[Seite 90↓]


1.Ferry PC. Neurologic sequelae of open-heart surgery in children. An 'irritating question'. Am J Dis Child. 1990;144:369-73.

2.Wong BI, McLean RF, Naylor CD, Snow WG, Harrington EM, Gawel MJ, Woods RB, Fremes SE. Central-nervous-system dysfunction after warm or hypothermic cardiopulmonary bypass. Lancet. 1992;339:1383-4.

3.du Plessis AJ, Kramer U, Jonas RA, Wessel DL, Riviello JJ. West syndrome following deep hypothermic infant cardiac surgery. Pediatr Neurol. 1994;11:246-51.

4.Fallon P, Aparicio JM, Elliott MJ, Kirkham FJ. Incidence of neurological complications of surgery for congenital heart disease. Arch Dis Child. 1995;72:418-22.

5.Rappaport LA, Wypij D, Bellinger DC, Helmers SL, Holmes GL, Barnes PD, Wernovsky G, Kuban KC, Jonas RA, Newburger JW. Relation of seizures after cardiac surgery in early infancy to neurodevelopmental outcome. Boston Circulatory Arrest Study Group. Circulation. 1998;97:773‑9.

6.Pua HL, Bissonnette B. Cerebral physiology in paediatric cardiopulmonary bypass. Can J Anaesth. 1998;45:960-78.

7.Undar A, Masai T, Yang SQ, Goddard-Finegold J, Frazier OH, Fraser CD, Jr. Effects of perfusion mode on regional and global organ blood flow in a neonatal piglet model. Ann Thorac Surg. 1999;68:1336-42; discussion 1342-3.

8.Bellinger DC, Wernovsky G, Rappaport LA, Mayer JE, Jr., Castaneda AR, Farrell DM, Wessel DL, Lang P, Hickey PR, Jonas RA, et al. Cognitive development of children following early repair of transposition of the great arteries using deep hypothermic circulatory arrest. Pediatrics. 1991;87:701-7.

9.Newburger JW, Jonas RA, Wernovsky G, Wypij D, Hickey PR, Kuban KC, Farrell DM, Holmes GL, Helmers SL, Constantinou J, et al. A comparison of the perioperative neurologic effects of hypothermic circulatory arrest versus low-flow cardiopulmonary bypass in infant heart surgery [see comments]. N Engl J Med. 1993;329:1057-64.

10.Bellinger DC, Jonas RA, Rappaport LA, Wypij D, Wernovsky G, Kuban KC, Barnes PD, Holmes GL, Hickey PR, Strand RD, et al. Developmental and neurologic status of children after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass [see comments]. N Engl J Med. 1995;332:549-55.

11.Wernovsky G, Wypij D, Jonas RA, Mayer JE, Jr., Hanley FL, Hickey PR, Walsh AZ, Chang AC, Castaneda AR, Newburger JW, et al. Postoperative course and hemodynamic profile after the arterial switch operation in neonates and infants. A comparison of low-flow cardiopulmonary bypass and circulatory arrest. Circulation. 1995;92:2226-35.

12.Kern JH, Hinton VJ, Nereo NE, Hayes CJ, Gersony WM. Early developmental outcome after the Norwood procedure for hypoplastic left heart syndrome. Pediatrics. 1998;102:1148-52.

13.du Plessis AJ. Cerebral hemodynamics and metabolism during infant cardiac surgery. Mechanisms of injury and strategies for protection. J Child Neurol. 1997;12:285-300.

14.du Plessis AJ. Mechanisms of brain injury during infant cardiac surgery. Semin Pediatr Neurol. 1999;6:32-47.

15.du Plessis AJ, Johnston MV. The pursuit of effective neuroprotection during infant cardiac surgery. Semin Pediatr Neurol. 1999;6:55-63.

16.Mezrow CK, Midulla PS, Sadeghi AM, Gandsas A, Wang W, Bodian C, Shing HH, Zappulla R, Dapunt OE, Griepp RB. Quantitative electroencephalography: a method to assess cerebral injury after hypothermic circulatory arrest. J Thorac Cardiovasc Surg. 1995;109:925-34.

[Seite 91↓]

17.Abdul-Khaliq H, Schubert S, Stoltenburg-Didinger G, Troitzsch D, Bottcher W, Hubler M, Meissler M, Grosse-Siestrop C, Alexi-Meskishvili V, Hetzer R, Lange PE. Protein S-100beta in brain and serum after deep hypothermic circulatory arrest in rabbits: relationship to perivascular astrocytic swelling. Clin Chem Lab Med. 2000;38:1169-72.

18.Kirshbom PM, Skaryak LA, DiBernardo LR, Kern FH, Greeley WJ, Gaynor JW, Ungerleider RM. Effects of aortopulmonary collaterals on cerebral cooling and cerebral metabolic recovery after circulatory arrest. Circulation. 1995;92:II490-4.

19.Raskin SA, Fuselier VW, Reeves-Viets JL, Coselli JS. Deep hypothermic circulatory arrest with and without retrograde cerebral perfusion. Int Anesthesiol Clin. 1996;34:177-93.

20.Langley SM, Chai PJ, Jaggers JJ, Ungerleider RM. Preoperative high dose methylprednisolone attenuates the cerebral response to deep hypothermic circulatory arrest. Eur J Cardiothorac Surg. 2000;17:279-86.

21.Kurth CD, Priestley M, Watzman HM, McCann J, Golden J. Desflurane confers neurologic protection for deep hypothermic circulatory arrest in newborn pigs. Anesthesiology. 2001;95:959-64.

22.Shum-Tim D, Tchervenkov CI, Jamal AM, Nimeh T, Luo CY, Chedrawy E, Laliberte E, Philip A, Rose CP, Lavoie J. Systemic steroid pretreatment improves cerebral protection after circulatory arrest. Ann Thorac Surg. 2001;72:1465-71; discussion 1471-2.

23.Crafoord C. Operationen am offenen Herzen mit Herz-Lungen-Maschine (Stockholmer Modell). In: Langenbecks Archiv für klinische Chirurgie; 1958:257-266.

24.Gibbon J. Application of a mechanical heart and lung apparatus to cardiac surgery. Minnesota Med. 1954;37:171.

25.Björg VO. An artificial heart or cardiopulmonary machine. Performance in animals. Lancet. 1948;260.

26.Dennis C, Springs Jr. DS, Nelson GE, Karlson KE, Nelson RM, Thomas JV, Eder WP, Varco RL. Development of pump-oxygenator to replace the heart and lungs;an apparatus applicable to human patients and application in one case. Annals of Surgery. 1951;134:709-721.

27.Lewis FJ, Taufic M. Closure of atrial septal defects with the aid of hypothermia; experimental accomplishments and the report of one succesful case. Surgery. 1953;33.

28.De Wall RA, Warden HE, Gott VL, Read RC, Varco RL, Lillehei CW. Total body perfusion for open cardiotomy utilizing the bubble oxygenator. Physiologic responses in man. Journal of Thoracic Surgery. 1956;32:591-603.

29.Kirklin JW. Intracardiac surgery with the aid of a mechanical pump-oxygenator system (Gibbon-type): Report of eight cases. Proc Mayo Clin. 1955;30:201 - 206.

30.Sealy WC, Brown IW, Young WG. A report on the use of both extracorporeal circulation and hypothermia for open heart surgery. Ann Surg. 1958;147:603 - 613.

31.Drew CE, Keen G, Benazon DB. Profound hypothermia. Lancet. 1959;1:745 - 747.

32.Ferry PC. Neurologic sequelae of cardiac surgery in children. Am J Dis Child. 1987;141:309-12.

33.Kirkham FJ. Recognition and prevention of neurological complications in pediatric cardiac surgery. Pediatr Cardiol. 1998;19:331-45.

34.Tuxen DV, Scheinkestel CD, Salamonson R. Air embolism--a neglected cause of stroke complicating cardiopulmonary bypass (CPB) surgery [letter; comment]. Aust N Z J Med. 1994;24:732-3.

35.Slogoff S, Girgis KZ, Keats AS. Etiologic factors in neuropsychiatric complications associated with cardiopulmonary bypass. Anesth Analg. 1982;61:903-11.

36.Padayachee TS, Parsons S, Theobold R, Linley J, Gosling RG, Deverall PB. The detection of microemboli in the middle cerebral artery during cardiopulmonary bypass: a transcranial Doppler ultrasound investigation using membrane and bubble oxygenators. Ann Thorac Surg. 1987;44:298-302.

[Seite 92↓]

37.Padayachee TS, Parsons S, Theobold R, Gosling RG, Deverall PB. The effect of arterial filtration on reduction of gaseous microemboli in the middle cerebral artery during cardiopulmonary bypass. Ann Thorac Surg. 1988;45:647-9.

38.Pugsley W, Klinger L, Paschalis C, Treasure T, Harrison M, Newman S. The impact of microemboli during cardiopulmonary bypass on neuropsychological functioning. Stroke. 1994;25:1393-9.

39.Madsen PL, Holm S, Herning M, Lassen NA. Average blood flow and oxygen uptake in the human brain during resting wakefulness: a critical appraisal of the Kety-Schmidt technique. J Cereb Blood Flow Metab. 1993;13:646-55.

40.Henriksen L. Evidence suggestive of diffuse brain damage following cardiac operations. Lancet. 1984;1:816-20.

41.Kurth CD, O'Rourke MM, O'Hara IB. Comparison of pH-stat and alpha-stat cardiopulmonary bypass on cerebral oxygenation and blood flow in relation to hypothermic circulatory arrest in piglets [see comments]. Anesthesiology. 1998;89:110-8.

42.Tomiyama Y, Jansen K, Brian JE, Jr., Todd MM. Hemodilution, cerebral O2 delivery, and cerebral blood flow: a study using hyperbaric oxygenation. Am J Physiol. 1999;276:H1190-6.

43.Settergren G, Ohqvist G, Lundberg S, Henze A, Bjork VO, Persson B. Cerebral blood flow and cerebral metabolism in children following cardiac surgery with deep hypothermia and circulatory arrest. Clinical course and follow-up of psychomotor development. Scand J Thorac Cardiovasc Surg. 1982;16:209-15.

44.Mezrow CK, Sadeghi AM, Gandsas A, Shiang HH, Levy D, Green R, Holzman IR, Griepp RB. Cerebral blood flow and metabolism in hypothermic circulatory arrest. Ann Thorac Surg. 1992;54:609-15; discussion 615-6.

45.Mezrow CK, Sadeghi AM, Gandsas A, Dapunt OE, Shiang HH, Zappulla RA, Griepp RB. Cerebral effects of low-flow cardiopulmonary bypass and hypothermic circulatory arrest. Ann Thorac Surg. 1994;57:532-9; discussion 539.

46.Hoffman WE, Charbel FT, Edelman G, Ausman JI. Brain tissue oxygen pressure, carbon dioxide pressure, and pH during hypothermic circulatory arrest. Surg Neurol. 1996;46:75-9.

47.Burrows FA, Bissonnette B. Cerebral blood flow velocity patterns during cardiac surgery utilizing profound hypothermia with low-flow cardiopulmonary bypass or circulatory arrest in neonates and infants. Can J Anaesth. 1993;40:298-307.

48.Ashraf S, Bhattacharya K, Tian Y, Watterson K. Cytokine and S100B levels in paediatric patients undergoing corrective cardiac surgery with or without total circulatory arrest. Eur J Cardiothorac Surg. 1999;16:32-7.

49.Aoki M, Jonas RA, Nomura F, Kawata H, Hickey PR. Anti-CD18 attenuates deleterious effects of cardiopulmonary bypass and hypothermic circulatory arrest in piglets. J Card Surg. 1995;10:407-17.

50.Nagashima M, Shin'oka T, Nollert G, Shum-Tim D, Rader CM, Mayer JE, Jr. High-volume continuous hemofiltration during cardiopulmonary bypass attenuates pulmonary dysfunction in neonatal lambs after deep hypothermic circulatory arrest. Circulation. 1998;98:II378-84.

51.Volk T, Schmutzler M, Engelhardt L, Docke WD, Volk HD, Konertz W, Kox WJ. Influence of aminosteroid and glucocorticoid treatment on inflammation and immune function during cardiopulmonary bypass. Crit Care Med. 2001;29:2137-42.

52.Moore FD, Jr., Warner KG, Assousa S, Valeri CR, Khuri SF. The effects of complement activation during cardiopulmonary bypass. Attenuation by hypothermia, heparin, and hemodilution. Ann Surg. 1988;208:95-103.

53.Schurr UP, Zund G, Hoerstrup SP, Grunenfelder J, Maly FE, Vogt PR, Turina MI. Preoperative administration of steroids: influence on adhesion molecules and cytokines after cardiopulmonary bypass. Ann Thorac Surg. 2001;72:1316-20.

[Seite 93↓]

54.Tabardel Y, Duchateau J, Schmartz D, Marecaux G, Shahla M, Barvais L, Leclerc JL, Vincent JL. Corticosteroids increase blood interleukin-10 levels during cardiopulmonary bypass in men. Surgery. 1996;119:76-80.

55.Wan S, LeClerc JL, Schmartz D, Barvais L, Huynh CH, Deviere J, DeSmet JM, Vincent JL. Hepatic release of interleukin-10 during cardiopulmonary bypass in steroid-pretreated patients. Am Heart J. 1997;133:335-9.

56.Corbi PJ, Rahmati M, Lecron JC. Inflammatory response associated with cardiopulmonary bypass and effect of methylprednisolone. J Thorac Cardiovasc Surg. 2001;122:1052-3.

57.Ginsberg MD, Sternau LL, Globus MY, Dietrich WD, Busto R. Therapeutic modulation of brain temperature: relevance to ischemic brain injury. Cerebrovasc Brain Metab Rev. 1992;4:189-225.

58.Tseng EE, Brock MV, Kwon CC, Annanata M, Lange MS, Troncoso JC, Johnston MV, Baumgartner WA. Increased intracerebral excitatory amino acids and nitric oxide after hypothermic circulatory arrest. Ann Thorac Surg. 1999;67:371-6.

59.Mc Conkey D. Biochemical determinants of apoptosis and necrosis. Toxicol Lett. 1998;99:157-168.

60.Lipton SA, Nicotera P. Calcium, free radicals and excitotoxins in neuronal apoptosis. Cell Calcium. 1998;23:165-71.

61.Stepanichev M, Onufriev MV, Lazareva NA, Zarzhetskii Iu V, Mutuskina EA, Guvich AM, Guliaeva NV. The effect of systemic circulatory arrest on the process of free- radical oxidation and on NO-synthase activity in the brain structures of rats of different behavioral types in an emotional resonance test: the acute effects]. Zh Vyssh Nerv Deiat Im I P Pavlova. 1998;48:541-50.

62.Ren Z, Ding W, Su Z, Gu X, Huang H, Liu J, Yan Q, Zhang W, Yu X. Mechanisms of brain injury with deep hypothermic circulatory arrest and protective effects of coenzyme Q10. J Thorac Cardiovasc Surg. 1994;108:126-33.

63.Ostrowski RP, Piotrowski P, Pankowska T, Smialek M. Evaluation of morphological changes after treatment with coenzyme Q10 (CoQ10) in endothelin-1 induced experimental ischemia in the rat. Folia Neuropathol. 1998;36:185-8.

64.Greeley WJ, Kern FH, Ungerleider RM, Boyd JLd, Quill T, Smith LR, Baldwin B, Reves JG. The effect of hypothermic cardiopulmonary bypass and total circulatory arrest on cerebral metabolism in neonates, infants, and children. J Thorac Cardiovasc Surg. 1991;101:783-94.

65.Mujsce DJ, Towfighi J, Heitjan DF, Vannucci RC. Differences in intraischemic temperature influence neurological outcome after deep hypothermic circulatory arrest in newborn dogs. Stroke. 1994;25:1433-41; discussion 1442.

66.McCullough JN, Zhang N, Reich DL, Juvonen TS, Klein JJ, Spielvogel D, Ergin MA, Griepp RB. Cerebral metabolic suppression during hypothermic circulatory arrest in humans. Ann Thorac Surg. 1999;67:1895-9; discussion 1919-21.

67.Sano T, Drummond JC, Patel PM, Grafe MR, Watson JC, Cole DJ. A comparison of the cerebral protective effects of isoflurane and mild hypothermia in a model of incomplete forebrain ischemia in the rat [see comments]. Anesthesiology. 1992;76:221-8.

68.Stocker F, Herschkowitz N, Bossi E, Stoller M, Cross TA, Aue WP, Seelig J. Cerebral metabolic studies in situ by 31P-nuclear magnetic resonance after hypothermic circulatory arrest. Pediatr Res. 1986;20:867-71.

69.Yager JY, Brucklacher RM, Mujsce DJ, Vannucci RC. Cerebral oxidative metabolism during hypothermia and circulatory arrest in newborn dogs. Pediatr Res. 1992;32:547-52.

70.Nakashima K, Todd MM. Effects of hypothermia on the rate of excitatory amino acid release after ischemic depolarization. Stroke. 1996;27:913-8.

[Seite 94↓]

71.Sorensen HR, Husum B, Waaben J, Andersen K, Andersen LI, Gefke K, Kaarsen AL, Gjedde A. Brain microvascular function during cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1987;94:727-32.

72.Burrows FA, Bissonnette B. Cerebral blood flow velocity patterns during cardiac surgery utilizing profound hypothermia with low-flow cardiopulmonary bypass or circulatory arrest in neonates and infants [see comments]. Can J Anaesth. 1993;40:298-307.

73.Aoyagi M, Flasterstein AH, Barnette J, Koch LV, Ross JN, Jr., Kennedy JH. Cerebral effects of profound hypothermia (18 degrees C) and circulatory arrest. Circulation. 1975;52:I52-60.

74.van der Linden J, Astudillo R, Ekroth R, Scallan M, Lincoln C. Cerebral lactate release after circulatory arrest but not after low flow in pediatric heart operations. Ann Thorac Surg. 1993;56:1485-9.

75.Azariades M, Firmin RK, Lincoln C, Lennox SC. Cerebral function analysis during deep hypothermia and total circulatory arrest in infant lambs. Thorac Cardiovasc Surg. 1988;36:133-6.

76.Treasure T. The safe duration of total circulatory arrest with profound hypothermia. Ann R Coll Surg Engl. 1984;66:235-40.

77.Bokesch PM, Marchand J, Seirafi PA, Deiss JM, Warner KG, Bronson RT, Kream RM. Immediate-early gene expression in ovine brain after cardiopulmonary bypass and hypothermic circulatory arrest. Anesthesiology. 1996;85:1439-46.

78.Svenmarker S, Sandstrom E, Karlsson T, Haggmark S, Jansson E, Appelblad M, Lindholm R, Aberg T. Neurological and general outcome in low-risk coronary artery bypass patients using heparin coated circuits. Eur J Cardiothorac Surg. 2001;19:47-53.

79.Cook DJ, Orszulak TA, Daly RC. Minimum hematocrit at differing cardiopulmonary bypass temperatures in dogs. Circulation. 1998;98:II170-4; discussion II175.

80.Cook DJ, Orszulak TA, Daly RC, MacVeigh I. Minimum hematocrit for normothermic cardiopulmonary bypass in dogs. Circulation. 1997;96:II-200-4.

81.Shin'oka T, Shum-Tim D, Jonas RA, Lidov HG, Laussen PC, Miura T, du Plessis A. Higher hematocrit improves cerebral outcome after deep hypothermic circulatory arrest. J Thorac Cardiovasc Surg. 1996;112:1610-20; discussion 1620-1.

82.O'Rourke MM, Nork KM, Kurth CD. Neonatal cerebral oxygen regulation after hypothermic cardiopulmonary bypass and circulatory arrest. Crit Care Med. 2000;28:157-62.

83.Cooper WA, Duarte IG, Thourani VH, Nakamura M, Wang NP, Brown WM, 3rd, Gott JP, Vinten-Johansen J, Guyton RA. Hypothermic circulatory arrest causes multisystem vascular endothelial dysfunction and apoptosis. Ann Thorac Surg. 2000;69:696-702; discussion 703.

84.Skaryak LA, Lodge AJ, Kirshbom PM, DiBernardo LR, Wilson BG, Meliones JN, Ungerleider RM, Gaynor JW. Low-flow cardiopulmonary bypass produces greater pulmonary dysfunction than circulatory arrest. Ann Thorac Surg. 1996;62:1284-8.

85.Lange MS, Johnston MV, Tseng EE, Baumgartner WA, Blue ME. Apoptosis detection in brain using low-magnification dark-field microscopy. Exp Neurol. 1999;158:254-60.

86.Shin'oka T, Nagashima M, Nollert G, Shum-Tim D, Laussen PC, Lidov HG, du Plessis A, Jonas RA. A novel sialyl Lewis X analog attenuates cerebral injury after deep hypothermic circulatory arrest. J Thorac Cardiovasc Surg. 1999;117:1204-11.

87.Fessatidis IT, Thomas VL, Shore DF, Hunt RH, Weller RO. Neuropathological features of profoundly hypothermic circulatory arrest: an experimental study in the pig. Cardiovasc Surg. 1993;1:155-60.

88.Kurth CD, Priestley M, Golden J, McCann J, Raghupathi R. Regional patterns of neuronal death after deep hypothermic circulatory arrest in newborn pigs. J Thorac Cardiovasc Surg. 1999;118:1068-77.

[Seite 95↓]

89.Undar A, Henderson N, Thurston GB, Masai T, Beyer EA, Frazier OH, Fraser CD, Jr. The effects of pulsatile versus nonpulsatile perfusion on blood viscoelasticity before and after deep hypothermic circulatory arrest in a neonatal piglet model. Artif Organs. 1999;23:717-21.

90.Esmailian F, Dox H, Sadeghi A, Eghbali K, Laks H. Retrograde cerebral perfusion as an adjunct to prolonged hypothermic circulatory arrest. Chest. 1999;116:887-91.

91.Langley SM, Chai PJ, Miller SE, Mault JR, Jaggers JJ, Tsui SS, Lodge AJ, Lefurgey A, Ungerleider RM. Intermittent perfusion protects the brain during deep hypothermic circulatory arrest. Ann Thorac Surg. 1999;68:4-12; discussion 12-3.

92.Tsui SS, Kirshbom PM, Davies MJ, Jacobs MT, Greeley WJ, Kern FH, Gaynor JW, Ungerleider RM. Nitric oxide production affects cerebral perfusion and metabolism after deep hypothermic circulatory arrest. Ann Thorac Surg. 1996;61:1699-707.

93.Nollert G, Jonas RA, Reichart B. Optimizing cerebral oxygenation during cardiac surgery: a review of experimental and clinical investigations with near infrared spectrophotometry. Thorac Cardiovasc Surg. 2000;48:247-53.

94.Kin H, Ishibashi K, Nitatori T, Kawazoe K. Hippocampal neuronal death following deep hypothermic circulatory arrest in dogs: involvement of apoptosis. Cardiovasc Surg. 1999;7:558-64.

95.Fessatidis IT, Thomas VL, Shore DF, Sedgwick ME, Hunt RH, Weller RO. Brain damage after profoundly hypothermic circulatory arrest: correlations between neurophysiologic and neuropathologic findings. An experimental study in vertebrates. J Thorac Cardiovasc Surg. 1993;106:32-41.

96.Nomura F, Forbess JM, Jonas RA, Hiramatsu T, du Plessis AJ, Walter G, Stromski ME, Holtzman DH. Influence of age on cerebral recovery after deep hypothermic circulatory arrest in piglets. Ann Thorac Surg. 1996;62:115-22.

97.Brierley JB, Graham DI. Hypoxia and vascular disorders of the central nervous system. 4 ed. London: Edwards Arnold; 1984.

98.Ye J, Yang L, Del Bigio MR, Filgueiras CL, Ede M, Summers R, Salerno TA, Deslauriers R. Neuronal damage after hypothermic circulatory arrest and retrograde cerebral perfusion in the pig. Ann Thorac Surg. 1996;61:1316-22.

99.Ye J, Yang L, Del Bigio MR, Summers R, Salerno TA, Deslauriers R. The effect of circulatory arrest and retrograde cerebral perfusion on microtubule-associated protein 2: an immunohistochemical study in pig hippocampus. Neurosci Lett. 1997;222:9-12.

100.Wyllie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol. 1980;68:251-306.

101.Searle J, Kerr JF, Bishop CJ. Necrosis and apoptosis: distinct modes of cell death with fundamentally different significance. Pathol Annu. 1982;17:229-59.

102.Brown AW, Brierley JB. Anoxic-ischaemic cell change in rat brain. Light microscopic and fine-structuralobservations. J. neurol.Sci. 1972;16:59 - 84.

103.Levy DE, Brierley JB, Silverman DG, Plum F. Brief hypoxia-ischemia initially damages cerebral neurons. Arch. Neurol. 1975;32:450 - 456.

104.Brown AW, Brierly JB. Structural abnormalities in neurones. J. of clininical Pathology. 1977;30, suppl.11:155 - 169.

105.Kerr JFR, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26:239-257.

106.Lo ea. Apoptosis in nervous system. Arch Histo Cytol. 1995??

107.Charriaut-Marlangue C. [Apoptosis and cerebral ischemia]. Ann Pharm Fr. 1999;57:309-13.

108.Schwartz LM, Smith SW, Jones ME, Osborne BA. Do all programmed cell deaths occur via apoptosis? Proc Natl Acad Sci U S A. 1993;90:980-4.

[Seite 96↓]

109.Columbano A. Cell death: current difficulties in discriminating apoptosis from necrosis in the context of pathological processes in vivo. J Cell Biochem. 1995;58:181-90.

110.Villalba M, Bockaert J, Journot L. Concomitant induction of apoptosis and necrosis in cerebellar granule cells following serum and potassium withdrawal. Neuroreport. 1997;8:981-5.

111.Leist M, Nicotera P. The shape of cell death. Biochem Biophys Res Commun. 1997;236:1-9.

112.Nicotera P, Leist M, Ferrando-May E. Intracellular ATP, a switch in the decision between apoptosis and necrosis. Toxicol Lett. 1998;102-103:139-42.

113.Li PA, Rasquinha I, He QP, Siesjo BK, Csiszar K, Boyd CD, MacManus JP. Hyperglycemia enhances DNA fragmentation after transient cerebral ischemia. J Cereb Blood Flow Metab. 2001;21:568-76.

114.Leist M, Volbracht C, Kuhnle S, Fava E, Ferrando-May E, Nicotera P. Caspase-mediated apoptosis in neuronal excitotoxicity triggered by nitric oxide. Mol Med. 1997;3:750-64.

115.Jacobson MD, Burne JF, Raff MC. Mechanisms of programmed cell death and Bcl-2 protection. Biochem Soc Trans. 1994;22:600-2.

116.Abdul-Khaliq H, Schubert S, Troitzsch D, Wehsack A, Böttcher W, Gutsch E, Hübler M, Schmitt B, Crausaz M, Schwaller B, Celio M, Stoltenburg-Didinger G, Blasig I, Volk H-D, Liebenthal C, Hetzer R, PE. L. Ein neonatales Schweinemodell zur Evaluierung neuroprotektiver Strategien in der Kinderherzchirurgie. Z Herz Thorax Gefäßchir. 2001:1-8.

117.Murkin JM. The role of CPB management in neurobehavioral outcomes after cardiac surgery. Ann Thorac Surg. 1995;59:1308-11.

118.Fessatidis IT, Thomas VL, Shore DF, Hunt RH, Weller RO, Goodland F, Rowe D, Venetikou MV, Bloom SR. Assessment of neurological injury due to circulatory arrest during profound hypothermia. An experimental study in vertebrates. Eur J Cardiothorac Surg. 1993;7:465-72.

119.Undar A, Vaughn WK, Calhoon JH. The effects of cardiopulmonary bypass and deep hypothermic circulatory arrest on blood viscoelasticity and cerebral blood flow in a neonatal piglet model. Perfusion. 2000;15:121-8.

120.Braughler JM, Hall ED, Means ED, Waters TR, Anderson DK. Evaluation of an intensive methylprednisolone sodium succinate dosing regimen in experimental spinal cord injury. J Neurosurg. 1987;67:102-5.

121.Hall ED. Neuroprotective actions of glucocorticoid and nonglucocorticoid steroids in acute neuronal injury. Cell Mol Neurobiol. 1993;13:415-32.

122.Liu D, McAdoo DJ. Methylprednisolone reduces excitatory amino acid release following experimental spinal cord injury. Brain Res. 1993;609:293-7.

123.Liu Y, Cousin JM, Hughes J, Van Damme J, Seckl JR, Haslett C, Dransfield I, Savill J, Rossi AG. Glucocorticoids promote nonphlogistic phagocytosis of apoptotic leukocytes. J Immunol. 1999;162:3639-46.

124.Tassani P. Corticosteroids during operations using cardiopulmonary bypass. J Clin Anesth. 2000;12:242-7.

125.Vincent JL, Wan S, Yim AP. Steroids in cardiopulmonary bypass. Crit Care Med. 2000;27:545-8.

126.Cronstein BN, Kimmel SC, Levin RI, Martiniuk F, Weissmann G. A mechanism for the antiinflammatory effects of corticosteroids: the glucocorticoid receptor regulates leukocyte adhesion to endothelial cells and expression of endothelial-leukocyte adhesion molecule 1 and intercellular adhesion molecule 1. Proc Natl Acad Sci U S A. 1992;89:9991-5.

127.Cronstein BN, Kimmel SC, Levin RI, Martiniuk F, Weissmann G. Corticosteroids are transcriptional regulators of acute inflammation. Trans Assoc Am Physicians. 1992;105:25-35.

[Seite 97↓]

128.Barnes PJ. Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin Sci (Lond). 1998;94:557-72.

129.Jamshidi J, Yoshimine T, Ushio Y, Hayakawa T. Effects of glucocorticoid and chemotherapy on the peritumoral edema and astrocytic reaction in experimental brain tumor. J Neurooncol. 1992;12:197-204.

130.Marzatico F, Gaetani P, Buratti E, Messina AL, Ferlenga P, Rodriguez y Baena R. Effects of high-dose methylprednisolone on Na(+)-K+ ATPase and lipid peroxidation after experimental subarachnoid hemorrhage. Acta Neurol Scand. 1990;82:263-70.

131.Kim JS, Chopp M, Gautam SC. High dose methylprednisolone therapy reduces expression of JE/MCP-1 mRNA and macrophage accumulation in the ischemic rat brain. J Neurol Sci. 1995;128:28-35.

132.Buttini M, Mir A, Appel K, Wiederhold KH, Limonta S, Gebicke-Haerter PJ, Boddeke HW. Lipopolysaccharide induces expression of tumour necrosis factor alpha in rat brain: inhibition by methylprednisolone and by rolipram. Br J Pharmacol. 1997;122:1483-9.

133.Cronstein BN. Molecular mechanism of methotrexate action in inflammation. Inflammation. 1992;16:411-23.

134.Chaney MA, Durazo-Arvizu RA, Nikolov MP, Blakeman BP, Bakhos M. Methylprednisolone does not benefit patients undergoing coronary artery bypass grafting and early tracheal extubation. J Thorac Cardiovasc Surg. 2001;121:561-9.

135.Abdul-Khaliq H, Schubert S, Stoltenburg-Didinger G. Neuroprotective effects of pre-treatment with systemic steroids in a neonatal piglet model of cardiopulmonary bypass with deep hypothermic circulatory arrest. Eur J Cardiothorac Surg. 2000;18:729-31.

136.Lodge AJ, Chai PJ, Daggett CW, Ungerleider RM, Jaggers J. Methylprednisolone reduces the inflammatory response to cardiopulmonary bypass in neonatal piglets: timing of dose is important. J Thorac Cardiovasc Surg. 1999;117:515-22.

137.Andersen LW, Baek L, Thomsen BS, Rasmussen JP. Effect of methylprednisolone on endotoxemia and complement activation during cardiac surgery. J Cardiothorac Anesth. 1989;3:544-9.

138.Boscoe MJ, Yewdall VM, Thompson MA, Cameron JS. Complement activation during cardiopulmonary bypass: quantitative study of effects of methylprednisolone and pulsatile flow. Br Med J (Clin Res Ed). 1983;287:1747-50.

139.Karlstad MD, Patteson SK, Guszcza JA, Langdon R, Chesney JT. Methylprednisolone does not influence endotoxin translocation during cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 1993;7:23-7.

140.Barrington KJ. The adverse neuro-developmental effects of postnatal steroids in the preterm infant: a systematic review of RCTs. BMC Pediatr. 2001;1:1.

141.Bamberger CM, HM S. Wirkungsmechanismus der Glucocorticoide. Internist (Berlin). 1997;38.

142.Hohfeld J, Jentsch S. GrpE-like regulation of the hsc70 chaperone by the anti-apoptotic protein BAG-1. Embo J. 1997;16:6209-16.

143.Lowy MT. Quantification of type I and II adrenal steroid receptors in neuronal, lymphoid and pituitary tissues. Brain Res. 1989;503:191-7.

144.Sanchez MM, Young LJ, Plotsky PM, Insel TR. Distribution of corticosteroid receptors in the rhesus brain: relative absence of glucocorticoid receptors in the hippocampal formation. J Neurosci. 2000;20:4657-68.

145.Moutsatsou P, Psarra AM, Tsiapara A, Paraskevakou H, Davaris P, Sekeris CE. Localization of the glucocorticoid receptor in rat brain mitochondria. Arch Biochem Biophys. 2001;386:69-78.

146.Zilliacus. 1994.

[Seite 98↓]

147.Jöels M. Steroid hormones and excitability in the mammalian brain. Frontiers Neuroendocrinol. 1997;18:2-48.

148.Hofmann TG, Hehner SP, Bacher S, Droge W, Schmitz ML. Various glucocorticoids differ in their ability to induce gene expression, apoptosis and to repress NF-kappaB-dependent transcription. FEBS Lett. 1998;441:441-6.

149.Hassan AH, von Rosenstiel P, Patchev VK, Holsboer F, Almeida OF. Exacerbation of apoptosis in the dentate gyrus of the aged rat by dexamethasone and the protective role of corticosterone. Exp Neurol. 1996;140:43-52.

150.Almeida OF, Conde GL, Crochemore C, Demeneix BA, Fischer D, Hassan AH, Meyer M, Holsboer F, Michaelidis TM. Subtle shifts in the ratio between pro- and antiapoptotic molecules after activation of corticosteroid receptors decide neuronal fate. Faseb J. 2000;14:779-90.

151.Wong PC, Barlow CF, Hickey PR, Jonas RA, Castaneda AR, Farrell DM, Lock JE, Wessel DL. Factors associated with choreoathetosis after cardiopulmonary bypass in children with congenital heart disease. Circulation. 1992;86:II118-26.

152.Ye J, Ryner LN, Kozlowski P, Yang L, Del Bigio MR, Sun J, Donnelly M, Summers R, Salerno TA, Somorjai RL, Saunders JK, Deslauriers R. Retrograde cerebral perfusion results in flow distribution abnormalities and neuronal damage. A magnetic resonance imaging and histopathological study in pigs. Circulation. 1998;98:II313-8.

153.Gross DR. Animal model in Cardiovascular Research. In: Martinus Niijhoff Publication. Boston; 1985.

154.Somogyi P, Tagaki H. A note on the use of picric acid-paraformaldehyde-glutaralaldehyde fixative for correlated light and electron microscopic immuncytochemistry. Neuroscience. 1982;7:1779 - 1783.

155.Cammermeyer J. Nonspecific changes of the central nervous system in normal and experimental material. In: The structure and function of nervous tissue. New York, London: Academic Press; 1972:131-251.

156.Cordell JL, Falini B, Erber WN, Ghosh AK, Abdulaziz Z, MacDonald S, Pulford KA, Stein H, Mason DY. Immunoenzymatic labeling of monoclonal antibodies using immune complexes of alkaline phosphatase and monoclonal anti-alkaline phosphatase (APAAP complexes). J Histochem-Cytochem. 1984;32:219-29.

157.Hulette CM, Downey BT, Burger PC. Macrophage markers in diagnostic neuropathology. Am J Surg Pathol. 1992;16:493-9.

158.Brock MV, Blue ME, Lowenstein CJ, Northington FA, Lange MS, Johnston MV, Baumgartner WA. Induction of neuronal nitric oxide after hypothermic circulatory arrest. Ann Thorac Surg. 1996;62:1313-20.

159.Brucher JM, Musoglu E, Bangels M. Morphometry and electronic data processing. Clinical Neuropathol. 1986;5:122-123.

160.Nollert G, Nagashima M, Bucerius J, Shin'oka T, Jonas RA. Oxygenation strategy and neurologic damage after deep hypothermic circulatory arrest. I. Gaseous microemboli. J Thorac Cardiovasc Surg. 1999;117:1166-71.

161.Bokesch PM, Seirafi PA, Warner KG, Marchand JE, Kream RM, Trapp B. Differential immediate-early gene expression in ovine brain after cardiopulmonary bypass and hypothermic circulatory arrest. Anesthesiology. 1998;89:961-8.

162.Vejlsted H, Andersen K, Fischer Hansen B, Husum B, Arnbjerg J. Myocardial preservation during anoxic arrest. Premedication with propranolol, verapamil or methylprednisolone. Scand J Thorac Cardiovasc Surg. 1983;17:269-76.

163.Uhler TA, Frim DM, Pakzaban P, Isacson O. The effects of megadose methylprednisolone and U-78517F on toxicity mediated by glutamate receptors in the rat neostriatum. Neurosurgery. 1994;34:122-7; discussion 127-8.

[Seite 99↓]

164.Joels M, Vreugdenhil E. Corticosteroids in the brain. Cellular and molecular actions. Mol Neurobiol. 1998;17:87-108.

165.Xu J, Fan G, Chen S, Wu Y, Xu XM, Hsu CY. Methylprednisolone inhibition of TNF-alpha expression and NF-kB activation after spinal cord injury in rats. Brain Res Mol Brain Res. 1998;59:135-42.

166.Simard M, Couldwell WT, Zhang W, Song H, Liu S, Cotrina ML, Goldman S, Nedergaard M. Glucocorticoids-potent modulators of astrocytic calcium signaling. Glia. 1999;28:1-12.

167.Tsubota S, Adachi N, Chen J, Yorozuya T, Nagaro T, Arai T. Dexamethasone changes brain monoamine metabolism and aggravates ischemic neuronal damage in rats. Anesthesiology. 1999;90:515-23.

168.Sapolsky RM. Glucocorticoids, stress, and their adverse neurological effects: relevance to aging. Exp Gerontol. 1999;34:721-32.

169.Bremer AM, Yamada K, West CR. Ischemic cerebral edema in primates: effects of acetazolamide, phenytoin, sorbitol, dexamethasone, and methylprednisolone on brain water and electrolytes. Neurosurgery. 1980;6:149-54.

170.Koide T, Wieloch TW, Siesjo BK. Chronic dexamethasone pretreatment aggravates ischemic neuronal necrosis. J Cereb Blood Flow Metab. 1986;6:395-404.

171.Hall ED, Braughler JM, McCall JM. Antioxidant effects in brain and spinal cord injury. J Neurotrauma. 1992;9 Suppl 1:S165-72.

172.Adachi N, Chen J, Liu K, Tsubota S, Arai T. Dexamethasone aggravates ischemia-induced neuronal damage by facilitating the onset of anoxic depolarization and the increase in the intracellular Ca2+ concentration in gerbil hippocampus. J Cereb Blood Flow Metab. 1998;18:274-80.

173.Wan S, LeClerc JL, Huynh CH, Schmartz D, DeSmet JM, Yim AP, Vincent JL. Does steroid pretreatment increase endotoxin release during clinical cardiopulmonary bypass? J Thorac Cardiovasc Surg. 1999;117:1004-8.

174.Chaney MA, Nikolov MP, Blakeman BP, Bakhos M, Slogoff S. Hemodynamic effects of methylprednisolone in patients undergoing cardiac operation and early extubation. Ann Thorac Surg. 1999;67:1006-11.

175.Laursen H, Waaben J, Gefke K, Husum B, Andersen LI, Sorensen HR. Brain histology, blood-brain barrier and brain water after normothermic and hypothermic cardiopulmonary bypass in pigs. Eur J Cardiothorac Surg. 1989;3:539-43.

176.Chen CJ, Liao SL, Kuo JS. Gliotoxic action of glutamate on cultured astrocytes. J Neurochem. 2000;75:1557-65.

177.Hansson E, Muyderman H, Leonova J, Allansson L, Sinclair J, Blomstrand F, Thorlin T, Nilsson M, Ronnback L. Astroglia and glutamate in physiology and pathology: aspects on glutamate transport, glutamate-induced cell swelling and gap-junction communication. Neurochem Int. 2000;37:317-29.

178.Bender AS, Young LP, Norenberg MD. Effect of lactic acid on L-glutamate uptake in cultured astrocytes: mechanistic considerations. Brain Res. 1997;750:59-66.

179.Plesnila N, Muller E, Ringel F, Peters J, Baethmann A. Glial cell swelling--effect of hypothermia. Acta Neurochir Suppl. 1999;73:63-6.

180.Bissonnette B, Pellerin L, Ravussin P, Daven VB, Magistretti PJ. Deep hypothermia and rewarming alters glutamate levels and glycogen content in cultured astrocytes. Anesthesiology. 1999;91:1763-9.

181.Walz W, Klimaszewski A, Paterson IA. Glial swelling in ischemia: a hypothesis. Dev Neurosci. 1993;15:216-25.

182.Plesnila N, Muller E, Guretzki S, Ringel F, Staub F, Baethmann A. Effect of hypothermia on the volume of rat glial cells. J Physiol. 2000;523 Pt 1:155-62.

[Seite 100↓]

183.Nollert G, Nagashima M, Bucerius J, Shin'oka T, Lidov HG, du Plessis A, Jonas RA. Oxygenation strategy and neurologic damage after deep hypothermic circulatory arrest. II. hypoxic versus free radical injury. J Thorac Cardiovasc Surg. 1999;117:1172-9.

184.Shum-Tim D, Nagashima M, Shinoka T, Bucerius J, Nollert G, Lidov HG, du Plessis A, Laussen PC, Jonas RA. Postischemic hyperthermia exacerbates neurologic injury after deep hypothermic circulatory arrest. J Thorac Cardiovasc Surg. 1998;116:780-92.

185.Forbess JM, Ibla JC, Lidov HG, Cioffi MA, Hiramatsu T, Laussen P, Miura T, Jonas RA. University of Wisconsin cerebroplegia in a piglet survival model of circulatory arrest. Ann Thorac Surg. 1995;60:S494-500.

186.Li PA, Kristian T, Shamloo M, Siesjo K. Effects of preischemic hyperglycemia on brain damage incurred by rats subjected to 2.5 or 5 minutes of forebrain ischemia. Stroke. 1996;27:1592-601; discussion 1601-2.

187.Sato K, Matsuki N. A 72 kDa heat shock protein is protective against the selective vulnerability of CA1 neurons and is essential for the tolerance exhibited by CA3 neurons in the hippocampus. Neuroscience. 2002;109:745-56.

188.Yue X, Mehmet, J.P.,Cooper, C., Cady, E., Wyatt, J.S.,Reynolds, E.O.R., Edwards, A.D., Squier, M.V. Apoptosis and necrosis in the newborn piglet brain following transient cerebral hypoxia-ischaemia. Neuropathology and Applied Neurobiology. 1997;23:16-25.

189.Nicotera P, Orrenius S. The role of calcium in apoptosis. Cell Calcium. 1998;23:173-80.

190.Ahlbom E, Gogvadze V, Chen M, Celsi G, Ceccatelli S. Prenatal exposure to high levels of glucocorticoids increases the susceptibility of cerebellar granule cells to oxidative stress-induced cell death. Proc Natl Acad Sci U S A. 2000;97:14726-30.

191.Reagan LP, Mc Ewens BS. Controverses surrounding glucocorticoid-mediated cell death in the hippocampus. J Chem Neuroanat. 1997;13:149 - 167.

192.Mujsce DJ, Towfighi J, Yager JY, Vannucci RC. Neuropathologic aspects of hypothermic circulatory arrest in newborn dogs. Acta Neuropathol. 1993;85:190-8.

193.Kerr JF. Shrinkage necrosis of adrenal cortical cells. J Pathol. 1972;107:217-9.

194.Leist M, Nicotera P. Apoptosis versus necrosis: the shape of neuronal cell death. Results Probl Cell Differ. 1998;24:105-35.

195.Yuan J., BA Y. Apoptosis in the nervous system. Nature. 2000;407:802-9.

196.Clark RS, Kochanek PM, Chen M, Watkins SC, Marion DW, Chen J, Hamilton RL, Loeffert JE, Graham SH. Increases in Bcl-2 and cleavage of caspase-1 and caspase-3 in human brain after head injury. Faseb J. 1999;13:813-21.

197.Thompson MA, Broadbent MP. Methylprednisolone prior to cardiopulmonary bypass. Anaesthesia. 1980;35:345-53.

198.Hicks GL, Hill AA, DeWeese JA. Subendocardial protection during cardiopulmonary bypass. Its use with methylprednisolone and glucose-insulin-potassium. Arch Surg. 1979;114:302-4.

199.Kanellopoulos GK, Kato H, Wu Y, Dougenis D, Mackey M, Hsu CY, Kouchoukos NT. Neuronal cell death in the ischemic spinal cord: the effect of methylprednisolone. Ann Thorac Surg. 1997;64:1279-85; discussion 1286.

200.Chen A, Xu XM, Kleitman N, Bunge MB. Methylprednisolone administration improves axonal regeneration into Schwann cell grafts in transected adult rat thoracic spinal cord. Exp Neurol. 1996;138:261-76.

201.Fosse E, Mollnes TE, Osterud A, Aasen AO. Effects of methylprednisolone on complement activation and leukocyte counts during cardiopulmonary bypass. Scand J Thorac Cardiovasc Surg. 1987;21:255-61.

[Seite 101↓]

202.Koszdin KL, Shen DD, Bernards CM. Spinal cord bioavailability of methylprednisolone after intravenous and intrathecal administration: the role of P-glycoprotein. Anesthesiology. 2000;92:156-63.

203.Abram SE, Marsala M, Yaksh TL. Analgesic and neurotoxic effects of intrathecal corticosteroids in rats. Anesthesiology. 1994;81:1198-205.

204.Dougherty JH, Fraser RAR. Complications following intraspinal injections of steroids. J. Neurosurg. 1978;48:1023-1025.

205.Berndt S, Fuhrmeister U. Glukokortikoide (Pharmakotherapie der Blut-Liquor-Schranke). Stuttgart: Thieme; 1980.

206.Lehrer GM, Maker HS, Weisbarth S. Brain uptake of methylprednisolone acetate from cerebrospinal fluid and systemic sites. Arch. Neurol. (chic.). 1973;28:324-328.

207.Chen TC, Mackic JB, McComb JG, Giannotta SL, Weiss MH, Zlokovic BV. Cellular uptake and transport of methylprednisolone at the blood-brain barrier. Neurosurgery. 1996;38:348-54.

208.Uete T, Nishimura S, Ohya H. Corticosteroid levels in blood and cerebrospinal fluid in various diseases. J. clin. Endocr. 1978;30:208-214.

209.Shegal AD, Tweed AC, Gardner WJ. Laboratory studies after intrathekal corticoids. Determination of corticosteroids in plasma and CSF. Arch. Neurol. 1963;9:64-68.

210.Abdul-Khaliq H, Troitzsch D, Berger F, Lange PE. [Regional transcranial oximetry with near infrared spectroscopy (NIRS) in comparison with measuring oxygen saturation in the jugular bulb in infants and children for monitoring cerebral oxygenation]. Biomed Tech (Berl). 2000;45:328-32.

211.Husum B, Palm T, Andersen K, Vejlsted H. Immediate hemodynamic effect of pharmacological doses of methylprednisolone in dogs, and the influence of speed of injection. Acta Anaesthesiol Scand. 1980;24:61-4.

212.Dietzman RH, Lunseth JB, Goott B, Berger EC. The use of methylprednisolone during cardiopulmonary bypass. A review of 427 cases. J Thorac Cardiovasc Surg. 1975;69:870-3.

213.Jonas RA. Myocardial protection for neonates and infants. Thorac Cardiovasc Surg. 1998;46 Suppl 2:288-91.

214.Mount LE, Ingram, D.L. The Pig as a Laboratory Model. New York: Academic Press; 1971.

215.Pond WG, Houpt, K.A. The Biology of the Pig. In. Ithaca, NY: Cornell University Press; 1978.

216.Chaney MA, Nikolov MP, Blakeman B, Bakhos M, Slogoff S. Pulmonary effects of methylprednisolone in patients undergoing coronary artery bypass grafting and early tracheal extubation [see comments]. Anesth Analg. 1998;87:27-33.

217.Griepp EB, Griepp RB. Cerebral consequences of hypothermic circulatory arrest in adults. J Card Surg. 1992;7:134-55.

218.Cherian L, Goodman JC, Robertson CS. Hyperglycemia increases brain injury caused by secondary ischemia after cortical impact injury in rats. Crit Care Med. 1997;25:1378-83.

219.Vannucci RC, Rossini A, Towfighi J. Effect of hyperglycemia on ischemic brain damage during hypothermic circulatory arrest in newborn dogs. Pediatr Res. 1996;40:177-84.

220.Kondo F, Kondo Y, Makino H, Ogawa N. Delayed neuronal death in hippocampal CA1 pyramidal neurons after forebrain ischemia in hyperglycemic gerbils: amelioration by indomethacin. Brain Res. 2000;853:93-8.

221.Kawai N, Keep RF, Betz AL, Nagao S. Hyperglycemia induces progressive changes in the cerebral microvasculature and blood-brain barrier transport during focal cerebral ischemia. Acta Neurochir Suppl. 1998;71:219-21.

[Seite 102↓]

222.Anderson RV, Siegman MG, Balaban RS, Ceckler TL, Swain JA. Hyperglycemia increases cerebral intracellular acidosis during circulatory arrest [published erratum appears in Ann Thorac Surg 1993 Apr;55(4):1054]. Ann Thorac Surg. 1992;54:1126-30.

223.Siesjo BK, Katsura KI, Kristian T, Li PA, Siesjo P. Molecular mechanisms of acidosis-mediated damage. Acta Neurochir Suppl. 1996;66:8-14.

224.Russell JW, Sullivan KA, Windebank AJ, Herrmann DN, Feldman EL. Neurons undergo apoptosis in animal and cell culture models of diabetes. Neurobiol Dis. 1999;6:347-63.

225.Rosenberg LJ, Jordan RS, Gross GW, Emery DG, Lucas JH. Effects of methylprednisolone on lesioned and uninjured mammalian spinal neurons: viability, ultrastructure, and network electrophysiology. J Neurotrauma. 1996;13:417-37.

226.Karst H, Karten YJ, Reichardt HM, de Kloet ER, Schutz G, Joels M. Corticosteroid actions in hippocampus require DNA binding of glucocorticoid receptor homodimers. Nat Neurosci. 2000;3:977-8.

227.Joels M. Corticosteroid actions in the hippocampus. J Neuroendocrinol. 2001;13:657-69.

228.Siesjo BK, Zhao Q, Pahlmark K, Siesjo P, Katsura K, Folbergrova J. Glutamate,calcium, and free radicals as mediators of ischemic brain damage. Ann Thorac Surg. 1995;59:1316-20.

229.Kristian T, Siesjo BK. Calcium-related damage in ischemia. Life Sci. 1996;59:357-67.

230.Kristian T, Siesjo BK. Calcium in ischemic cell death. Stroke. 1998;29:705-18.

231.Leist M, Nicotera P. Calcium and neuronal death. Rev Physiol Biochem Pharmacol. 1998;132:79-125.

232.Sapolsky R, Pulsinelli WA. Glucocorticoids potentiate ischemic damage to brain. Ann Neurol. 1985;18:125.

233.Pfaff DW, Silva M, Weiss JM. Telemetered recording of hormone effects on hippocampal neurons. Science. 1971;171:394-395.

234.Hall ED, Yonkers PA, Andrus PK, Cox JW, Anderson DK. Biochemistry and pharmacology of lipid antioxidants in acute brain and spinal cord injury. J Neurotrauma. 1992;9 Suppl 2:S425-42.

235.Hall ED. Lipid antioxidants in acute central nervous system injury. Ann Emerg Med. 1993;22:1022-7.

236.Wan S, LeClerc JL, Vincent JL. Cytokine responses to cardiopulmonary bypass: lessons learned from cardiac transplantation. Ann Thorac Surg. 1997;63:269-76.

237.Si QS, Nakamura Y, Kataoka K. Hypothermic suppression of microglial activation in culture: inhibition of cell proliferation and production of nitric oxide and superoxide. Neuroscience. 1997;81:223-9.

238.Osuka K, Suzuki Y, Saito K, Takayasu M, Shibuya M. Changes in serum cytokine concentrations after neurosurgical procedures. Acta Neurochir. 1996;138:970-6.

239.Wyllie AH. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature. 1980;284:555-6.

240.Chandra J, Gilbreath J, Freireich EJ, Kliche KO, Andreeff M, Keating M, McConkey DJ. Protease activation is required for glucocorticoid-induced apoptosis in chronic lymphocytic leukemic lymphocytes. Blood. 1997;90:3673-81.

241.Hicsonmez G, Erdemli E, Tekelioglu M, Tuncer AM, Ozbek N, Cetin M, Cotter TG. Morphologic evidence of apoptosis in childhood acute myeloblastic leukemia treated with high-dose methylprednisolone. Leuk Lymphoma. 1996;22:91-6,follow.186,color plate VII-III.

242.Schmidt J, Gold R, Schonrock L, Zettl UK, Hartung HP, Toyka KV. T-cell apoptosis in situ in experimental autoimmune encephalomyelitis following methylprednisolone pulse therapy. Brain. 2000;123:1431-41.

[Seite 103↓]

243.Ravagnan L, Gurbuxani S, Susin SA, Maisse C, Daugas E, Zamzami N, Mak T, Jaattela M, Penninger JM, Garrido C, Kroemer G. Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol. 2001;3:839-43.

244.Guzhova I, Kislyakova K, Moskaliova O, Fridlanskaya I, Tytell M, Cheetham M, Margulis B. In vitro studies show that Hsp70 can be released by glia and that exogenous Hsp70 can enhance neuronal stress tolerance. Brain Res. 2001;914:66-73.

245.Foster JA, Brown IR. Intracellular localization of heat shock mRNAs (hsc70 and hsp70) to neural cell bodies and processes in the control and hyperthermic rabbit brain. J Neurosci Res. 1996;46:652-65.

246.Liu Y, Kato H, Nakata N, Kogure K. [Correlation between induction of ischemic tolerance and expression of heat shock protein-70 in the rat hippocampus]. No To Shinkei. 1993;45:157-62.

247.Reshef A, Capua ND, Sperling O, Zoref-Shani E. Ischemic tolerance conferred to cultured rat neurons by heat shock is not mediated by opening of adenosine triphosphate-sensitive potassium channels. Neurosci Lett. 2000;287:223-6.

248.Kitamura Y, Shimohama S, Kamoshima W, Ota T, Matsuoka Y, Nomura Y, Smith MA, Perry G, Whitehouse PJ, Taniguchi T. Alteration of proteins regulating apoptosis, Bcl-2, Bcl-x, Bax, Bak, Bad, ICH-1 and CPP32, in Alzheimer's disease. Brain Res. 1998;780:260-9.

249.Parsadanian AS, Cheng Y, Keller-Peck CR, Holtzman DM, Snider WD. Bcl-xL is an antiapoptotic regulator for postnatal CNS neurons. J Neurosci. 1998;18:1009-19.

250.Kischkel FC, Lawrence DA, Chuntharapai A, Schow P, Kim KJ, Ashkenazi A. Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity. 2000;12:611-20.

251.Schulze-Osthoff K, Ferrari D, Los M, Wesselborg S, Peter ME. Apoptosis signaling by death receptors. Eur J Biochem. 1998;254:439-59.

252.Putcha GV, Harris CA, Moulder KL, Easton RM, Thompson CB, Johnson EM, Jr. Intrinsic and extrinsic pathway signaling during neuronal apoptosis: lessons from the analysis of mutant mice. J Cell Biol. 2002;157:441-53.

© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 3.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am: