. Churchill Ltd. Modern views on the secretion of Urine, London, Seite 61-95.

[109] Yamamoto, K.; Korenaga, R.; Kamiya, A. und Ando, J. (2000): Fluid shear stress activates Ca(2+) influx into human endothelial cells via P2X4 purinoceptors, Circ.Res. 87 [5], Seite 385-391.

[110] Yip, K. P.; Holstein-Rathlou, N. H. und Marsh, D. J. (1993): Mechanisms of temporal variation in single-nephron blood flow in rats , Am.J.Physiol. 264, Seite F427-F434.

[111] Ziegler, T.; Bouzourene, K.; Harrison, V. J.; Brunner, H. R. und Hayoz, D. (1998): Influence of oscillatory and unidirectional flow environments on the expression of endothelin and nitric oxide synthase in cultured endothelial cells, Arterioscler.Thromb.Vasc.Biol. 18 [5], Seite 686-692.

[112] Zou, A. P.; Imig, J. D.; Kaldunski, M.; Ortiz de Montellano, P. R.; Sui, Z. und Roman, R. J. (1994): Inhibition of renal vascular 20-HETE production impairs autoregulation of renal blood flow, Am.J.Physiol. 266 [2 Pt 2], Seite F275-F282.

© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 4.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am: