[1] Vogelstein, B. and Kinzler, K. W. (1993): The multistep nature of cancer, Trends Genet, (vol. 9), No. 4, pp.138-41.

[2] Hanahan, D. and Weinberg, R. A. (2000): The hallmarks of cancer, Cell, (vol. 100), No. 1, pp.57-70.

[3] Sherr, C. J. and Roberts, J. M. (1995): Inhibitors of mammalian G1 cyclin-dependent kinases, Genes Dev, (vol. 9), No. 10, pp.1149-63.

[4] Edgar, B. A. and Lehner, C. F. (1996): Developmental control of cell cycle regulators: a fly's perspective, Science, (vol. 274), No. 5293, pp.1646-52.

[5] Massague, J. (2004): G1 cell-cycle control and cancer, Nature, (vol. 432), No. 7015, pp.298-306.

[6] Pardee, A. B. (1974): A restriction point for control of normal animal cell proliferation, Proc Natl Acad Sci U S A, (vol. 71), No. 4, pp.1286-90.

[7] Gad, A.; Thullberg, M.; Dannenberg, J. H.; te Riele, H. and Stromblad, S. (2004): Retinoblastoma susceptibility gene product (pRb) and p107 functionally separate the requirements for serum and anchorage in the cell cycle G1-phase, J Biol Chem, (vol. 279), No. 14, pp.13640-4.

[8] Larsson, O.; Zetterberg, A. and Engstrom, W. (1985): Cell-cycle-specific induction of quiescence achieved by limited inhibition of protein synthesis: counteractive effect of addition of purified growth factors, J Cell Sci, (vol. 73), pp.375-87.

[9] Hayflick, L. and Moorhead, P. S. (1961): The serial cultivation of human diploid cell strains, Exp Cell Res, (vol. 25), pp.585-621.

[10] Hayflick, L. (1965): The Limited in Vitro Lifetime of Human Diploid Cell Strains, Exp Cell Res, (vol. 37), pp.614-36.

[11] Campisi, J. and d'Adda di Fagagna, F. (2007): Cellular senescence: when bad things happen to good cells, Nat Rev Mol Cell Biol, (vol. 8), No. 9, pp.729-40.

[12] Pledger, W. J.; Stiles, C. D.; Antoniades, H. N. and Scher, C. D. (1977): Induction of DNA synthesis in BALB/c 3T3 cells by serum components: reevaluation of the commitment process, Proc Natl Acad Sci U S A, (vol. 74), No. 10, pp.4481-5.

[13] Sherr, C. J. and McCormick, F. (2002): The RB and p53 pathways in cancer, Cancer Cell, (vol. 2), No. 2, pp.103-12.

[14] Dowdy, S. F.; Hinds, P. W.; Louie, K.; Reed, S. I.; Arnold, A. and Weinberg, R. A. (1993): Physical interaction of the retinoblastoma protein with human D cyclins, Cell, (vol. 73), No. 3, pp.499-511.

[15] Sherr, C. J. and Roberts, J. M. (1999): CDK inhibitors: positive and negative regulators of G1-phase progression, Genes Dev, (vol. 13), No. 12, pp.1501-12.

[16] Kaelin, W. G., Jr.; Ewen, M. E. and Livingston, D. M. (1990): Definition of the minimal simian virus 40 large T antigen- and adenovirus E1A-binding domain in the retinoblastoma gene product, Mol Cell Biol, (vol. 10), No. 7, pp.3761-9.

[17] Kaelin, W. G., Jr.; Pallas, D. C.; DeCaprio, J. A.; Kaye, F. J. and Livingston, D. M. (1991): Identification of cellular proteins that can interact specifically with the T/E1A-binding region of the retinoblastoma gene product, Cell, (vol. 64), No. 3, pp.521-32.

[18] Mulligan, G. and Jacks, T. (1998): The retinoblastoma gene family: cousins with overlapping interests, Trends Genet, (vol. 14), No. 6, pp.223-9.

[19] Trimarchi, J. M. and Lees, J. A. (2002): Sibling rivalry in the E2F family, Nat Rev Mol Cell Biol, (vol. 3), No. 1, pp.11-20.

[20] Flemington, E. K.; Speck, S. H. and Kaelin, W. G., Jr. (1993): E2F-1-mediated transactivation is inhibited by complex formation with the retinoblastoma susceptibility gene product, Proc Natl Acad Sci U S A, (vol. 90), No. 15, pp.6914-8.

[21] Magnaghi-Jaulin, L.; Groisman, R.; Naguibneva, I.; Robin, P.; Lorain, S.; Le Villain, J. P.; Troalen, F.; Trouche, D. and Harel-Bellan, A. (1998): Retinoblastoma protein represses transcription by recruiting a histone deacetylase, Nature, (vol. 391), No. 6667, pp.601-5.

[22] Brehm, A.; Miska, E. A.; McCance, D. J.; Reid, J. L.; Bannister, A. J. and Kouzarides, T. (1998): Retinoblastoma protein recruits histone deacetylase to repress transcription, Nature, (vol. 391), No. 6667, pp.597-601.

[23] Zhang, H. S.; Gavin, M.; Dahiya, A.; Postigo, A. A.; Ma, D.; Luo, R. X.; Harbour, J. W. and Dean, D. C. (2000): Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF, Cell, (vol. 101), No. 1, pp.79-89.

[24] Rayman, J. B.; Takahashi, Y.; Indjeian, V. B.; Dannenberg, J. H.; Catchpole, S.; Watson, R. J.; te Riele, H. and Dynlacht, B. D. (2002): E2F mediates cell cycle-dependent transcriptional repression in vivo by recruitment of an HDAC1/mSin3B corepressor complex, Genes Dev, (vol. 16), No. 8, pp.933-47.

[25] Nagl, N. G., Jr.; Wang, X.; Patsialou, A.; Van Scoy, M. and Moran, E. (2007): Distinct mammalian SWI/SNF chromatin remodeling complexes with opposing roles in cell-cycle control, Embo J, (vol. 26), No. 3, pp.752-63.

[26] Ewen, M. E.; Sluss, H. K.; Sherr, C. J.; Matsushime, H.; Kato, J. and Livingston, D. M. (1993): Functional interactions of the retinoblastoma protein with mammalian D-type cyclins, Cell, (vol. 73), No. 3, pp.487-97.

[27] Kato, J.; Matsushime, H.; Hiebert, S. W.; Ewen, M. E. and Sherr, C. J. (1993): Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4, Genes Dev, (vol. 7), No. 3, pp.331-42.

[28] Giacinti, C. and Giordano, A. (2006): RB and cell cycle progression, Oncogene, (vol. 25), No. 38, pp.5220-7.

[29] Weinberg, R. A. (1995): The retinoblastoma protein and cell cycle control, Cell, (vol. 81), No. 3, pp.323-30.

[30] Takahashi, Y.; Rayman, J. B. and Dynlacht, B. D. (2000): Analysis of promoter binding by the E2F and pRB families in vivo: distinct E2F proteins mediate activation and repression, Genes Dev, (vol. 14), No. 7, pp.804-16.

[31] Taubert, S.; Gorrini, C.; Frank, S. R.; Parisi, T.; Fuchs, M.; Chan, H. M.; Livingston, D. M. and Amati, B. (2004): E2F-dependent histone acetylation and recruitment of the Tip60 acetyltransferase complex to chromatin in late G1, Mol Cell Biol, (vol. 24), No. 10, pp.4546-56.

[32] Tyagi, S.; Chabes, A. L.; Wysocka, J. and Herr, W. (2007): E2F activation of S phase promoters via association with HCF-1 and the MLL family of histone H3K4 methyltransferases, Mol Cell, (vol. 27), No. 1, pp.107-19.

[33] Blais, A. and Dynlacht, B. D. (2007): E2F-associated chromatin modifiers and cell cycle control, Curr Opin Cell Biol, (vol. 19), No. 6, pp.658-62.

[34] Benedict, W. F.; Murphree, A. L.; Banerjee, A.; Spina, C. A.; Sparkes, M. C. and Sparkes, R. S. (1983): Patient with 13 chromosome deletion: evidence that the retinoblastoma gene is a recessive cancer gene, Science, (vol. 219), No. 4587, pp.973-5.

[35] Sparkes, R. S.; Murphree, A. L.; Lingua, R. W.; Sparkes, M. C.; Field, L. L.; Funderburk, S. J. and Benedict, W. F. (1983): Gene for hereditary retinoblastoma assigned to human chromosome 13 by linkage to esterase D, Science, (vol. 219), No. 4587, pp.971-3.

[36] Godbout, R.; Dryja, T. P.; Squire, J.; Gallie, B. L. and Phillips, R. A. (1983): Somatic inactivation of genes on chromosome 13 is a common event in retinoblastoma, Nature, (vol. 304), No. 5925, pp.451-3.

[37] Knudson, A. G., Jr. (1971): Mutation and cancer: statistical study of retinoblastoma, Proc Natl Acad Sci U S A, (vol. 68), No. 4, pp.820-3.

[38] Matsunaga, E. (1980): On estimating penetrance of the retinoblastoma gene, Hum Genet, (vol. 56), No. 1, pp.127-8.

[39] Goodrich, D. W. and Lee, W. H. (1993): Molecular characterization of the retinoblastoma susceptibility gene, Biochim Biophys Acta, (vol. 1155), No. 1, pp.43-61.

[40] Harbour, J. W.; Lai, S. L.; Whang-Peng, J.; Gazdar, A. F.; Minna, J. D. and Kaye, F. J. (1988): Abnormalities in structure and expression of the human retinoblastoma gene in SCLC, Science, (vol. 241), No. 4863, pp.353-7.

[41] Horowitz, J. M.; Park, S. H.; Bogenmann, E.; Cheng, J. C.; Yandell, D. W.; Kaye, F. J.; Minna, J. D.; Dryja, T. P. and Weinberg, R. A. (1990): Frequent inactivation of the retinoblastoma anti-oncogene is restricted to a subset of human tumor cells, Proc Natl Acad Sci U S A, (vol. 87), No. 7, pp.2775-9.

[42] Wadayama, B.; Toguchida, J.; Shimizu, T.; Ishizaki, K.; Sasaki, M. S.; Kotoura, Y. and Yamamuro, T. (1994): Mutation spectrum of the retinoblastoma gene in osteosarcomas, Cancer Res, (vol. 54), No. 11, pp.3042-8.

[43] Nielsen, N. H.; Loden, M.; Cajander, J.; Emdin, S. O. and Landberg, G. (1999): G1-S transition defects occur in most breast cancers and predict outcome, Breast Cancer Res Treat, (vol. 56), No. 2, pp.105-12.

[44] Dunn, J. M.; Phillips, R. A.; Becker, A. J. and Gallie, B. L. (1988): Identification of germline and somatic mutations affecting the retinoblastoma gene, Science, (vol. 241), No. 4874, pp.1797-800.

[45] Kamb, A.; Shattuck-Eidens, D.; Eeles, R.; Liu, Q.; Gruis, N. A.; Ding, W.; Hussey, C.; Tran, T.; Miki, Y.; Weaver-Feldhaus, J. and et al. (1994): Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus, Nat Genet, (vol. 8), No. 1, pp.23-6.

[46] Ruas, M. and Peters, G. (1998): The p16INK4a/CDKN2A tumor suppressor and its relatives, Biochim Biophys Acta, (vol. 1378), No. 2, pp.F115-77.

[47] Liu, H.; Dibling, B.; Spike, B.; Dirlam, A. and Macleod, K. (2004): New roles for the RB tumor suppressor protein, Curr Opin Genet Dev, (vol. 14), No. 1, pp.55-64.

[48] Jacks, T.; Fazeli, A.; Schmitt, E. M.; Bronson, R. T.; Goodell, M. A. and Weinberg, R. A. (1992): Effects of an Rb mutation in the mouse, Nature, (vol. 359), No. 6393, pp.295-300.

[49] Lee, M. H.; Williams, B. O.; Mulligan, G.; Mukai, S.; Bronson, R. T.; Dyson, N.; Harlow, E. and Jacks, T. (1996): Targeted disruption of p107: functional overlap between p107 and Rb, Genes Dev, (vol. 10), No. 13, pp.1621-32.

[50] Dannenberg, J. H.; Schuijff, L.; Dekker, M.; van der Valk, M. and te Riele, H. (2004): Tissue-specific tumor suppressor activity of retinoblastoma gene homologs p107 and p130, Genes Dev, (vol. 18), No. 23, pp.2952-62.

[51] MacPherson, D.; Sage, J.; Kim, T.; Ho, D.; McLaughlin, M. E. and Jacks, T. (2004): Cell type-specific effects of Rb deletion in the murine retina, Genes Dev, (vol. 18), No. 14, pp.1681-94.

[52] Wikenheiser-Brokamp, K. A. (2004): Rb family proteins differentially regulate distinct cell lineages during epithelial development, Development, (vol. 131), No. 17, pp.4299-310.

[53] Wu, L.; de Bruin, A.; Saavedra, H. I.; Starovic, M.; Trimboli, A.; Yang, Y.; Opavska, J.; Wilson, P.; Thompson, J. C.; Ostrowski, M. C.; Rosol, T. J.; Woollett, L. A.; Weinstein, M.; Cross, J. C.; Robinson, M. L. and Leone, G. (2003): Extra-embryonic function of Rb is essential for embryonic development and viability, Nature, (vol. 421), No. 6926, pp.942-7.

[54] Lee, E. Y.; Chang, C. Y.; Hu, N.; Wang, Y. C.; Lai, C. C.; Herrup, K.; Lee, W. H. and Bradley, A. (1992): Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis, Nature, (vol. 359), No. 6393, pp.288-94.

[55] Clarke, A. R.; Maandag, E. R.; van Roon, M.; van der Lugt, N. M.; van der Valk, M.; Hooper, M. L.; Berns, A. and te Riele, H. (1992): Requirement for a functional Rb-1 gene in murine development, Nature, (vol. 359), No. 6393, pp.328-30.

[56] Almasan, A.; Yin, Y.; Kelly, R. E.; Lee, E. Y.; Bradley, A.; Li, W.; Bertino, J. R. and Wahl, G. M. (1995): Deficiency of retinoblastoma protein leads to inappropriate S-phase entry, activation of E2F-responsive genes, and apoptosis, Proc Natl Acad Sci U S A, (vol. 92), No. 12, pp.5436-40.

[57] Herrera, R. E.; Sah, V. P.; Williams, B. O.; Makela, T. P.; Weinberg, R. A. and Jacks, T. (1996): Altered cell cycle kinetics, gene expression, and G1 restriction point regulation in Rb-deficient fibroblasts, Mol Cell Biol, (vol. 16), No. 5, pp.2402-7.

[58] Hurford, R. K., Jr.; Cobrinik, D.; Lee, M. H. and Dyson, N. (1997): pRB and p107/p130 are required for the regulated expression of different sets of E2F responsive genes, Genes Dev, (vol. 11), No. 11, pp.1447-63.

[59] Sage, J.; Mulligan, G. J.; Attardi, L. D.; Miller, A.; Chen, S.; Williams, B.; Theodorou, E. and Jacks, T. (2000): Targeted disruption of the three Rb-related genes leads to loss of G(1) control and immortalization, Genes Dev, (vol. 14), No. 23, pp.3037-50.

[60] Dannenberg, J. H.; van Rossum, A.; Schuijff, L. and te Riele, H. (2000): Ablation of the retinoblastoma gene family deregulates G(1) control causing immortalization and increased cell turnover under growth-restricting conditions, Genes Dev, (vol. 14), No. 23, pp.3051-64.

[61] Kovesdi, I.; Reichel, R. and Nevins, J. R. (1986): Identification of a cellular transcription factor involved in E1A trans-activation, Cell, (vol. 45), No. 2, pp.219-28.

[62] Reichel, R.; Kovesdi, I. and Nevins, J. R. (1987): Developmental control of a promoter-specific factor that is also regulated by the E1A gene product, Cell, (vol. 48), No. 3, pp.501-6.

[63] Bagchi, S.; Weinmann, R. and Raychaudhuri, P. (1991): The retinoblastoma protein copurifies with E2F-I, an E1A-regulated inhibitor of the transcription factor E2F, Cell, (vol. 65), No. 6, pp.1063-72.

[64] Bandara, L. R. and La Thangue, N. B. (1991): Adenovirus E1a prevents the retinoblastoma gene product from complexing with a cellular transcription factor, Nature, (vol. 351), No. 6326, pp.494-7.

[65] Chellappan, S. P.; Hiebert, S.; Mudryj, M.; Horowitz, J. M. and Nevins, J. R. (1991): The E2F transcription factor is a cellular target for the RB protein, Cell, (vol. 65), No. 6, pp.1053-61.

[66] Chittenden, T.; Livingston, D. M. and Kaelin, W. G., Jr. (1991): The T/E1A-binding domain of the retinoblastoma product can interact selectively with a sequence-specific DNA-binding protein, Cell, (vol. 65), No. 6, pp.1073-82.

[67] Whyte, P.; Buchkovich, K. J.; Horowitz, J. M.; Friend, S. H.; Raybuck, M.; Weinberg, R. A. and Harlow, E. (1988): Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product, Nature, (vol. 334), No. 6178, pp.124-9.

[68] Dyson, N.; Howley, P. M.; Munger, K. and Harlow, E. (1989): The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product, Science, (vol. 243), No. 4893, pp.934-7.

[69] Munger, K.; Werness, B. A.; Dyson, N.; Phelps, W. C.; Harlow, E. and Howley, P. M. (1989): Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product, Embo J, (vol. 8), No. 13, pp.4099-105.

[70] Girling, R.; Partridge, J. F.; Bandara, L. R.; Burden, N.; Totty, N. F.; Hsuan, J. J. and La Thangue, N. B. (1993): A new component of the transcription factor DRTF1/E2F, Nature, (vol. 362), No. 6415, pp.83-7.

[71] Dynlacht, B. D.; Brook, A.; Dembski, M.; Yenush, L. and Dyson, N. (1994): DNA-binding and trans-activation properties of Drosophila E2F and DP proteins, Proc Natl Acad Sci U S A, (vol. 91), No. 14, pp.6359-63.

[72] Ohtani, K. and Nevins, J. R. (1994): Functional properties of a Drosophila homolog of the E2F1 gene, Mol Cell Biol, (vol. 14), No. 3, pp.1603-12.

[73] Sawado, T.; Yamaguchi, M.; Nishimoto, Y.; Ohno, K.; Sakaguchi, K. and Matsukage, A. (1998): dE2F2, a novel E2F-family transcription factor in Drosophila melanogaster, Biochem Biophys Res Commun, (vol. 251), No. 2, pp.409-15.

[74] Lu, X. and Horvitz, H. R. (1998): lin-35 and lin-53, two genes that antagonize a C. elegans Ras pathway, encode proteins similar to Rb and its binding protein RbAp48, Cell, (vol. 95), No. 7, pp.981-91.

[75] Shen, W. H. (2002): The plant E2F-Rb pathway and epigenetic control, Trends Plant Sci, (vol. 7), No. 11, pp.505-11.

[76] Page, B. D.; Guedes, S.; Waring, D. and Priess, J. R. (2001): The C. elegans E2F- and DP-related proteins are required for embryonic asymmetry and negatively regulate Ras/MAPK signaling, Mol Cell, (vol. 7), No. 3, pp.451-60.

[77] Bracken, A. P.; Ciro, M.; Cocito, A. and Helin, K. (2004): E2F target genes: unraveling the biology, Trends Biochem Sci, (vol. 29), No. 8, pp.409-17.

[78] Zheng, N.; Fraenkel, E.; Pabo, C. O. and Pavletich, N. P. (1999): Structural basis of DNA recognition by the heterodimeric cell cycle transcription factor E2F-DP, Genes Dev, (vol. 13), No. 6, pp.666-74.

[79] Di Stefano, L.; Jensen, M. R. and Helin, K. (2003): E2F7, a novel E2F featuring DP-independent repression of a subset of E2F-regulated genes, Embo J, (vol. 22), No. 23, pp.6289-98.

[80] de Bruin, A.; Maiti, B.; Jakoi, L.; Timmers, C.; Buerki, R. and Leone, G. (2003): Identification and characterization of E2F7, a novel mammalian E2F family member capable of blocking cellular proliferation, J Biol Chem, (vol. 278), No. 43, pp.42041-9.

[81] Li, J.; Ran, C.; Li, E.; Gordon, F.; Comstock, G.; Siddiqui, H.; Cleghorn, W.; Chen, H. Z.; Kornacker, K.; Liu, C. G.; Pandit, S. K.; Khanizadeh, M.; Weinstein, M.; Leone, G. and de Bruin, A. (2008): Synergistic function of E2F7 and E2F8 is essential for cell survival and embryonic development, Dev Cell, (vol. 14), No. 1, pp.62-75.

[82] Helin, K.; Wu, C. L.; Fattaey, A. R.; Lees, J. A.; Dynlacht, B. D.; Ngwu, C. and Harlow, E. (1993): Heterodimerization of the transcription factors E2F-1 and DP-1 leads to cooperative trans-activation, Genes Dev, (vol. 7), No. 10, pp.1850-61.

[83] Bandara, L. R.; Buck, V. M.; Zamanian, M.; Johnston, L. H. and La Thangue, N. B. (1993): Functional synergy between DP-1 and E2F-1 in the cell cycle-regulating transcription factor DRTF1/E2F, Embo J, (vol. 12), No. 11, pp.4317-24.

[84] Helin, K.; Harlow, E. and Fattaey, A. (1993): Inhibition of E2F-1 transactivation by direct binding of the retinoblastoma protein, Mol Cell Biol, (vol. 13), No. 10, pp.6501-8.

[85] Morkel, M.; Wenkel, J.; Bannister, A. J.; Kouzarides, T. and Hagemeier, C. (1997): An E2F-like repressor of transcription, Nature, (vol. 390), No. 6660, pp.567-8.

[86] Attwooll, C.; Lazzerini Denchi, E. and Helin, K. (2004): The E2F family: specific functions and overlapping interests, Embo J, (vol. 23), No. 24, pp.4709-16.

[87] Trimarchi, J. M.; Fairchild, B.; Wen, J. and Lees, J. A. (2001): The E2F6 transcription factor is a component of the mammalian Bmi1-containing polycomb complex, Proc Natl Acad Sci U S A, (vol. 98), No. 4, pp.1519-24.

[88] Ogawa, H.; Ishiguro, K.; Gaubatz, S.; Livingston, D. M. and Nakatani, Y. (2002): A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells, Science, (vol. 296), No. 5570, pp.1132-6.

[89] Dyson, N. (1998): The regulation of E2F by pRB-family proteins, Genes Dev, (vol. 12), No. 15, pp.2245-62.

[90] Shirodkar, S.; Ewen, M.; DeCaprio, J. A.; Morgan, J.; Livingston, D. M. and Chittenden, T. (1992): The transcription factor E2F interacts with the retinoblastoma product and a p107-cyclin A complex in a cell cycle-regulated manner, Cell, (vol. 68), No. 1, pp.157-66.

[91] Ikeda, M. A.; Jakoi, L. and Nevins, J. R. (1996): A unique role for the Rb protein in controlling E2F accumulation during cell growth and differentiation, Proc Natl Acad Sci U S A, (vol. 93), No. 8, pp.3215-20.

[92] Moberg, K.; Starz, M. A. and Lees, J. A. (1996): E2F-4 switches from p130 to p107 and pRB in response to cell cycle reentry, Mol Cell Biol, (vol. 16), No. 4, pp.1436-49.

[93] Magae, J.; Wu, C. L.; Illenye, S.; Harlow, E. and Heintz, N. H. (1996): Nuclear localization of DP and E2F transcription factors by heterodimeric partners and retinoblastoma protein family members, J Cell Sci, (vol. 109 ( Pt 7)), pp.1717-26.

[94] Gaubatz, S.; Lees, J. A.; Lindeman, G. J. and Livingston, D. M. (2001): E2F4 is exported from the nucleus in a CRM1-dependent manner, Mol Cell Biol, (vol. 21), No. 4, pp.1384-92.

[95] Muller, H.; Moroni, M. C.; Vigo, E.; Petersen, B. O.; Bartek, J. and Helin, K. (1997): Induction of S-phase entry by E2F transcription factors depends on their nuclear localization, Mol Cell Biol, (vol. 17), No. 9, pp.5508-20.

[96] Verona, R.; Moberg, K.; Estes, S.; Starz, M.; Vernon, J. P. and Lees, J. A. (1997): E2F activity is regulated by cell cycle-dependent changes in subcellular localization, Mol Cell Biol, (vol. 17), No. 12, pp.7268-82.

[97] Xu, M.; Sheppard, K. A.; Peng, C. Y.; Yee, A. S. and Piwnica-Worms, H. (1994): Cyclin A/CDK2 binds directly to E2F-1 and inhibits the DNA-binding activity of E2F-1/DP-1 by phosphorylation, Mol Cell Biol, (vol. 14), No. 12, pp.8420-31.

[98] Hiebert, S. W.; Lipp, M. and Nevins, J. R. (1989): E1A-dependent trans-activation of the human MYC promoter is mediated by the E2F factor, Proc Natl Acad Sci U S A, (vol. 86), No. 10, pp.3594-8.

[99] Thalmeier, K.; Synovzik, H.; Mertz, R.; Winnacker, E. L. and Lipp, M. (1989): Nuclear factor E2F mediates basic transcription and trans-activation by E1a of the human MYC promoter, Genes Dev, (vol. 3), No. 4, pp.527-36.

[100] Blake, M. C. and Azizkhan, J. C. (1989): Transcription factor E2F is required for efficient expression of the hamster dihydrofolate reductase gene in vitro and in vivo, Mol Cell Biol, (vol. 9), No. 11, pp.4994-5002.

[101] Schulze, A.; Zerfass, K.; Spitkovsky, D.; Middendorp, S.; Berges, J.; Helin, K.; Jansen-Durr, P. and Henglein, B. (1995): Cell cycle regulation of the cyclin A gene promoter is mediated by a variant E2F site, Proc Natl Acad Sci U S A, (vol. 92), No. 24, pp.11264-8.

[102] Tommasi, S. and Pfeifer, G. P. (1995): In vivo structure of the human cdc2 promoter: release of a p130-E2F-4 complex from sequences immediately upstream of the transcription initiation site coincides with induction of cdc2 expression, Mol Cell Biol, (vol. 15), No. 12, pp.6901-13.

[103] Cress, W. D. and Nevins, J. R. (1996): Use of the E2F transcription factor by DNA tumor virus regulatory proteins, Curr Top Microbiol Immunol, (vol. 208), pp.63-78.

[104] Muller, H.; Bracken, A. P.; Vernell, R.; Moroni, M. C.; Christians, F.; Grassilli, E.; Prosperini, E.; Vigo, E.; Oliner, J. D. and Helin, K. (2001): E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis, Genes Dev, (vol. 15), No. 3, pp.267-85.

[105] Ishida, S.; Huang, E.; Zuzan, H.; Spang, R.; Leone, G.; West, M. and Nevins, J. R. (2001): Role for E2F in control of both DNA replication and mitotic functions as revealed from DNA microarray analysis, Mol Cell Biol, (vol. 21), No. 14, pp.4684-99.

[106] Ren, B.; Cam, H.; Takahashi, Y.; Volkert, T.; Terragni, J.; Young, R. A. and Dynlacht, B. D. (2002): E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints, Genes Dev, (vol. 16), No. 2, pp.245-56.

[107] Huang, E.; Ishida, S.; Pittman, J.; Dressman, H.; Bild, A.; Kloos, M.; D'Amico, M.; Pestell, R. G.; West, M. and Nevins, J. R. (2003): Gene expression phenotypic models that predict the activity of oncogenic pathways, Nat Genet, (vol. 34), No. 2, pp.226-30.

[108] Black, E. P.; Hallstrom, T.; Dressman, H. K.; West, M. and Nevins, J. R. (2005): Distinctions in the specificity of E2F function revealed by gene expression signatures, Proc Natl Acad Sci U S A, (vol. 102), No. 44, pp.15948-53.

[109] DeGregori, J. (2002): The genetics of the E2F family of transcription factors: shared functions and unique roles, Biochim Biophys Acta, (vol. 1602), No. 2, pp.131-50.

[110] DeGregori, J.; Leone, G.; Ohtani, K.; Miron, A. and Nevins, J. R. (1995): E2F-1 accumulation bypasses a G1 arrest resulting from the inhibition of G1 cyclin-dependent kinase activity, Genes Dev, (vol. 9), No. 23, pp.2873-87.

[111] Singh, P.; Wong, S. H. and Hong, W. (1994): Overexpression of E2F-1 in rat embryo fibroblasts leads to neoplastic transformation, Embo J, (vol. 13), No. 14, pp.3329-38.

[112] Xu, G.; Livingston, D. M. and Krek, W. (1995): Multiple members of the E2F transcription factor family are the products of oncogenes, Proc Natl Acad Sci U S A, (vol. 92), No. 5, pp.1357-61.

[113] Pierce, A. M.; Fisher, S. M.; Conti, C. J. and Johnson, D. G. (1998): Deregulated expression of E2F1 induces hyperplasia and cooperates with ras in skin tumor development, Oncogene, (vol. 16), No. 10, pp.1267-76.

[114] Vigo, E.; Muller, H.; Prosperini, E.; Hateboer, G.; Cartwright, P.; Moroni, M. C. and Helin, K. (1999): CDC25A phosphatase is a target of E2F and is required for efficient E2F-induced S phase, Mol Cell Biol, (vol. 19), No. 9, pp.6379-95.

[115] Yamasaki, L.; Bronson, R.; Williams, B. O.; Dyson, N. J.; Harlow, E. and Jacks, T. (1998): Loss of E2F-1 reduces tumorigenesis and extends the lifespan of Rb1(+/-)mice, Nat Genet, (vol. 18), No. 4, pp.360-4.

[116] Ziebold, U.; Reza, T.; Caron, A. and Lees, J. A. (2001): E2F3 contributes both to the inappropriate proliferation and to the apoptosis arising in Rb mutant embryos, Genes Dev, (vol. 15), No. 4, pp.386-91.

[117] DeGregori, J.; Leone, G.; Miron, A.; Jakoi, L. and Nevins, J. R. (1997): Distinct roles for E2F proteins in cell growth control and apoptosis, Proc Natl Acad Sci U S A, (vol. 94), No. 14, pp.7245-50.

[118] Lazzerini Denchi, E. and Helin, K. (2005): E2F1 is crucial for E2F-dependent apoptosis, EMBO Rep, (vol. 6), No. 7, pp.661-8.

[119] Opavsky, R.; Tsai, S. Y.; Guimond, M.; Arora, A.; Opavska, J.; Becknell, B.; Kaufmann, M.; Walton, N. A.; Stephens, J. A.; Fernandez, S. A.; Muthusamy, N.; Felsher, D. W.; Porcu, P.; Caligiuri, M. A. and Leone, G. (2007): Specific tumor suppressor function for E2F2 in Myc-induced T cell lymphomagenesis, Proc Natl Acad Sci U S A, (vol. 104), No. 39, pp.15400-5.

[120] Yamasaki, L.; Jacks, T.; Bronson, R.; Goillot, E.; Harlow, E. and Dyson, N. J. (1996): Tumor induction and tissue atrophy in mice lacking E2F-1, Cell, (vol. 85), No. 4, pp.537-48.

[121] Field, S. J.; Tsai, F. Y.; Kuo, F.; Zubiaga, A. M.; Kaelin, W. G., Jr.; Livingston, D. M.; Orkin, S. H. and Greenberg, M. E. (1996): E2F-1 functions in mice to promote apoptosis and suppress proliferation, Cell, (vol. 85), No. 4, pp.549-61.

[122] Ziebold, U.; Lee, E. Y.; Bronson, R. T. and Lees, J. A. (2003): E2F3 loss has opposing effects on different pRB-deficient tumors, resulting in suppression of pituitary tumors but metastasis of medullary thyroid carcinomas, Mol Cell Biol, (vol. 23), No. 18, pp.6542-52.

[123] Lees, J. A.; Saito, M.; Vidal, M.; Valentine, M.; Look, T.; Harlow, E.; Dyson, N. and Helin, K. (1993): The retinoblastoma protein binds to a family of E2F transcription factors, Mol Cell Biol, (vol. 13), No. 12, pp.7813-25.

[124] Leone, G.; Nuckolls, F.; Ishida, S.; Adams, M.; Sears, R.; Jakoi, L.; Miron, A. and Nevins, J. R. (2000): Identification of a novel E2F3 product suggests a mechanism for determining specificity of repression by Rb proteins, Mol Cell Biol, (vol. 20), No. 10, pp.3626-32.

[125] Adams, M. R.; Sears, R.; Nuckolls, F.; Leone, G. and Nevins, J. R. (2000): Complex transcriptional regulatory mechanisms control expression of the E2F3 locus, Mol Cell Biol, (vol. 20), No. 10, pp.3633-9.

[126] Leone, G.; DeGregori, J.; Yan, Z.; Jakoi, L.; Ishida, S.; Williams, R. S. and Nevins, J. R. (1998): E2F3 activity is regulated during the cell cycle and is required for the induction of S phase, Genes Dev, (vol. 12), No. 14, pp.2120-30.

[127] Humbert, P. O.; Verona, R.; Trimarchi, J. M.; Rogers, C.; Dandapani, S. and Lees, J. A. (2000): E2f3 is critical for normal cellular proliferation, Genes Dev, (vol. 14), No. 6, pp.690-703.

[128] Wu, L.; Timmers, C.; Maiti, B.; Saavedra, H. I.; Sang, L.; Chong, G. T.; Nuckolls, F.; Giangrande, P.; Wright, F. A.; Field, S. J.; Greenberg, M. E.; Orkin, S.; Nevins, J. R.; Robinson, M. L. and Leone, G. (2001): The E2F1-3 transcription factors are essential for cellular proliferation, Nature, (vol. 414), No. 6862, pp.457-62.

[129] Aslanian, A. (2005): Crosstalk between E2F3 and p19ARF7p53 in the regulation of cell cycle progression and tumorigenesis.

[130] Aslanian, A.; Iaquinta, P. J.; Verona, R. and Lees, J. A. (2004): Repression of the Arf tumor suppressor by E2F3 is required for normal cell cycle kinetics, Genes Dev, (vol. 18), No. 12, pp.1413-22.

[131] Sharma, N.; Timmers, C.; Trikha, P.; Saavedra, H. I.; Obery, A. and Leone, G. (2006): Control of the p53-p21CIP1 Axis by E2f1, E2f2, and E2f3 is essential for G1/S progression and cellular transformation, J Biol Chem, (vol. 281), No. 47, pp.36124-31.

[132] Timmers, C.; Sharma, N.; Opavsky, R.; Maiti, B.; Wu, L.; Wu, J.; Orringer, D.; Trikha, P.; Saavedra, H. I. and Leone, G. (2007): E2f1, E2f2, and E2f3 control E2F target expression and cellular proliferation via a p53-dependent negative feedback loop, Mol Cell Biol, (vol. 27), No. 1, pp.65-78.

[133] Schlisio, S.; Halperin, T.; Vidal, M. and Nevins, J. R. (2002): Interaction of YY1 with E2Fs, mediated by RYBP, provides a mechanism for specificity of E2F function, Embo J, (vol. 21), No. 21, pp.5775-86.

[134] Giangrande, P. H.; Hallstrom, T. C.; Tunyaplin, C.; Calame, K. and Nevins, J. R. (2003): Identification of E-box factor TFE3 as a functional partner for the E2F3 transcription factor, Mol Cell Biol, (vol. 23), No. 11, pp.3707-20.

[135] Giangrande, P. H.; Zhu, W.; Rempel, R. E.; Laakso, N. and Nevins, J. R. (2004): Combinatorial gene control involving E2F and E Box family members, Embo J, (vol. 23), No. 6, pp.1336-47.

[136] Cloud, J. E.; Rogers, C.; Reza, T. L.; Ziebold, U.; Stone, J. R.; Picard, M. H.; Caron, A. M.; Bronson, R. T. and Lees, J. A. (2002): Mutant mouse models reveal the relative roles of E2F1 and E2F3 in vivo, Mol Cell Biol, (vol. 22), No. 8, pp.2663-72.

[137] Lu, K. H.; Patterson, A. P.; Wang, L.; Marquez, R. T.; Atkinson, E. N.; Baggerly, K. A.; Ramoth, L. R.; Rosen, D. G.; Liu, J.; Hellstrom, I.; Smith, D.; Hartmann, L.; Fishman, D.; Berchuck, A.; Schmandt, R.; Whitaker, R.; Gershenson, D. M.; Mills, G. B. and Bast, R. C., Jr. (2004): Selection of potential markers for epithelial ovarian cancer with gene expression arrays and recursive descent partition analysis, Clin Cancer Res, (vol. 10), No. 10, pp.3291-300.

[138] Cooper, C. S.; Nicholson, A. G.; Foster, C.; Dodson, A.; Edwards, S.; Fletcher, A.; Roe, T.; Clark, J.; Joshi, A.; Norman, A.; Feber, A.; Lin, D.; Gao, Y.; Shipley, J. and Cheng, S. J. (2006): Nuclear overexpression of the E2F3 transcription factor in human lung cancer, Lung Cancer, (vol. 54), No. 2, pp.155-62.

[139] Foster, C. S.; Falconer, A.; Dodson, A. R.; Norman, A. R.; Dennis, N.; Fletcher, A.; Southgate, C.; Dowe, A.; Dearnaley, D.; Jhavar, S.; Eeles, R.; Feber, A. and Cooper, C. S. (2004): Transcription factor E2F3 overexpressed in prostate cancer independently predicts clinical outcome, Oncogene, (vol. 23), No. 35, pp.5871-9.

[140] Feber, A.; Clark, J.; Goodwin, G.; Dodson, A. R.; Smith, P. H.; Fletcher, A.; Edwards, S.; Flohr, P.; Falconer, A.; Roe, T.; Kovacs, G.; Dennis, N.; Fisher, C.; Wooster, R.; Huddart, R.; Foster, C. S. and Cooper, C. S. (2004): Amplification and overexpression of E2F3 in human bladder cancer, Oncogene, (vol. 23), No. 8, pp.1627-30.

[141] Oeggerli, M.; Tomovska, S.; Schraml, P.; Calvano-Forte, D.; Schafroth, S.; Simon, R.; Gasser, T.; Mihatsch, M. J. and Sauter, G. (2004): E2F3 amplification and overexpression is associated with invasive tumor growth and rapid tumor cell proliferation in urinary bladder cancer, Oncogene, (vol. 23), No. 33, pp.5616-23.

[142] Orlic, M.; Spencer, C. E.; Wang, L. and Gallie, B. L. (2006): Expression analysis of 6p22 genomic gain in retinoblastoma, Genes Chromosomes Cancer, (vol. 45), No. 1, pp.72-82.

[143] Olsson, A. Y.; Feber, A.; Edwards, S.; Te Poele, R.; Giddings, I.; Merson, S. and Cooper, C. S. (2007): Role of E2F3 expression in modulating cellular proliferation rate in human bladder and prostate cancer cells, Oncogene, (vol. 26), No. 7, pp.1028-37.

[144] Hurst, C. D.; Tomlinson, D. C.; Williams, S. V.; Platt, F. M. and Knowles, M. A. (2007): Inactivation of the Rb pathway and overexpression of both isoforms of E2F3 are obligate events in bladder tumours with 6p22 amplification, Oncogene.

[145] Chang, C.; Simmons, D. T.; Martin, M. A. and Mora, P. T. (1979): Identification and partial characterization of new antigens from simian virus 40-transformed mouse cells, J Virol, (vol. 31), No. 2, pp.463-71.

[146] Kress, M.; May, E.; Cassingena, R. and May, P. (1979): Simian virus 40-transformed cells express new species of proteins precipitable by anti-simian virus 40 tumor serum, J Virol, (vol. 31), No. 2, pp.472-83.

[147] Lane, D. P. and Crawford, L. V. (1979): T antigen is bound to a host protein in SV40-transformed cells, Nature, (vol. 278), No. 5701, pp.261-3.

[148] Linzer, D. I. and Levine, A. J. (1979): Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells, Cell, (vol. 17), No. 1, pp.43-52.

[149] Hinds, P.; Finlay, C. and Levine, A. J. (1989): Mutation is required to activate the p53 gene for cooperation with the ras oncogene and transformation, J Virol, (vol. 63), No. 2, pp.739-46.

[150] Soussi, T. and Lozano, G. (2005): p53 mutation heterogeneity in cancer, Biochem Biophys Res Commun, (vol. 331), No. 3, pp.834-42.

[151] Malkin, D.; Li, F. P.; Strong, L. C.; Fraumeni, J. F., Jr.; Nelson, C. E.; Kim, D. H.; Kassel, J.; Gryka, M. A.; Bischoff, F. Z.; Tainsky, M. A. and et al. (1990): Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms, Science, (vol. 250), No. 4985, pp.1233-8.

[152] Srivastava, S.; Zou, Z. Q.; Pirollo, K.; Blattner, W. and Chang, E. H. (1990): Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome, Nature, (vol. 348), No. 6303, pp.747-9.

[153] Royds, J. A. and Iacopetta, B. (2006): p53 and disease: when the guardian angel fails, Cell Death Differ, (vol. 13), No. 6, pp.1017-26.

[154] Donehower, L. A.; Harvey, M.; Slagle, B. L.; McArthur, M. J.; Montgomery, C. A., Jr.; Butel, J. S. and Bradley, A. (1992): Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours, Nature, (vol. 356), No. 6366, pp.215-21.

[155] Harris, S. L. and Levine, A. J. (2005): The p53 pathway: positive and negative feedback loops, Oncogene, (vol. 24), No. 17, pp.2899-908.

[156] Kubbutat, M. H.; Jones, S. N. and Vousden, K. H. (1997): Regulation of p53 stability by Mdm2, Nature, (vol. 387), No. 6630, pp.299-303.

[157] Chehab, N. H.; Malikzay, A.; Appel, M. and Halazonetis, T. D. (2000): Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53, Genes Dev, (vol. 14), No. 3, pp.278-88.

[158] Shieh, S. Y.; Ahn, J.; Tamai, K.; Taya, Y. and Prives, C. (2000): The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites, Genes Dev, (vol. 14), No. 3, pp.289-300.

[159] Liu, Q.; Guntuku, S.; Cui, X. S.; Matsuoka, S.; Cortez, D.; Tamai, K.; Luo, G.; Carattini-Rivera, S.; DeMayo, F.; Bradley, A.; Donehower, L. A. and Elledge, S. J. (2000): Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint, Genes Dev, (vol. 14), No. 12, pp.1448-59.

[160] Barak, Y. and Oren, M. (1992): Enhanced binding of a 95 kDa protein to p53 in cells undergoing p53-mediated growth arrest, Embo J, (vol. 11), No. 6, pp.2115-21.

[161] Zhang, Y.; Xiong, Y. and Yarbrough, W. G. (1998): ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways, Cell, (vol. 92), No. 6, pp.725-34.

[162] Kamijo, T.; Weber, J. D.; Zambetti, G.; Zindy, F.; Roussel, M. F. and Sherr, C. J. (1998): Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2, Proc Natl Acad Sci U S A, (vol. 95), No. 14, pp.8292-7.

[163] Robertson, K. D. and Jones, P. A. (1998): The human ARF cell cycle regulatory gene promoter is a CpG island which can be silenced by DNA methylation and down-regulated by wild-type p53, Mol Cell Biol, (vol. 18), No. 11, pp.6457-73.

[164] Honda, R. and Yasuda, H. (1999): Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53, Embo J, (vol. 18), No. 1, pp.22-7.

[165] Russell, J. L.; Powers, J. T.; Rounbehler, R. J.; Rogers, P. M.; Conti, C. J. and Johnson, D. G. (2002): ARF differentially modulates apoptosis induced by E2F1 and Myc, Mol Cell Biol, (vol. 22), No. 5, pp.1360-8.

[166] Lane, D. P. (1992): Cancer. p53, guardian of the genome, Nature, (vol. 358), No. 6381, pp.15-6.

[167] Vousden, K. H. (2006): Outcomes of p53 activation--spoilt for choice, J Cell Sci, (vol. 119), No. Pt 24, pp.5015-20.

[168] el-Deiry, W. S.; Tokino, T.; Velculescu, V. E.; Levy, D. B.; Parsons, R.; Trent, J. M.; Lin, D.; Mercer, W. E.; Kinzler, K. W. and Vogelstein, B. (1993): WAF1, a potential mediator of p53 tumor suppression, Cell, (vol. 75), No. 4, pp.817-25.

[169] Wu, X.; Bayle, J. H.; Olson, D. and Levine, A. J. (1993): The p53-mdm-2 autoregulatory feedback loop, Genes Dev, (vol. 7), No. 7A, pp.1126-32.

[170] Miyashita, T. and Reed, J. C. (1995): Tumor suppressor p53 is a direct transcriptional activator of the human bax gene, Cell, (vol. 80), No. 2, pp.293-9.

[171] Hermeking, H.; Lengauer, C.; Polyak, K.; He, T. C.; Zhang, L.; Thiagalingam, S.; Kinzler, K. W. and Vogelstein, B. (1997): 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression, Mol Cell, (vol. 1), No. 1, pp.3-11.

[172] Oda, E.; Ohki, R.; Murasawa, H.; Nemoto, J.; Shibue, T.; Yamashita, T.; Tokino, T.; Taniguchi, T. and Tanaka, N. (2000): Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis, Science, (vol. 288), No. 5468, pp.1053-8.

[173] Nakano, K. and Vousden, K. H. (2001): PUMA, a novel proapoptotic gene, is induced by p53, Mol Cell, (vol. 7), No. 3, pp.683-94.

[174] Wu, W. S.; Heinrichs, S.; Xu, D.; Garrison, S. P.; Zambetti, G. P.; Adams, J. M. and Look, A. T. (2005): Slug antagonizes p53-mediated apoptosis of hematopoietic progenitors by repressing puma, Cell, (vol. 123), No. 4, pp.641-53.

[175] Bensaad, K.; Tsuruta, A.; Selak, M. A.; Vidal, M. N.; Nakano, K.; Bartrons, R.; Gottlieb, E. and Vousden, K. H. (2006): TIGAR, a p53-inducible regulator of glycolysis and apoptosis, Cell, (vol. 126), No. 1, pp.107-20.

[176] Kuerbitz, S. J.; Plunkett, B. S.; Walsh, W. V. and Kastan, M. B. (1992): Wild-type p53 is a cell cycle checkpoint determinant following irradiation, Proc Natl Acad Sci U S A, (vol. 89), No. 16, pp.7491-5.

[177] Taylor, W. R. and Stark, G. R. (2001): Regulation of the G2/M transition by p53, Oncogene, (vol. 20), No. 15, pp.1803-15.

[178] Iliakis, G.; Wang, Y.; Guan, J. and Wang, H. (2003): DNA damage checkpoint control in cells exposed to ionizing radiation, Oncogene, (vol. 22), No. 37, pp.5834-47.

[179] Brown, J. P.; Wei, W. and Sedivy, J. M. (1997): Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts, Science, (vol. 277), No. 5327, pp.831-4.

[180] Brugarolas, J.; Chandrasekaran, C.; Gordon, J. I.; Beach, D.; Jacks, T. and Hannon, G. J. (1995): Radiation-induced cell cycle arrest compromised by p21 deficiency, Nature, (vol. 377), No. 6549, pp.552-7.

[181] Deng, C.; Zhang, P.; Harper, J. W.; Elledge, S. J. and Leder, P. (1995): Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control, Cell, (vol. 82), No. 4, pp.675-84.

[182] Pantoja, C. and Serrano, M. (1999): Murine fibroblasts lacking p21 undergo senescence and are resistant to transformation by oncogenic Ras, Oncogene, (vol. 18), No. 35, pp.4974-82.

[183] Harvey, M.; Sands, A. T.; Weiss, R. S.; Hegi, M. E.; Wiseman, R. W.; Pantazis, P.; Giovanella, B. C.; Tainsky, M. A.; Bradley, A. and Donehower, L. A. (1993): In vitro growth characteristics of embryo fibroblasts isolated from p53-deficient mice, Oncogene, (vol. 8), No. 9, pp.2457-67.

[184] Kortlever, R. M.; Higgins, P. J. and Bernards, R. (2006): Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence, Nat Cell Biol, (vol. 8), No. 8, pp.877-84.

[185] Cordenonsi, M.; Dupont, S.; Maretto, S.; Insinga, A.; Imbriano, C. and Piccolo, S. (2003): Links between tumor suppressors: p53 is required for TGF-beta gene responses by cooperating with Smads, Cell, (vol. 113), No. 3, pp.301-14.

[186] Cordenonsi, M.; Montagner, M.; Adorno, M.; Zacchigna, L.; Martello, G.; Mamidi, A.; Soligo, S.; Dupont, S. and Piccolo, S. (2007): Integration of TGF-beta and Ras/MAPK signaling through p53 phosphorylation, Science, (vol. 315), No. 5813, pp.840-3.

[187] Roberts, A. B and M.B., Sporn (1990): The transforming growth factors-betas., In: Sporn MB, Roberts AB, editors. Peptide growth factors and their receptors, Part I, Vol 95. Berlin: Springer-Verlag, pp.419-472.

[188] Lawrence, D. A. (1991): Identification and activation of latent transforming growth factor beta, Methods Enzymol, (vol. 198), pp.327-36.

[189] Gleizes, P. E.; Munger, J. S.; Nunes, I.; Harpel, J. G.; Mazzieri, R.; Noguera, I. and Rifkin, D. B. (1997): TGF-beta latency: biological significance and mechanisms of activation, Stem Cells, (vol. 15), No. 3, pp.190-7.

[190] Lutz, M. and Knaus, P. (2002): Integration of the TGF-beta pathway into the cellular signalling network, Cell Signal, (vol. 14), No. 12, pp.977-88.

[191] Massague, J. (2000): How cells read TGF-beta signals, Nat Rev Mol Cell Biol, (vol. 1), No. 3, pp.169-78.

[192] Goumans, M. J.; Valdimarsdottir, G.; Itoh, S.; Lebrin, F.; Larsson, J.; Mummery, C.; Karlsson, S. and ten Dijke, P. (2003): Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFbeta/ALK5 signaling, Mol Cell, (vol. 12), No. 4, pp.817-28.

[193] Tsukazaki, T.; Chiang, T. A.; Davison, A. F.; Attisano, L. and Wrana, J. L. (1998): SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor, Cell, (vol. 95), No. 6, pp.779-91.

[194] Dennler, S.; Itoh, S.; Vivien, D.; ten Dijke, P.; Huet, S. and Gauthier, J. M. (1998): Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene, Embo J, (vol. 17), No. 11, pp.3091-100.

[195] Zhou, S.; Zawel, L.; Lengauer, C.; Kinzler, K. W. and Vogelstein, B. (1998): Characterization of human FAST-1, a TGF beta and activin signal transducer, Mol Cell, (vol. 2), No. 1, pp.121-7.

[196] Hua, X.; Liu, X.; Ansari, D. O. and Lodish, H. F. (1998): Synergistic cooperation of TFE3 and smad proteins in TGF-beta-induced transcription of the plasminogen activator inhibitor-1 gene, Genes Dev, (vol. 12), No. 19, pp.3084-95.

[197] Janknecht, R.; Wells, N. J. and Hunter, T. (1998): TGF-beta-stimulated cooperation of smad proteins with the coactivators CBP/p300, Genes Dev, (vol. 12), No. 14, pp.2114-9.

[198] Liberati, N. T.; Datto, M. B.; Frederick, J. P.; Shen, X.; Wong, C.; Rougier-Chapman, E. M. and Wang, X. F. (1999): Smads bind directly to the Jun family of AP-1 transcription factors, Proc Natl Acad Sci U S A, (vol. 96), No. 9, pp.4844-9.

[199] Labbe, E.; Letamendia, A. and Attisano, L. (2000): Association of Smads with lymphoid enhancer binding factor 1/T cell-specific factor mediates cooperative signaling by the transforming growth factor-beta and wnt pathways, Proc Natl Acad Sci U S A, (vol. 97), No. 15, pp.8358-63.

[200] Gomis, R. R.; Alarcon, C.; Nadal, C.; Van Poznak, C. and Massague, J. (2006): C/EBPbeta at the core of the TGFbeta cytostatic response and its evasion in metastatic breast cancer cells, Cancer Cell, (vol. 10), No. 3, pp.203-14.

[201] Stroschein, S. L.; Wang, W.; Zhou, S.; Zhou, Q. and Luo, K. (1999): Negative feedback regulation of TGF-beta signaling by the SnoN oncoprotein, Science, (vol. 286), No. 5440, pp.771-4.

[202] Wotton, D.; Lo, R. S.; Lee, S. and Massague, J. (1999): A Smad transcriptional corepressor, Cell, (vol. 97), No. 1, pp.29-39.

[203] Luo, K.; Stroschein, S. L.; Wang, W.; Chen, D.; Martens, E.; Zhou, S. and Zhou, Q. (1999): The Ski oncoprotein interacts with the Smad proteins to repress TGFbeta signaling, Genes Dev, (vol. 13), No. 17, pp.2196-206.

[204] Di Guglielmo, G. M.; Le Roy, C.; Goodfellow, A. F. and Wrana, J. L. (2003): Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover, Nat Cell Biol, (vol. 5), No. 5, pp.410-21.

[205] Inman, G. J.; Nicolas, F. J. and Hill, C. S. (2002): Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-beta receptor activity, Mol Cell, (vol. 10), No. 2, pp.283-94.

[206] Derynck, R. and Zhang, Y. E. (2003): Smad-dependent and Smad-independent pathways in TGF-beta family signalling, Nature, (vol. 425), No. 6958, pp.577-84.

[207] Siegel, P. M. and Massague, J. (2003): Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer, Nat Rev Cancer, (vol. 3), No. 11, pp.807-21.

[208] Kang, Y. (2006): Pro-metastasis function of TGFbeta mediated by the Smad pathway, J Cell Biochem, (vol. 98), No. 6, pp.1380-90.

[209] Sorrentino, V. and Bandyopadhyay, S. (1989): TGF beta inhibits Go/S-phase transition in primary fibroblasts. Loss of response to the antigrowth effect of TGF beta is observed after immortalization, Oncogene, (vol. 4), No. 5, pp.569-74.

[210] Sudarshan, C.; Yaswen, L.; Kulkarni, A. and Raghow, R. (1998): Phenotypic consequences of transforming growth factor beta1 gene ablation in murine embryonic fibroblasts: autocrine control of cell proliferation and extracellular matrix biosynthesis, J Cell Physiol, (vol. 176), No. 1, pp.67-75.

[211] Piek, E.; Ju, W. J.; Heyer, J.; Escalante-Alcalde, D.; Stewart, C. L.; Weinstein, M.; Deng, C.; Kucherlapati, R.; Bottinger, E. P. and Roberts, A. B. (2001): Functional characterization of transforming growth factor beta signaling in Smad2- and Smad3-deficient fibroblasts, J Biol Chem, (vol. 276), No. 23, pp.19945-53.

[212] Karlsson, G.; Liu, Y.; Larsson, J.; Goumans, M. J.; Lee, J. S.; Thorgeirsson, S. S.; Ringner, M. and Karlsson, S. (2005): Gene expression profiling demonstrates that TGF-beta1 signals exclusively through receptor complexes involving Alk5 and identifies targets of TGF-beta signaling, Physiol Genomics, (vol. 21), No. 3, pp.396-403.

[213] Hocevar, B. A.; Brown, T. L. and Howe, P. H. (1999): TGF-beta induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway, Embo J, (vol. 18), No. 5, pp.1345-56.

[214] Herrera, R. E.; Makela, T. P. and Weinberg, R. A. (1996): TGF beta-induced growth inhibition in primary fibroblasts requires the retinoblastoma protein, Mol Biol Cell, (vol. 7), No. 9, pp.1335-42.

[215] Laiho, M.; DeCaprio, J. A.; Ludlow, J. W.; Livingston, D. M. and Massague, J. (1990): Growth inhibition by TGF-beta linked to suppression of retinoblastoma protein phosphorylation, Cell, (vol. 62), No. 1, pp.175-85.

[216] Chen, C. R.; Kang, Y.; Siegel, P. M. and Massague, J. (2002): E2F4/5 and p107 as Smad cofactors linking the TGFbeta receptor to c-myc repression, Cell, (vol. 110), No. 1, pp.19-32.

[217] Kang, Y.; Chen, C. R. and Massague, J. (2003): A self-enabling TGFbeta response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells, Mol Cell, (vol. 11), No. 4, pp.915-26.

[218] Seoane, J.; Pouponnot, C.; Staller, P.; Schader, M.; Eilers, M. and Massague, J. (2001): TGFbeta influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b, Nat Cell Biol, (vol. 3), No. 4, pp.400-8.

[219] Seoane, J.; Le, H. V.; Shen, L.; Anderson, S. A. and Massague, J. (2004): Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation, Cell, (vol. 117), No. 2, pp.211-23.

[220] Gomis, R. R.; Alarcon, C.; He, W.; Wang, Q.; Seoane, J.; Lash, A. and Massague, J. (2006): A FoxO-Smad synexpression group in human keratinocytes, Proc Natl Acad Sci U S A, (vol. 103), No. 34, pp.12747-52.

[221] Vijayachandra, K.; Lee, J. and Glick, A. B. (2003): Smad3 regulates senescence and malignant conversion in a mouse multistage skin carcinogenesis model, Cancer Res, (vol. 63), No. 13, pp.3447-52.

[222] Zhang, H. and Cohen, S. N. (2004): Smurf2 up-regulation activates telomere-dependent senescence, Genes Dev, (vol. 18), No. 24, pp.3028-40.

[223] Glick, A. B.; Lee, M. M.; Darwiche, N.; Kulkarni, A. B.; Karlsson, S. and Yuspa, S. H. (1994): Targeted deletion of the TGF-beta 1 gene causes rapid progression to squamous cell carcinoma, Genes Dev, (vol. 8), No. 20, pp.2429-40.

[224] Tremain, R.; Marko, M.; Kinnimulki, V.; Ueno, H.; Bottinger, E. and Glick, A. (2000): Defects in TGF-beta signaling overcome senescence of mouse keratinocytes expressing v-Ha-ras, Oncogene, (vol. 19), No. 13, pp.1698-709.

[225] Lin, H. K.; Bergmann, S. and Pandolfi, P. P. (2004): Cytoplasmic PML function in TGF-beta signalling, Nature, (vol. 431), No. 7005, pp.205-11.

[226] de Stanchina, E.; Querido, E.; Narita, M.; Davuluri, R. V.; Pandolfi, P. P.; Ferbeyre, G. and Lowe, S. W. (2004): PML is a direct p53 target that modulates p53 effector functions, Mol Cell, (vol. 13), No. 4, pp.523-35.

[227] De Petro, G.; Copeta, A. and Barlati, S. (1994): Urokinase-type and tissue-type plasminogen activators as growth factors of human fibroblasts, Exp Cell Res, (vol. 213), No. 1, pp.286-94.

[228] Tachibana, I.; Imoto, M.; Adjei, P. N.; Gores, G. J.; Subramaniam, M.; Spelsberg, T. C. and Urrutia, R. (1997): Overexpression of the TGFbeta-regulated zinc finger encoding gene, TIEG, induces apoptosis in pancreatic epithelial cells, J Clin Invest, (vol. 99), No. 10, pp.2365-74.

[229] Jang, C. W.; Chen, C. H.; Chen, C. C.; Chen, J. Y.; Su, Y. H. and Chen, R. H. (2002): TGF-beta induces apoptosis through Smad-mediated expression of DAP-kinase, Nat Cell Biol, (vol. 4), No. 1, pp.51-8.

[230] Valderrama-Carvajal, H.; Cocolakis, E.; Lacerte, A.; Lee, E. H.; Krystal, G.; Ali, S. and Lebrun, J. J. (2002): Activin/TGF-beta induce apoptosis through Smad-dependent expression of the lipid phosphatase SHIP, Nat Cell Biol, (vol. 4), No. 12, pp.963-9.

[231] Zhang, S.; Ekman, M.; Thakur, N.; Bu, S.; Davoodpour, P.; Grimsby, S.; Tagami, S.; Heldin, C. H. and Landstrom, M. (2006): TGFbeta1-induced activation of ATM and p53 mediates apoptosis in a Smad7-dependent manner, Cell Cycle, (vol. 5), No. 23, pp.2787-95.

[232] Schuster, N. and Krieglstein, K. (2002): Mechanisms of TGF-beta-mediated apoptosis, Cell Tissue Res, (vol. 307), No. 1, pp.1-14.

[233] Thiery, J. P. and Sleeman, J. P. (2006): Complex networks orchestrate epithelial-mesenchymal transitions, Nat Rev Mol Cell Biol, (vol. 7), No. 2, pp.131-42.

[234] Derynck, R. and Akhurst, R. J. (2007): Differentiation plasticity regulated by TGF-beta family proteins in development and disease, Nat Cell Biol, (vol. 9), No. 9, pp.1000-4.

[235] Savagner, P.; Yamada, K. M. and Thiery, J. P. (1997): The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition, J Cell Biol, (vol. 137), No. 6, pp.1403-19.

[236] Guaita, S.; Puig, I.; Franci, C.; Garrido, M.; Dominguez, D.; Batlle, E.; Sancho, E.; Dedhar, S.; De Herreros, A. G. and Baulida, J. (2002): Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression, J Biol Chem, (vol. 277), No. 42, pp.39209-16.

[237] Ohkubo, T. and Ozawa, M. (2004): The transcription factor Snail downregulates the tight junction components independently of E-cadherin downregulation, J Cell Sci, (vol. 117), No. Pt 9, pp.1675-85.

[238] Bolos, V.; Peinado, H.; Perez-Moreno, M. A.; Fraga, M. F.; Esteller, M. and Cano, A. (2003): The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors, J Cell Sci, (vol. 116), No. Pt 3, pp.499-511.

[239] Mani, S. A.; Yang, J.; Brooks, M.; Schwaninger, G.; Zhou, A.; Miura, N.; Kutok, J. L.; Hartwell, K.; Richardson, A. L. and Weinberg, R. A. (2007): Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers, Proc Natl Acad Sci U S A, (vol. 104), No. 24, pp.10069-74.

[240] Bindels, S.; Mestdagt, M.; Vandewalle, C.; Jacobs, N.; Volders, L.; Noel, A.; van Roy, F.; Berx, G.; Foidart, J. M. and Gilles, C. (2006): Regulation of vimentin by SIP1 in human epithelial breast tumor cells, Oncogene, (vol. 25), No. 36, pp.4975-85.

[241] Zavadil, J. and Bottinger, E. P. (2005): TGF-beta and epithelial-to-mesenchymal transitions, Oncogene, (vol. 24), No. 37, pp.5764-74.

[242] Dickson, M. C.; Martin, J. S.; Cousins, F. M.; Kulkarni, A. B.; Karlsson, S. and Akhurst, R. J. (1995): Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice, Development, (vol. 121), No. 6, pp.1845-54.

[243] Oshima, M.; Oshima, H. and Taketo, M. M. (1996): TGF-beta receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis, Dev Biol, (vol. 179), No. 1, pp.297-302.

[244] Larsson, J.; Goumans, M. J.; Sjostrand, L. J.; van Rooijen, M. A.; Ward, D.; Leveen, P.; Xu, X.; ten Dijke, P.; Mummery, C. L. and Karlsson, S. (2001): Abnormal angiogenesis but intact hematopoietic potential in TGF-beta type I receptor-deficient mice, Embo J, (vol. 20), No. 7, pp.1663-73.

[245] Shull, M. M.; Ormsby, I.; Kier, A. B.; Pawlowski, S.; Diebold, R. J.; Yin, M.; Allen, R.; Sidman, C.; Proetzel, G.; Calvin, D. and et al. (1992): Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease, Nature, (vol. 359), No. 6397, pp.693-9.

[246] Diebold, R. J.; Eis, M. J.; Yin, M.; Ormsby, I.; Boivin, G. P.; Darrow, B. J.; Saffitz, J. E. and Doetschman, T. (1995): Early-onset multifocal inflammation in the transforming growth factor beta 1-null mouse is lymphocyte mediated, Proc Natl Acad Sci U S A, (vol. 92), No. 26, pp.12215-9.

[247] Crowe, M. J.; Doetschman, T. and Greenhalgh, D. G. (2000): Delayed wound healing in immunodeficient TGF-beta 1 knockout mice, J Invest Dermatol, (vol. 115), No. 1, pp.3-11.

[248] Datto, M. B.; Frederick, J. P.; Pan, L.; Borton, A. J.; Zhuang, Y. and Wang, X. F. (1999): Targeted disruption of Smad3 reveals an essential role in transforming growth factor beta-mediated signal transduction, Mol Cell Biol, (vol. 19), No. 4, pp.2495-504.

[249] Yang, X.; Letterio, J. J.; Lechleider, R. J.; Chen, L.; Hayman, R.; Gu, H.; Roberts, A. B. and Deng, C. (1999): Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta, Embo J, (vol. 18), No. 5, pp.1280-91.

[250] Zhu, Y.; Richardson, J. A.; Parada, L. F. and Graff, J. M. (1998): Smad3 mutant mice develop metastatic colorectal cancer, Cell, (vol. 94), No. 6, pp.703-14.

[251] Waldrip, W. R.; Bikoff, E. K.; Hoodless, P. A.; Wrana, J. L. and Robertson, E. J. (1998): Smad2 signaling in extraembryonic tissues determines anterior-posterior polarity of the early mouse embryo, Cell, (vol. 92), No. 6, pp.797-808.

[252] Weinstein, M.; Yang, X.; Li, C.; Xu, X.; Gotay, J. and Deng, C. X. (1998): Failure of egg cylinder elongation and mesoderm induction in mouse embryos lacking the tumor suppressor smad2, Proc Natl Acad Sci U S A, (vol. 95), No. 16, pp.9378-83.

[253] Nomura, M. and Li, E. (1998): Smad2 role in mesoderm formation, left-right patterning and craniofacial development, Nature, (vol. 393), No. 6687, pp.786-90.

[254] Yang, X.; Li, C.; Xu, X. and Deng, C. (1998): The tumor suppressor SMAD4/DPC4 is essential for epiblast proliferation and mesoderm induction in mice, Proc Natl Acad Sci U S A, (vol. 95), No. 7, pp.3667-72.

[255] Sirard, C.; Kim, S.; Mirtsos, C.; Tadich, P.; Hoodless, P. A.; Itie, A.; Maxson, R.; Wrana, J. L. and Mak, T. W. (2000): Targeted disruption in murine cells reveals variable requirement for Smad4 in transforming growth factor beta-related signaling, J Biol Chem, (vol. 275), No. 3, pp.2063-70.

[256] Takaku, K.; Miyoshi, H.; Matsunaga, A.; Oshima, M.; Sasaki, N. and Taketo, M. M. (1999): Gastric and duodenal polyps in Smad4 (Dpc4) knockout mice, Cancer Res, (vol. 59), No. 24, pp.6113-7.

[257] Chen, C. R.; Kang, Y. and Massague, J. (2001): Defective repression of c-myc in breast cancer cells: A loss at the core of the transforming growth factor beta growth arrest program, Proc Natl Acad Sci U S A, (vol. 98), No. 3, pp.992-9.

[258] Levy, L. and Hill, C. S. (2006): Alterations in components of the TGF-beta superfamily signaling pathways in human cancer, Cytokine Growth Factor Rev, (vol. 17), No. 1-2, pp.41-58.

[259] O'Brien, C. (1996): New tumor suppressor found in pancreatic cancer, Science, (vol. 271), No. 5247, p.294.

[260] Takagi, Y.; Kohmura, H.; Futamura, M.; Kida, H.; Tanemura, H.; Shimokawa, K. and Saji, S. (1996): Somatic alterations of the DPC4 gene in human colorectal cancers in vivo, Gastroenterology, (vol. 111), No. 5, pp.1369-72.

[261] Wikstrom, P.; Stattin, P.; Franck-Lissbrant, I.; Damber, J. E. and Bergh, A. (1998): Transforming growth factor beta1 is associated with angiogenesis, metastasis, and poor clinical outcome in prostate cancer, Prostate, (vol. 37), No. 1, pp.19-29.

[262] Pasche, B. (2001): Role of transforming growth factor beta in cancer, J Cell Physiol, (vol. 186), No. 2, pp.153-68.

[263] Bierie, B. and Moses, H. L. (2006): TGF-beta and cancer, Cytokine Growth Factor Rev, (vol. 17), No. 1-2, pp.29-40.

[264] Pierce, D. F., Jr.; Gorska, A. E.; Chytil, A.; Meise, K. S.; Page, D. L.; Coffey, R. J., Jr. and Moses, H. L. (1995): Mammary tumor suppression by transforming growth factor beta 1 transgene expression, Proc Natl Acad Sci U S A, (vol. 92), No. 10, pp.4254-8.

[265] Muraoka, R. S.; Koh, Y.; Roebuck, L. R.; Sanders, M. E.; Brantley-Sieders, D.; Gorska, A. E.; Moses, H. L. and Arteaga, C. L. (2003): Increased malignancy of Neu-induced mammary tumors overexpressing active transforming growth factor beta1, Mol Cell Biol, (vol. 23), No. 23, pp.8691-703.

[266] Siegel, P. M.; Shu, W.; Cardiff, R. D.; Muller, W. J. and Massague, J. (2003): Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis, Proc Natl Acad Sci U S A, (vol. 100), No. 14, pp.8430-5.

[267] Bhowmick, N. A.; Chytil, A.; Plieth, D.; Gorska, A. E.; Dumont, N.; Shappell, S.; Washington, M. K.; Neilson, E. G. and Moses, H. L. (2004): TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia, Science, (vol. 303), No. 5659, pp.848-51.

[268] Cheng, N.; Bhowmick, N. A.; Chytil, A.; Gorksa, A. E.; Brown, K. A.; Muraoka, R.; Arteaga, C. L.; Neilson, E. G.; Hayward, S. W. and Moses, H. L. (2005): Loss of TGF-beta type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-alpha-, MSP- and HGF-mediated signaling networks, Oncogene, (vol. 24), No. 32, pp.5053-68.

[269] Liu, F (2006): Delineating the TGF-beta/SMAD-induced cytostatic response, P. ten Dijke and C.-H. Heldin (eds.), Smad Signal Transduction, Springer, pp.75-91.

[270] Thatikunta, P.; Raj, G. V.; Kundu, M.; Khalili, K. and Amini, S. (1997): The transcription factor E2F-1 modulates TGF-beta1 RNA expression in glial cells, Oncogene, (vol. 14), No. 24, pp.2959-69.

[271] Jordan-Sciutto, K. L.; Logan, T. J.; Norton, P. A.; Derfoul, A.; Dodge, G. R. and Hall, D. J. (1997): Reduction in fibronectin expression and alteration in cell morphology are coincident in NIH3T3 cells expressing a mutant E2F1 transcription factor, Exp Cell Res, (vol. 236), No. 2, pp.527-36.

[272] Hiyama, H.; Iavarone, A. and Reeves, S. A. (1998): Regulation of the cdk inhibitor p21 gene during cell cycle progression is under the control of the transcription factor E2F, Oncogene, (vol. 16), No. 12, pp.1513-23.

[273] Koziczak, M.; Krek, W. and Nagamine, Y. (2000): Pocket protein-independent repression of urokinase-type plasminogen activator and plasminogen activator inhibitor 1 gene expression by E2F1, Mol Cell Biol, (vol. 20), No. 6, pp.2014-22.

[274] Hu, X.; Cress, W. D.; Zhong, Q. and Zuckerman, K. S. (2000): Transforming growth factor beta inhibits the phosphorylation of pRB at multiple serine/threonine sites and differentially regulates the formation of pRB family-E2F complexes in human myeloid leukemia cells, Biochem Biophys Res Commun, (vol. 276), No. 3, pp.930-9.

[275] Mu, X. C. and Higgins, P. J. (1995): Differential growth state-dependent regulation of plasminogen activator inhibitor type-1 expression in senescent IMR-90 human diploid fibroblasts, J Cell Physiol, (vol. 165), No. 3, pp.647-57.

[276] Zindy, F.; Eischen, C. M.; Randle, D. H.; Kamijo, T.; Cleveland, J. L.; Sherr, C. J. and Roussel, M. F. (1998): Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization, Genes Dev, (vol. 12), No. 15, pp.2424-33.

[277] Nishio, K. and Inoue, A. (2005): Senescence-associated alterations of cytoskeleton: extraordinary production of vimentin that anchors cytoplasmic p53 in senescent human fibroblasts, Histochem Cell Biol, (vol. 123), No. 3, pp.263-73.

[278] Koopman, G.; Reutelingsperger, C. P.; Kuijten, G. A.; Keehnen, R. M.; Pals, S. T. and van Oers, M. H. (1994): Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis, Blood, (vol. 84), No. 5, pp.1415-20.

[279] Vogelstein, B.; Lane, D. and Levine, A. J. (2000): Surfing the p53 network, Nature, (vol. 408), No. 6810, pp.307-10.

[280] el-Deiry, W. S.; Harper, J. W.; O'Connor, P. M.; Velculescu, V. E.; Canman, C. E.; Jackman, J.; Pietenpol, J. A.; Burrell, M.; Hill, D. E.; Wang, Y. and et al. (1994): WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis, Cancer Res, (vol. 54), No. 5, pp.1169-74.

[281] Iaquinta, P. J.; Aslanian, A. and Lees, J. A. (2005): Regulation of the Arf/p53 tumor surveillance network by E2F, Cold Spring Harb Symp Quant Biol, (vol. 70), pp.309-16.

[282] Datto, M. B.; Li, Y.; Panus, J. F.; Howe, D. J.; Xiong, Y. and Wang, X. F. (1995): Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism, Proc Natl Acad Sci U S A, (vol. 92), No. 12, pp.5545-9.

[283] Kasai, H.; Allen, J. T.; Mason, R. M.; Kamimura, T. and Zhang, Z. (2005): TGF-beta1 induces human alveolar epithelial to mesenchymal cell transition (EMT), Respir Res, (vol. 6), p.56.

[284] Illman, S. A.; Lehti, K.; Keski-Oja, J. and Lohi, J. (2006): Epilysin (MMP-28) induces TGF-beta mediated epithelial to mesenchymal transition in lung carcinoma cells, J Cell Sci, (vol. 119), No. Pt 18, pp.3856-65.

[285] Narumiya, S. and Yasuda, S. (2006): Rho GTPases in animal cell mitosis, Curr Opin Cell Biol, (vol. 18), No. 2, pp.199-205.

[286] Yuce, O.; Piekny, A. and Glotzer, M. (2005): An ECT2-centralspindlin complex regulates the localization and function of RhoA, J Cell Biol, (vol. 170), No. 4, pp.571-82.

[287] Oceguera-Yanez, F.; Kimura, K.; Yasuda, S.; Higashida, C.; Kitamura, T.; Hiraoka, Y.; Haraguchi, T. and Narumiya, S. (2005): Ect2 and MgcRacGAP regulate the activation and function of Cdc42 in mitosis, J Cell Biol, (vol. 168), No. 2, pp.221-32.

[288] Ban, R.; Irino, Y.; Fukami, K. and Tanaka, H. (2004): Human mitotic spindle-associated protein PRC1 inhibits MgcRacGAP activity toward Cdc42 during the metaphase, J Biol Chem, (vol. 279), No. 16, pp.16394-402.

[289] Zhao, W. M.; Seki, A. and Fang, G. (2006): Cep55, a microtubule-bundling protein, associates with centralspindlin to control the midbody integrity and cell abscission during cytokinesis, Mol Biol Cell, (vol. 17), No. 9, pp.3881-96.

[290] Sotillo, R.; Hernando, E.; Diaz-Rodriguez, E.; Teruya-Feldstein, J.; Cordon-Cardo, C.; Lowe, S. W. and Benezra, R. (2007): Mad2 overexpression promotes aneuploidy and tumorigenesis in mice, Cancer Cell, (vol. 11), No. 1, pp.9-23.

[291] Hirose, K.; Kawashima, T.; Iwamoto, I.; Nosaka, T. and Kitamura, T. (2001): MgcRacGAP is involved in cytokinesis through associating with mitotic spindle and midbody, J Biol Chem, (vol. 276), No. 8, pp.5821-8.

[292] Zhao, W. M. and Fang, G. (2005): MgcRacGAP controls the assembly of the contractile ring and the initiation of cytokinesis, Proc Natl Acad Sci U S A, (vol. 102), No. 37, pp.13158-63.

[293] Inman, G. J.; Nicolas, F. J.; Callahan, J. F.; Harling, J. D.; Gaster, L. M.; Reith, A. D.; Laping, N. J. and Hill, C. S. (2002): SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7, Mol Pharmacol, (vol. 62), No. 1, pp.65-74.

[294] Laping, N. J.; Grygielko, E.; Mathur, A.; Butter, S.; Bomberger, J.; Tweed, C.; Martin, W.; Fornwald, J.; Lehr, R.; Harling, J.; Gaster, L.; Callahan, J. F. and Olson, B. A. (2002): Inhibition of transforming growth factor (TGF)-beta1-induced extracellular matrix with a novel inhibitor of the TGF-beta type I receptor kinase activity: SB-431542, Mol Pharmacol, (vol. 62), No. 1, pp.58-64.

[295] Harvey, D. M. and Levine, A. J. (1991): p53 alteration is a common event in the spontaneous immortalization of primary BALB/c murine embryo fibroblasts, Genes Dev, (vol. 5), No. 12B, pp.2375-85.

[296] MacLaren, A.; Black, E. J.; Clark, W. and Gillespie, D. A. (2004): c-Jun-deficient cells undergo premature senescence as a result of spontaneous DNA damage accumulation, Mol Cell Biol, (vol. 24), No. 20, pp.9006-18.

[297] Dimri, G. P.; Itahana, K.; Acosta, M. and Campisi, J. (2000): Regulation of a senescence checkpoint response by the E2F1 transcription factor and p14(ARF) tumor suppressor, Mol Cell Biol, (vol. 20), No. 1, pp.273-85.

[298] Miki, J.; Fujimura, Y.; Koseki, H. and Kamijo, T. (2007): Polycomb complexes regulate cellular senescence by repression of ARF in cooperation with E2F3, Genes Cells, (vol. 12), No. 12, pp.1371-82.

[299] Lazzerini Denchi, E.; Attwooll, C.; Pasini, D. and Helin, K. (2005): Deregulated E2F activity induces hyperplasia and senescence-like features in the mouse pituitary gland, Mol Cell Biol, (vol. 25), No. 7, pp.2660-72.

[300] Kang, D. H.; Hong, Y. S.; Lim, H. J.; Choi, J. H.; Han, D. S. and Yoon, K. I. (1999): High glucose solution and spent dialysate stimulate the synthesis of transforming growth factor-beta1 of human peritoneal mesothelial cells: effect of cytokine costimulation, Perit Dial Int, (vol. 19), No. 3, pp.221-30.

[301] Daniels, M. C.; McClain, D. A. and Crook, E. D. (2000): Transcriptional regulation of transforming growth factor beta1 by glucose: investigation into the role of the hexosamine biosynthesis pathway, Am J Med Sci, (vol. 319), No. 3, pp.138-42.

[302] Koziczak, M.; Muller, H.; Helin, K. and Nagamine, Y. (2001): E2F1-mediated transcriptional inhibition of the plasminogen activator inhibitor type 1 gene, Eur J Biochem, (vol. 268), No. 18, pp.4969-78.

[303] Hua, X.; Miller, Z. A.; Wu, G.; Shi, Y. and Lodish, H. F. (1999): Specificity in transforming growth factor beta-induced transcription of the plasminogen activator inhibitor-1 gene: interactions of promoter DNA, transcription factor muE3, and Smad proteins, Proc Natl Acad Sci U S A, (vol. 96), No. 23, pp.13130-5.

[304] de Bruin, A.; Wu, L.; Saavedra, H. I.; Wilson, P.; Yang, Y.; Rosol, T. J.; Weinstein, M.; Robinson, M. L. and Leone, G. (2003): Rb function in extraembryonic lineages suppresses apoptosis in the CNS of Rb-deficient mice, Proc Natl Acad Sci U S A, (vol. 100), No. 11, pp.6546-51.

[305] Parisi, T.; Yuan, T. L.; Faust, A. M.; Caron, A. M.; Bronson, R. and Lees, J. A. (2007): Selective requirements for E2f3 in the development and tumorigenicity of Rb-deficient chimeric tissues, Mol Cell Biol, (vol. 27), No. 6, pp.2283-93.

[306] Goldin, G. V. and Opperman, L. A. (1980): Induction of supernumerary tracheal buds and the stimulation of DNA synthesis in the embryonic chick lung and trachea by epidermal growth factor, J Embryol Exp Morphol, (vol. 60), pp.235-43.

[307] Goldin, G. V.; Hindman, H. M. and Wessells, N. K. (1984): The role of cell proliferation and cellular shape change in branching morphogenesis of the embryonic mouse lung: analysis using aphidicolin and cytochalasins, J Exp Zool, (vol. 232), No. 2, pp.287-96.

[308] Heine, U. I.; Munoz, E. F.; Flanders, K. C.; Roberts, A. B. and Sporn, M. B. (1990): Colocalization of TGF-beta 1 and collagen I and III, fibronectin and glycosaminoglycans during lung branching morphogenesis, Development, (vol. 109), No. 1, pp.29-36.

[309] Pelton, R. W.; Saxena, B.; Jones, M.; Moses, H. L. and Gold, L. I. (1991): Immunohistochemical localization of TGF beta 1, TGF beta 2, and TGF beta 3 in the mouse embryo: expression patterns suggest multiple roles during embryonic development, J Cell Biol, (vol. 115), No. 4, pp.1091-105.

[310] Serra, R.; Pelton, R. W. and Moses, H. L. (1994): TGF beta 1 inhibits branching morphogenesis and N-myc expression in lung bud organ cultures, Development, (vol. 120), No. 8, pp.2153-61.

[311] Serra, R. and Moses, H. L. (1995): pRb is necessary for inhibition of N-myc expression by TGF-beta 1 in embryonic lung organ cultures, Development, (vol. 121), No. 9, pp.3057-66.

[312] Kokkinos, M. I.; Wafai, R.; Wong, M. K.; Newgreen, D. F.; Thompson, E. W. and Waltham, M. (2007): Vimentin and epithelial-mesenchymal transition in human breast cancer--observations in vitro and in vivo, Cells Tissues Organs, (vol. 185), No. 1-3, pp.191-203.

[313] Bae, S. N.; Arand, G.; Azzam, H.; Pavasant, P.; Torri, J.; Frandsen, T. L. and Thompson, E. W. (1993): Molecular and cellular analysis of basement membrane invasion by human breast cancer cells in Matrigel-based in vitro assays, Breast Cancer Res Treat, (vol. 24), No. 3, pp.241-55.

[314] Schwarz, J. K.; Bassing, C. H.; Kovesdi, I.; Datto, M. B.; Blazing, M.; George, S.; Wang, X. F. and Nevins, J. R. (1995): Expression of the E2F1 transcription factor overcomes type beta transforming growth factor-mediated growth suppression, Proc Natl Acad Sci U S A, (vol. 92), No. 2, pp.483-7.

[315] Petrocca, F.; Visone, R.; Onelli, M. R.; Shah, M. H.; Nicoloso, M. S.; de Martino, I.; Iliopoulos, D.; Pilozzi, E.; Liu, C. G.; Negrini, M.; Cavazzini, L.; Volinia, S.; Alder, H.; Ruco, L. P.; Baldassarre, G.; Croce, C. M. and Vecchione, A. (2008): E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer, Cancer Cell, (vol. 13), No. 3, pp.272-86.

[316] Forrester, E.; Chytil, A.; Bierie, B.; Aakre, M.; Gorska, A. E.; Sharif-Afshar, A. R.; Muller, W. J. and Moses, H. L. (2005): Effect of conditional knockout of the type II TGF-beta receptor gene in mammary epithelia on mammary gland development and polyomavirus middle T antigen induced tumor formation and metastasis, Cancer Res, (vol. 65), No. 6, pp.2296-302.

[317] Bierie, B.; Stover, D. G.; Abel, T. W.; Chytil, A.; Gorska, A. E.; Aakre, M.; Forrester, E.; Yang, L.; Wagner, K. U. and Moses, H. L. (2008): Transforming growth factor-beta regulates mammary carcinoma cell survival and interaction with the adjacent microenvironment, Cancer Res, (vol. 68), No. 6, pp.1809-19.

[318] Yang, L.; Huang, J.; Ren, X.; Gorska, A. E.; Chytil, A.; Aakre, M.; Carbone, D. P.; Matrisian, L. M.; Richmond, A.; Lin, P. C. and Moses, H. L. (2008): Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis, Cancer Cell, (vol. 13), No. 1, pp.23-35.

[319] Muller, H. and Helin, K. (2000): The E2F transcription factors: key regulators of cell proliferation, Biochim Biophys Acta, (vol. 1470), No. 1, pp.M1-12.

[320] Tsushima, H.; Kawata, S.; Tamura, S.; Ito, N.; Shirai, Y.; Kiso, S.; Imai, Y.; Shimomukai, H.; Nomura, Y.; Matsuda, Y. and Matsuzawa, Y. (1996): High levels of transforming growth factor beta 1 in patients with colorectal cancer: association with disease progression, Gastroenterology, (vol. 110), No. 2, pp.375-82.

[321] De Wever, O. and Mareel, M. (2003): Role of tissue stroma in cancer cell invasion, J Pathol, (vol. 200), No. 4, pp.429-47.

[322] Mollinari, C.; Kleman, J. P.; Saoudi, Y.; Jablonski, S. A.; Perard, J.; Yen, T. J. and Margolis, R. L. (2005): Ablation of PRC1 by small interfering RNA demonstrates that cytokinetic abscission requires a central spindle bundle in mammalian cells, whereas completion of furrowing does not, Mol Biol Cell, (vol. 16), No. 3, pp.1043-55.

[323] Fabbro, M.; Zhou, B. B.; Takahashi, M.; Sarcevic, B.; Lal, P.; Graham, M. E.; Gabrielli, B. G.; Robinson, P. J.; Nigg, E. A.; Ono, Y. and Khanna, K. K. (2005): Cdk1/Erk2- and Plk1-dependent phosphorylation of a centrosome protein, Cep55, is required for its recruitment to midbody and cytokinesis, Dev Cell, (vol. 9), No. 4, pp.477-88.

[324] Mollinari, C.; Kleman, J. P.; Jiang, W.; Schoehn, G.; Hunter, T. and Margolis, R. L. (2002): PRC1 is a microtubule binding and bundling protein essential to maintain the mitotic spindle midzone, J Cell Biol, (vol. 157), No. 7, pp.1175-86.

[325] Martinez-Garay, I.; Rustom, A.; Gerdes, H. H. and Kutsche, K. (2006): The novel centrosomal associated protein CEP55 is present in the spindle midzone and the midbody, Genomics, (vol. 87), No. 2, pp.243-53.

[326] Miki, T.; Smith, C. L.; Long, J. E.; Eva, A. and Fleming, T. P. (1993): Oncogene ect2 is related to regulators of small GTP-binding proteins, Nature, (vol. 362), No. 6419, pp.462-5.

[327] Sano, M.; Genkai, N.; Yajima, N.; Tsuchiya, N.; Homma, J.; Tanaka, R.; Miki, T. and Yamanaka, R. (2006): Expression level of ECT2 proto-oncogene correlates with prognosis in glioma patients, Oncol Rep, (vol. 16), No. 5, pp.1093-8.

[328] Shimo, A.; Nishidate, T.; Ohta, T.; Fukuda, M.; Nakamura, Y. and Katagiri, T. (2007): Elevated expression of protein regulator of cytokinesis 1, involved in the growth of breast cancer cells, Cancer Sci, (vol. 98), No. 2, pp.174-81.

[329] Nishimura, Y. and Yonemura, S. (2006): Centralspindlin regulates ECT2 and RhoA accumulation at the equatorial cortex during cytokinesis, J Cell Sci, (vol. 119), No. Pt 1, pp.104-14.

[330] Schmitz, A. A.; Govek, E. E.; Bottner, B. and Van Aelst, L. (2000): Rho GTPases: signaling, migration, and invasion, Exp Cell Res, (vol. 261), No. 1, pp.1-12.

[331] Saito, S.; Liu, X. F.; Kamijo, K.; Raziuddin, R.; Tatsumoto, T.; Okamoto, I.; Chen, X.; Lee, C. C.; Lorenzi, M. V.; Ohara, N. and Miki, T. (2004): Deregulation and mislocalization of the cytokinesis regulator ECT2 activate the Rho signaling pathways leading to malignant transformation, J Biol Chem, (vol. 279), No. 8, pp.7169-79.

[332] Liu, X. F.; Ishida, H.; Raziuddin, R. and Miki, T. (2004): Nucleotide exchange factor ECT2 interacts with the polarity protein complex Par6/Par3/protein kinase Czeta (PKCzeta) and regulates PKCzeta activity, Mol Cell Biol, (vol. 24), No. 15, pp.6665-75.

[333] Liu, X. F.; Ohno, S. and Miki, T. (2006): Nucleotide exchange factor ECT2 regulates epithelial cell polarity, Cell Signal, (vol. 18), No. 10, pp.1604-15.

[334] Kawashima, T.; Bao, Y. C.; Nomura, Y.; Moon, Y.; Tonozuka, Y.; Minoshima, Y.; Hatori, T.; Tsuchiya, A.; Kiyono, M.; Nosaka, T.; Nakajima, H.; Williams, D. A. and Kitamura, T. (2006): Rac1 and a GTPase-activating protein, MgcRacGAP, are required for nuclear translocation of STAT transcription factors, J Cell Biol, (vol. 175), No. 6, pp.937-46.

[335] Hayakawa, F. and Naoe, T. (2006): SFK-STAT pathway: an alternative and important way to malignancies, Ann N Y Acad Sci, (vol. 1086), pp.213-22.

[336] Klampfer, L. (2008): The role of signal transducers and activators of transcription in colon cancer, Front Biosci, (vol. 13), pp.2888-99.

[337] Howman, E. V.; Fowler, K. J.; Newson, A. J.; Redward, S.; MacDonald, A. C.; Kalitsis, P. and Choo, K. H. (2000): Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice, Proc Natl Acad Sci U S A, (vol. 97), No. 3, pp.1148-53.

[338] Kalitsis, P.; Fowler, K. J.; Earle, E.; Griffiths, B.; Howman, E.; Newson, A. J. and Choo, K. H. (2003): Partially functional Cenpa-GFP fusion protein causes increased chromosome missegregation and apoptosis during mouse embryogenesis, Chromosome Res, (vol. 11), No. 4, pp.345-57.

[339] Yang, Z. Y.; Guo, J.; Li, N.; Qian, M.; Wang, S. N. and Zhu, X. L. (2003): Mitosin/CENP-F is a conserved kinetochore protein subjected to cytoplasmic dynein-mediated poleward transport, Cell Res, (vol. 13), No. 4, pp.275-83.

[340] Ausubel, F. M. (1987): Current protocols in molecular biology.

[341] Sambrock, J., Fritsch, E. F., & Maniatis, T. (1989): Molecular Cloning: a laboratory manual.

© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 4.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am: